Files
MaxScale/query_classifier/qc_sqlite/sqlite-src-3110100/src/where.c
Johan Wikman d115a54038 All changes 1.4.3...2.0.0
b709e29 Fix URL typo in release notes
01f203c Update release notes
c49810a Update COPYRIGHT
e327526 Add BSL version number to LICENSE.TXT
07e3a4e Remove superfluous COPURIGHT.md and LICENSE.md
54c3310 Replace Dynamic Data Routing Platform with Database Proxy
305d02f Remove *.cmake wildcard from .gitignore
b0b5208 Cleanup of spaces
aeca6d0 Extend maxscaled error messages
817d74c Document where the CDC users are stored
9a569db Update license
ff8697a MXS-716: Fix table level privilege detection
2071a8c Only check replies of slaves that are in use
f8dfa42 Fix possible hangs in CDC python scripts
fa1d99e Removed "filestem option" from example
009b549 Removed "filestem option" from example
8d515c2 Add example Kafka producer script for Python
64e976b Fix sporadic SSL authentication failures
5a655dc MXS-814: Check service/monitor permissions on all servers
2a7f596 Add note about galeramon priority to Galera tutorials
b90b5a6 Fixed SHOW SLAVE STATUS in binlog router
e22fe39 Changed couln size for SHOW SLAVE STATUS
ae97b18 Fix avrorouter build failure with older sqlite libraries
56ef8b7 Replace GPL license with BSL license in scripts and tests
552836f Initialize all fields when MySQL users are loaded from cache
bf42947 Update all licensing related files
b29db9d Remove optimize_wildcard parameter from use
5170844 Make readwritesplit diagnosting output more clear
262ffb1 Fix crash when a config parameter has no section
33ac9e6 Add note about LEAST_BEHIND_MASTER and server weights
e13e860 Fix a memory leak when backend authentication fails
75d00c2 MXS-801: Set the default value of strip_db_esc to true
bd5f2db MXS-800: Add a log message about the working directory
4b1dd8c Update MySQL Monitor documentation on detect_replication_lag
559bc99 Fix installation of license file
b057587 Change LICENSE to LICENSE.TXT
223fa43 Remove null characters from log messages
36fd05b Fix fatal signal handler log message
053dc8a Fix typos in documentation
371dc87 Fix Galera text in Master-Slave tutorial
30b6265 Disable adding of new objects at runtime
db92311 Update the documentation on configuration reloading
0923d40 Update Connector-C version
c4738b5 Add define for avro-conversion.ini
196e6ac Update license from GPL to BSL.
e612366 Correctly calculate the number of bytes read in dcb_read
93a2a03 Update rotate documentation in admin tutorial
c5eb854 MXS-585: Fix authentication handling regression
6330070 Fix schemarouter memory leak
aa5827e Fix CDC authentication memory leak
a5af4ad Fix avro memory leaks
627d73f Fix Avro scripts
0ff7556 Add build instructions to avrorouter documentation
734a1c8 Fix doxygen mainpage
e51ce09 Add licence text to avro scripts
4d27c14 Update Avro documentation and fix installation directories
a58a330 Fix readconnroute error message about router_options
22b138c MXS-772: Fix postinstall script
a9960b7 Fix function declaration in mysql_backend.c
cbe1704 Add missing newline
09d76ee Fix avro documentation default values
1d3f8f3 Added refresh users on START SLAVE
880db34 Make router configuration errors fatal
3bad5ca Update documentation and add logging to avrorouter
10f3384 Disable SSLv3
ca8d902 Fix rwsplit error reporting when master is lost
e816d65 Fix MaxScale Tutorial
deca3e1 Update MaxScale man page
f1735b7 Update release notes
9238714 qc: Change type of DEALLOCATE PREPARE
0b77c3b dbfwfilter: Do not require a trailing new line
1152ca9 Remove copyright message
a038a85 Remove debug assertion on ERANGE error in galeramon
12ab235 Fix comparison error for connections limit.
5de1a8f qc_sqlite: Correct string recognition
b63d754 Fix links in documentation contents
05d457e CDC protocol link fix
50676ef Fix monitor code formatting
218ba09 Remove MaxScale-and-SSL.md
0d6845b Add images to Avro documentation and tutorial
8dd2c9b Update MaxScale-2.0.0-Release-Notes.md
6d4b593 Change avrorouter default transaction grouping
4c629de Add notes about monitor changes to upgrading and release notes
267d0dc Update Binlogrouter.md
c624781 Update Replication-Proxy-Binlog-Router-Tutorial.md
f3261bc CDC users
1368797 Format authenticator and module headers
ab01749 Format filters
8b05d32 Format core and include files
f3974e5 Add GPL LICENSE to qc_mysqlembedded
bfec36a astyle rabbitmq_consumer/consumer.c
54b960a Check that the Avro directory is writable
3d4cd2e Fix cdc_users using the wrong path for service users cache
1e738dd Add CDC client program documentation
f6809fd Remove superfluous rabbitmw_consumer/LICENSE
6b5e667 Update license text in files
9bfcb46 Change CDC protocol documentation formatting
607f25c  REQUEST-DATA formatting
8175ab4 CDC protocol update
d5ca272 CDC protocol update
6c91764 Only check wsrep_local_index if node is joined
f12e2c2 Do not use SSL for monitors and services
6d2cd99 Fix TestAdminUsers
f4ae50d Apply astyle to server/core/test/*.c
7cc2824 Update build instructions
cf8e2b5 Update release notes
03c7a6c Remove wrong function prototypes
5a11eed Revert "Remove duplicate functions"
80ed488 Remove duplicate functions
bb0de8d Add info on SSL and throttling to release notes for 2.0.
0934aee Update MaxAdmin reference guide
2a3fe9b Update source URL in release notes
e575cf0 Merge branch 'MXS-177-develop' into develop
cc8c88d Change header for BSL
ecde266 Change header for BSL
890b208 Log a message when a script is executed
9c365df Added information on server side SSL to config guide.
aa3e002 Remove obsolete heading
79dd73a Make dprintAllSessions use dprintSession
1fc0db9 Align output of "show services"
1b9d301 Make monitorShowAll use monitorShow
983615e Adjust output of 'show modules'
436badd qc_sqlite: The module is now beta
a7cbbe5 Update Upgrade document
71ac13f Remove obsolete user/password from example
eb20ff8 Fix and clean up Avrorouter diagnostics code
31d4052 Change MaxScale to MariaDB MaxScale
e6e4858 Fix `source` parameter not working with `router_options`
d8de99a Update module version numbers
eb81add Merge remote-tracking branch 'origin/develop' into MXS-177-develop
daba563 Merge remote-tracking branch 'origin/MXS-651-develop-merge' into develop
678f417 Changes in response to reviews.
410fb81 Changes in response to reviews.
60135e5 Add initial release notes about Avrorouter
7400ecc qc_sqlite: Remove uninitialized read
536962c Update version number
018f044 Fix debug assertion in client command processing
51f0804 Prevent 'show monitor' from crashing with failed monitor
559347e Fix "Too many connections" message; add comments.
01d3929 Add printf format checking to dcb_printf
fbd49a6 dbfwfilter: Require complete parsing only when needed
1885863 Add information to release notes about readwritesplit changes
73b56a2 Update MaxScale section in release notes.
0a2f56f MaxAdmin: Remove debug information from 'show users'
3cf3279 MaxAdmin: Report SSL information as well
29c2b66 Always use SSL if server configured with SSL
7d6b335 dprintAllServers should use dprintServer
02a5246 qc_sqlite: Correctly detect parsing context
469419b compare: Add strict mode
8c5b3d3 compare: Allow the comparison of a single statement
4691514 Add Updgrade to 2.0 document
38b3ecb Expand the checks done before a monitor is stopped
8e2cfb9 Add backend name to authentication error message
9600a07 Fix MaxInfo crash
91c58b0 Removed log message for duplicate entry while adding an user
40392fe Fixed log message priority
0ec35b8 maxadmin: Allow the last user to be removed
5a0ebed maxadmin: Change name of user file
87aa8f1 maxadmin: Always allow root to connect
bf37751 Fix COM_QUIT packet detection
7c93ee4 Update avrorouter documentation and tutorial
95ce463 Fix wrong directory in avrorouter log message
cfe54c7 Update ChangeLog
d69562c Fix LOAD DATA LOCAL INFILE data size tracking
24e7cd6 MXS-584: added support for SET @@session.autocommit
d6f6f76 Fixes, correct too many connections message
efeb924 Update release notes for 2.0.0
8f71a87 qc_sqlite: Adjust error messages
b967d60 Remove copy of enum enum_server_command
822b7e3 Update package license
b58301a Update MaxScale License for overlooked files
c09ee47 Update MaxScale License
49f46fa Tidy up. Comment out config items not yet supported.
f5c3470 Updated and simplified the Building from Source document
98b98e2 Add note about master failure modes to documentation
e036f2c Update Limitations document
62219a5 Merge remote-tracking branch 'origin/drain-writeq' into develop
5caf667 Invoke DCB_REASON_DRAINED more frequently.
77b107b qc_sqlite: Add support for LOAD DATA INFILE
8e70f26 compare: Optionally print out the parse result
ad750e6 Merge remote-tracking branch 'origin/MXS-651-develop-merge' into develop
ef85779 Merge remote-tracking branch 'origin/develop' into MXS-651-develop-merge
ea9fdda MXS-477: Add LONGBLOB support for readconnroute
eae6d42 qc_sqlite: Remove superfluous columnname definition
8fe2b21 Add binlog source to avrorouter
b25cc37 qc_sqlite: Add missing destructors
8a749e7 qc_sqlite: Reduce number of keywords
5f4bb8b compare: Output query immediately
2456e52 dbfwfilter: Reject queries that cannot be parsed
5f1fbbd qc_sqlite: Extend SET grammar
b8d8418 dbfwfilter: Remove 'allow' from firewall filter rule
0bd2a44 MXS-741 When no events are read from binlog file, ...
a07c491 Remove duplicated function (merge error, probably)
b237008 Save conflict resolution, missed last time.
a0c0b40 Merge remote-tracking branch 'origin/develop' into MXS-651-develop
385d47d Change SSL logic, fix large read problem.
b93b5e0 Remove false debug assertion
b953b1f Turn off SSL read ahead.
e0d46a5 Fix error messages and remove commented code
49b4655 MXS-739: Fix invalid JSON in Maxinfo
0c30692 qc_sqlite: Handle GROUP_CONCAT arguments
54e48a1 qc_sqlite: Consider \ as an escape character in strings
713a5d6 qc_sqlite: Add test cases
20d1b51 qc_sqlite: Handle qualified names in CREATE VIEW
1019313 qc_sqlite: Make QUERY_TYPE_WRITE default for SHOW
059c14e qc_sqlite: Accept qualified function names in SELECT
db34989 qc_sqlite: Accept qualified function names
b93e2f1 qc_sqlite: Add limited support for GRAND and REVOKE
678672d qc_sqlite: Cleanup copying of database and table names
9b744b9 qc_sqlite: Update table and database names at the same time
db75e61 qc: Support getting the qualified table names
1f867f4 qc: Add join.test
9c7e02a qc_sqlite: Accept "...from NATURAL straight_join..."
93d1c31 qc_sqlite: Both " and ' can enclose a string literal
8055b21 qc_sqlite: Set more information based upon tokens
37e3663 qc_sqlite: Do not blindly add affected fields
50f1360 qc: Correctly collect affected fields
71c234e qc_sqlite: Recognize CREATE TABLE ... UNION
01803f1 qc_sqlite: Recognize {DEALLOCATE|DROP} PREPARE ...
6ecd4b3 qc_sqlite: Parse index hints
0bdab01 qc: Compare sets of tables
b908c8f Fix double freeing of internal DCBs
8903556 qc_sqlite: Recognize LEFT, INSERT and REPLACE
266e6c0 qc: Log all problems by default (compare program)
7b54cac qc_sqlite: Fix logging bug
9566e9f qc_sqlite: Plug a leak
b0a860d qc: Run compare a specified number of times
050d698 qc_sqlite: Simplified argument handling
97c56b8 qc: Allow arguments to be passed to the query classifier
09a46e0 qc_sqlite: Add argument log_unrecognized_statements
fd98153 qc: Allow arguments to be provided to the query classifier
313aa7e Fix Problems SSL assertion; non SSL connect to SSL
1d721e6 Fix DEB packaging errors
96bdc39 Fix RPM packaging failures on CentOS 7
6ba900d qc_sqlite: Recognize more SHOW commands
2869d0b qc_sqlite: Exclude support for sqlite's PRAGMA
0be68a3 qc_sqlite: Enhance SELECT syntax
28f3e1a Merge branch 'develop' into MXS-729
e18bd41 qc: Expose the result of the parsing
5896085 Add BUILD_AVRO to the CMake cache
daeb896 Remove changes to blr_master.c memory handling
d523821 Add comments
4eb9a66 Empty admin users file is now handled
52b46c6 qc: Update create.test
db09711 qc_sqlite: Ignore case when looking for test language keywords
f042a1d qc_sqlite: Extend CREATE TABLE syntax
177d2de qc_sqlite: Extend CREATE TABLE syntax
d3ca8e6 qc_sqlite: Add some support for HANDLER
86c6a96 qc_sqlite: Recognize RENAME TABLE
471594f qc_sqlite: Accept more table options at CREATE TABLE
3da6cde qc_sqlite: Remove unused keywords
bd89662 Fix crash on corrupted passwd file
b5d1764 MXS-733: Always print session states
043e2db Remove unused CMake variables
5604fe2 Restore missing line, fixes logic error.
66d15a5 Added log message warning for old users found
5be9fca Changes in response to review by Johan
899e0e2 Removed password parameter from admin_user_add and admin_remove_user
a2d9302 Merge branch 'develop' into MXS-729
bcaf82f Code review update
e61c716 Nagios plugin update with Maxadmin using UNIX socket only
d7150a2 qc_sqlite: Extend column syntax
3b78df0 qc_sqlite: Accept VALUE in addition to VALUES
85a705b qc_sqlite: Accept CHARSET in addition to CHARACTER SET
db9cec8 qc_sqlite: Accept qualified column  names in CREATE TABLE
a9cabb0 qc_sqlite: Extend SELECT syntax
f5e9878 qc_sqlite: Add set type
675cb93 qc_sqlite: Allow BINARY to turn into an identifier
b04a760 qc_sqlite: Accept DROP TABLES
1075d9c qc_sqlite: Allow qualified name with LIKE in CREATE
420ac56 qc_sqlite: Extend EXPLAIN grammar
727d626 Add missing error message to readwritesplit
f4fd09e Change templates and testing configurations to use sockets
1ef2e06 Add configurable default admin user
a723731 Remove wrong file
7c3b02b Maxadmin/maxscaled UNIX socket update
eed78d4 qc_sqlite: Pick out more information from select when CREATEing
267f091 qc_sqlite: Recognise DROP TEMPORARY TABLE
54fc29f qc_sqlite: Accept $ as a valid character in identifiers
afa2ec9 qc_sqlite: Allow keywords to be used in qualified name
db0427d MXS-729 code review update
a3b3000 Merge branch 'develop' into MXS-729
e73d66c qc_sqlite: Identify qualified identifiers
5bacade Trailing space fix
3bc9be3 MXS-729 socket=default support in maxscale.cnf
1a5c23c Code review update for MXS-729
d6665c7 qc_sqlite: Extend CREATE TABLE grammar
91725ce qc_sqlite: Dequote table and database names
cd7a022 qc: Add create test
1aa4e6b qc: Update test files
762b0c2 qc_mysqlembedded: Do not return "*" as table name
cd9968f qc_sqlite: Update delete.test
f16703d qc_sqlite: Add support for CALL
e3ca9b4 qc_mysqlembedded: Do not return an array of empty strings
5878a22 qc_sqlite: Support selects in DELETE
1cf0444 qc_sqlite: Fix bug in DELETE grammar
0bf39a1 qc_sqlite: Add support for CHECK TABLE
4a8feca qc_sqlite: Add helper for catenating SrcLists
ab299b3 qc_sqlite: Extend DELETE syntax
5778856 qc_sqlite: Extract database name as well
99901f1 qc_sqlite: Extend DELETE syntax
63396f8 qc_sqlite: Match "autocommit" caseinsensitively
e804dd3 qc_sqlite: Add support for LOCK/UNLOCK
c23e442 qc_sqlite: Extend DELETE syntax
5460e31 qc: Add delete test
ab392ad qc_sqlite: Free unused data
598c6f0 qc: Measure time of parsing
2fa3844 qc_sqlite: Put all changes being {%|#}ifdefs
1b43992 qc_sqlite: Modified update.test
1676ea4 qc_sqlite: LEFT|RIGHT are not required with JOIN
224ebd3 qc_sqlite: Extend UPDATE grammar
dbecca9 qc_sqlite: Extend UPDATE grammar
b6ca3b3 MaxAdmin security modification MXS-729
8fb47dd Remove copying of MariaDB embedded library files
22e1257 Normalize whitespace when canonicalizing queries
269cff2 MXS-697: Fix dbfwfilter logging for matched queries
6344f6f Ignore Apple .DS_Store files.
d606977 Improve comments in response to code review.
619aa13 Add configuration check flag to MaxScale
27c860b Drain write queue improvements.
33d4154 Read only one configuration file
d104c19 Format more core files
83fdead Format part of core source code
311d5de Format gateway.c and config.c with Astyle
8cbb48e Don't build maxavro library if BUILD_AVRO is not defined
32bb77a Merge branch 'MXS-483' into develop
db72c5d Format CDC/Avro related files
3c26e27 qc_sqlite: Use SrcList instead of Expr
f96ad6a Merge branch 'develop' into MXS-729
0728734 Fix query canonical form tests
e68262d Merge remote-tracking branch 'gpl-maxscale/master' into develop
65460dc Fix missing symbols from MySQLAuth
791c821 MaxAdmin listens on UNIX socket only and maxadmin can connect
89afed6 MXS-66: All configuration errors are fatal errors
d613053 Add more details to galeramon documentation
22f4f57 qc: Add support for multi UPDATE
0dba25a Added default port to blr_make_registration
9d8248c qc_sqlit: Plug leaks and access errors
057551a qc_sqlite: Fix to small an allocation
1f73820 qc_sqlite: Free memory allocated during parsing
93fefb9 qc: Enable compare to run the same test repeatedly
e52c578 qc_sqlite: Handle last_insert_id()
929e02a qc_sqlite: Extend UPDATE grammar
de3b9f7 qc_sqlite: Defines provided when running cmake and make
4d5c3b2 qc_sqlite: Add support for multiple-table DELETE FROM
36a4296 qc_mysqlembedded: Handle SQLCOM_DELETE_MULTI
41f613a Fix DCB and SESSION removal from free object pools
00f2ddd Move some common code used in only one protocol into protocol.
6fbd0b0 Format Go source with gofmt
abfbbcb Fix build failures and internal test suite
31de74a Merge branch 'develop' into MXS-483
20d461d Remove uniqueness constrain on oneshot tasks
6c09288 Add missing error message to converter task
0c2c389 Merge branch 'develop' into MXS-483
fa0accc Set freed memory to NULL after authentication failure
63f24e4 Install cdc_schema.go
5123c21 Fix ALTER TABLE parsing
004acc2 Merge branch 'develop' into MXS-483
f69a671 Remove array foreach macro use
a159cd9 qc_sqlite: Add support for SHOW DATABASES
31a2118 Make qc_mysqlembedded optional
27ef30e Changed the default query classifier
359010d Add -h flag as the alias for --host
bebc086 Fix minor bugs
c7ca253 qc_sqlite: Recognize START [TRANSACTION]
240f8bf qc_sqlite: Collect info from nested SELECTs
93ea393 qc_sqlite: Pass along the relative position of a token
cc960af qc_sqlite: Fix incorrect assigment
22a6fef Fix `gtid` avro index table
4c38bef qc_sqlite: STATUS is not a registered word
cace998 qc_sqlite: Include all fields of UPDATE
997b19c qc: Add update tests
7601b3f qc_sqlite: Parse "INSERT INTO t VALUES (), ();" correctly
ca426f1 qc_sqlite: Handle CREATE TRIGGER
f54f963 qc_sqlite: Allow INSERT without INTO
e4a1b6d Remove foreign keys from Avro index
e4501a2 Merge branch 'develop' into MXS-483
82b9585 Fix MMMon never assigning master status
a45a709 qc_mysqlembedded: Find the leaf name
2f3ca8f qc_mysqlembedded: Recognize SQLCOM_REPLACE
cc7ad83 qc_mysqlembedded: Pick up fields for INSERT SELECT as well
0e6b39e qc: Cleanup of select.test
9113f4f qc_sqlite: Pickup more fields from INSERT
4d58f98 Dummy query classifier
dfe824f Document `query_classifier` option
4aa329b MXS-718: Collect fields of INSERT
53818f2 Modify packet number for SSL backend connection
346f973 qc_sqlite: Accept qualified column names
8a83616 Fix in-memory SQLite table structure
6f2c884 Further backend SSL development
4444e92 qc_sqlite: Extend INSERT grammar
2aebcab qc_sqlite: Add support for TRUNCATE
1a6742e qc_sqlite: Accept DEFAULT as value in INSERT
07dec05 qc_sqlite: Crude classification made based on seen keywords
a90a579 Add missing function documentation
72bd0cf qc_sqlite: Change CREATE TABLE grammar
6e04bc8 qc: Add INSERT tests
3666bda qc_sqlite: Add SELECT test
d27e173 Add server/mysql-test/t/select.test to query_classifier
562d004 qc_sqlite: Cleanup error logging.
819cacb Merge branch 'develop' into MXS-483
0d3a789 Add warnings and comments to Avro row event processing
2fab570 Added support for SET autocommit=1
1aa83cf Code review fix
c999f0a Addition of SELECT USER()
8c723da Clean up avro_client.c and avro_file.c
eb21ee8 Clean up avro.c
946a284 Added Avro schema to table metadata processing
72f90be qc_sqlite: Add support for CREATE {FUNCTION|PROCEDURE} ...
4a4ab49 qc: Update line number also when skipping a block
ffddb2a qc_sqlite: Allow queries using INTERVAL
b8b03bd qc_sqlite: Add support for SELECT * FROM tbl2 = tbl1;
77a261a qc_sqlite: Add support for GROUP BY ... WITH ROLLUP
0ead41e cdc_schema now generates lowercase JSON
66e327a Classifier has to be specified explicitly
9074b91 Updated Avrorouter documentation
cf06c7a qc_sqlite: Some comments added.
f579eff Added simple Go based Avro schema generator
f448e90 MXS-419: Added ulimit calls to init scripts
b4ad257 Added FindAvro.cmake
56cc9b9 Added the last transaction script to installations
2d52da2 Added temporary avro-alpha package name
6ada071 Fixed cdc_users script
61f0206 Renaming and minor fixes to CDC Python scripts
9d77c32 Moved GTID table tracking to an in-memory database
8ae7cb0 MXS-704: Fixed `which` usage in post-install scripts
195e118 Readwritesplit sessions aren't created if master is down
2be91da Added affected tables to avro diagnostics
b185320 QUERY-LAST-TRANSACTION now returns proper table names
90860b5 Log stale master message only once
4859c60 Table name to GTID mapping
f77bd23 First steps to backend SSL, not yet working.
68b5bf0 qc_sqlite: Don't treat TRUE and FALSE as identifiers
fca8e59 qc_sqlite: Collect database names as well
6b0e04d qc_sqlite: Add support for SHOW CREATE VIEW
77f4b34 qc_mysqlembedded: Report more, rather than less
a73e033 qc_sqlite: Extend builtin functions
9d9650e qc_sqlite: SQL_BUFFER_RESULT must decay to an id
83fe99d qc_sqlite: Support INSERT IGNORE
9d1c9ca Added avrorouter limitations and tutorial
8dd094d qc_sqlite: Recognize builtin functions
2edc3d6 Moved write operations of the maxavro library to a different file
1364e54 Added more comments to the Avro RBR handling code
f711588 Added warnign about unsupported field types
df0d250 Added SQLite3 based indexing to avrorouter
0c55706 Added GTID event flag check in AVRO processing
bfe28dd qc_sqlite: Accept SET GLOBAL|SESSION ...
a8d2068 qc_mysqlembedded: Exlude code that won't compile on 5.5.42
16ea0b3 qc_sqlite: Add support for DROP FUNCTION
1c0f1fc qc: Report stats after comparison
02345b2 qc_sqlite: Recognize builtin readonly functions
c7a5e75 qc_sqlite: Recognize :=
0aa849d qc: Make compare undestand the delimiter command
fb0a877 qc_mysqlembedded: Examine Item::SUBSELECT_ITEMs
045cf8d qc: Add missing mtl commands
e5c6f45 qc_sqlite: Relax qc_get_type comparison
ac3b2df qc_sqlite: Add support for SHOW STATUS
73a34fb qc_sqlite: Add initial support for FLUSH
4ffbe79 qc_sqlite: Extend CREATE TABLE syntax
009af81 qc_sqlite: Add support for SHOW WARNINGS
001de97 qc: Ignore mysqltest constructs
128307d Merge branch 'release-1.4.3' into gpl-master
5e8a06a SET NAMES XXX added
3ca12ba MXS-685: MMMon clears server state before setting it
dc4d2b0 Further steps to connection limit, non-working.
ef70257 MXS-636: Master failures are no longer fatal errors
99f4c64 Updated QUERY-LAST-TRANSACTION format
d1ff157 Changed QUERY-LAST-TRANSACTION format to JSON
8b2f1ac Fixed formatting of the avrorouter
61543df Added QUERY-LAST-TRANSACTION command
c10d10b qc_sqlite: Add support for SHOW CREATE TABLE
106a38f qc_sqlite: Add support for DROP INDEX
2a85421 qc_sqlite: Extend what can be stated about a table
794cd1c qc_sqlite: Add support for MATCH ... AGAINST
dd7b747 qc_sqlite: Accept FULLTEXT and SPATIAL in CREATE TABLE
a13d6ce qc_sqlite: Add support for PREPARE and EXECUTE
0c5d29f qc_sqlite: Add support for ANALYZE
a6cd32b qc_sqlite: Extend SET syntax
5d47704 qc_sqlite: Pick out fields from UPDATE t SET i = ...
0e05735 qc: Understand --error in server test files
8535975 qc_sqlite: Extend CREATE VIEW syntax
b35e638 qc: Igore read type bit if write bit is on
818a814 qc_sqlite: Add support for SHOW VARIABLES
1aa877b qc_sqlite: Add initial support for DO
e92913a qc_sqlite: Add support for CREATE VIEW
d53a46d qc_sqlite: Recognize bit field literals b'1010'
1fb7977 Added GTID event timestmap into struct gtid_pos
8f95b10 Added new fields in AVRO diagnostics
cb4db54 Added tests with large SQL packets to modutil tests
e4dbd6b MXS-621: More fixes to log messages at startup
4f1e9ee qc: compare tester can now read server MySQL tests
cd8154b qc_sqlite: Allow CHARACTER SET to be specified for column
6f8d053 Added MariaDB 10.1 check for new flags in GTID event
71c471b qc_mysqlembedded: Fix type bits setting
26b00a7 qc_sqlite: Extend ALTER grammar
ea6057c qc_sqlite: Handle also pInto when dupping a struct select
2271559 qc_sqlite: Add support for SHOW TABLE STATUS
9caaf27 qc_sqlite: Add support for CREATE ... LIKE oldtable
cd19932 Merge tag '1.4.2' into master
9e9e4d8 Merge branch 'develop' of https://github.com/mariadb-corporation/maxscale-bsl into develop
267cb60 qc_mysqlembedded: Look into parenthesized comma expressions
77c6ca9 qc_sqlite: Recognize token "<=>"
5ca9a9f qc_sqlite: Allow comma expressions in where clause
b08e910 qc_sqlite: Add SELECT options
d11e581 qc_sqlite: Some recursion cleanup
d53d063 Add but don't invoke connection queue functionality.
6818104 Fix logic error in connections limiter
3c61605 qc_sqlite: Find more affected fields
9af8dfd Allow the classifiers to be specified on the command line
5d4a134 Activate call to protocol for max connections error message.
16638e7 Fix another mistake
234f9e6 Fix mistake
843a6fc Fix mistake.
2c6e9ad Fix errors in config.c; enable call to protocol on connection limit.
fd27849 Introduce configuration items for Maximum and Queued Service connections
60d198d Implement very simple connection limit.
84d8f0f Merge remote-tracking branch 'origin/develop' into MXS-177
8a58e63 Merge remote-tracking branch 'origin/develop' into develop
08487cd Add assertion to enforce number of free DCBs not being negative.
f73af2f Added MariaDB 10.1 check for new flags in GTID event
23898ec Fix wrong sprintf specifier, trailing white space.
ea6cfa3 readwritesplit: Cleaned up routeQuery
3858df0 Cleaned up select_connect_backend_servers
c38ee13 Added more buffer tests
48816df Added more modutils tests
537eac2 Added tests for modutil_get_complete_packets
22a6095 MXS-669: modutil_get_complete_packets no longer makes the buffer contiguous
51af97e qc_sqlite: Add support for CREATE INDEX
e50c573 qc_sqlite: Dig out fields for IN
f58c6df qc_sqlite: Dequote table name
319422b qc_sqlite: Accept ENUM as type for a column
5d6a45c qc_sqlite: Allow UNSIGNED to fallback to an id
16a5f20 qc_sqlite: Extend CREATE TABLE syntax
d6268da qc_sqlite: Accept RIGHT and FULL OUTER joins
2207415 qc_sqlite: Allow STRAIGHT_JOIN in SELECT
6fee546 qc_sqlite: Pick upp more table names
9de5f84 Remove trailing white space.
758f84d Improve comments and messages in dcb.c and session.c re recycle memory.
1c2de21 Merge remote-tracking branch 'origin/develop' into dcb-optimise
6614944 DCB code tidying. Fix missing spinlock release; remove redundant variables
ecd5e5c Remove extra code introduced by merge.
877127a Merge commit '3c0d3e5ab6ddde59da764ec904b517759074a31e' into develop
4275bbe Updated the Connector-C version to 2.2.3
c71042b Some tentative list management code; provide for counting service clients.
ad0c8a6 qc_sqlite: Allow empty insert statement
72e75e5 qc_sqlite: Add support for SELECT ... INTO
cc553fa qc_sqlite: MAXSCALE define can now be used everywhere
3305c6e qc_sqlite: Handle CASE in SELECT
702f62e qc_sqlite: Extend CREATE TABLE grammar
941c212 qc_sqlite: Add support for SHOW [INDEX|INDEXES|KEYS]
6a79136 qc_sqlite: Extend grammar for SHOW TABLES and SHOW COLUMNS
f175d2d qc_sqlite: Add SHOW COLUMNS support
6e47951 qc_sqlite: Add support for SHOW TABLES
bcfa0e7 qc_mysqlembedded: Return the actual name and not as-name
3e19f2e Fixed qlafilter build failure
810b24e MXS-675: Standardized qlafilter output
be92173 qc_sqlite: Exclude alias names from affected fields
9479280 qc_sqlite: Add support for explain EXTENDED
13b0e10 qc_sqlite: Add support for DELETE
a6ccfea qc_mysqlembedded: Look at all conditional items
b428041 qc_sqlite: Extend SELECT options
83f829f query_classifier: Correctly calculate the length of a GWBUF
2ddb24c query_classifier: Ensure that -- comments are handled
fa7a746 qc_sqlite: Allow STRAIGHT_JOIN in SELECTS
6f47819 FindLibUUID update
5ed897b Added FindLibUUID cmake file
16e02bb Added FindLibUUID cmake file
aff63e0 MXS-680: qc_mysqlembedded does not look into functions
8a0eeb4 query_classifier: Improve output of compare
6f08185 Query classifier can now convert enums to strings
124e2b9 MXS-679: Correctly collect fields of WHERE
353c97c transaction_safety default is off
896e37b qc_sqlite: Invert stop logic and be more verbose
7a44d4d qc_sqlite: Extend what is accepted in CREATE TABLE
4dbf499 qc_sqlite: Accept FIRST in ALTER TABLE
3f655c0 qc_sqlite: Update table and affected fields for INSERT
8e1e275 qc_sqlite: Make AS optional in CREATE statement
5f2084b qc_sqlite: Add support for ENGINE when creating a table
242f183 qc_sqlite: CREATE paramters handled in the correct place
8ed2e25 qc_sqlite: Trace only when needed
63d4531 qc_sqlite: Update affected fields also from functions
118cdc3 qc_sqlite: Allow multiple index names in USE|IGNORE INDEX
912da76 qc_sqlite: Add initial support for ...IGNORE INDEX...
0aa7de6 qc_sqlite: Log detailed message on error
3e3bf1a qc_sqlite: Extend create syntax.
c4a4572 qc_sqlite: Exclude quoted values
1621f49 Removed MYSQL_EMBEDDED_LIBRARIES
d3e324c UUID generation now comes from libuuid
e8fe678 qc_sqlite: Enable confitional compilation
a9522ba qc_sqlite: Handle X.Y selects
9bc9770 qc_sqlite: Use same stream when outputting padding
366257a qc_sqlite: Add support for UNSIGNED and ZEROFILL
d4d90ff qc_sqlite: Add support for DROP VIEW
d0519bd qc_sqlite: Extend DROP TABLE syntax
c1e4894 qc_sqlite: Add flag to compare for stopping at first error
9fd6344 MXS-674: Maxinfo generates invalid JSON
3c0d3e5 Fix stupid errors.
9d32b2d Include read queue in buffer provided by dcb_read; changes to match.
b690797 Fix double spinlock release in random_jkiss.
6a4328f Fix problems of memory not being freed in some error cases.
2112e56 Change DCB and Session handling to recycle memory; fix bug in random_jkiss.
3912f72 MXS-631, MXS-632: Cleaned up default value CMake files
383ccb8 Fixed build failure on MariaDB 5.5
a60bca5 Merge branch '1.2.1-binlog_router_trx' into develop
3c2a062 Fix to crashes in embedded library with MariaDB 10.0
d3fe938 MXS-662: Service protocol check no longer ignores bind address
c3da49b qc_sqlite: Update affected fields from everywhere
7a0fab8 qc_sqlite: Allow verbosity of compare test to be controlled
81d6822 qc_sqlite: Cleanup handling of select columns
13e5c59 qc_sqlite: Introduce custom allocation functions
026f27d qc_sqlite: Add support for "USE database"
99079df qc_sqlite: Ignore duplicates when comparing affected fields
ca45cd6 qc_sqlite: Add initial support for qc_get_database_names
75970b6 qc_sqlite: Add support for DROP TABLE.
b97e45d qc_sqlite: Move get_affected_fields() to other helpers
cb0fa96 qc_sqlite: Collect table names of INSERT
3a7c513 qc_mysqlembedded: Only look for created name if CREATE
308b0a4 qc_sqlite: Add support for gc_get_created_table_name.
0dc4af2 qc_sqlite: Add qc_has_clause() handling to update
e9f2d1d qc_sqlite: Update now also provides table names
c3192e4 qc_sqlite: Add initial support for get_table_names
c51eafd qc_sqlite: Add support for qc_has_clause
f318fb2 qc_mysqlembedded: Work around embedded lib bug
4ba2e11 qc_sqlite: Add initial support for qc_get_affected_fields
080dea5 qc_sqlite: Support is_read_query
3f94df1 Fixed compare.cc build failure
868a712 Updated freeing of buffer chains in readwritesplit
9bf7fca Formatted readwritesplit source code
de4da2b Add assertion to spinlock release to detect release of already released spinlock.
d30955a qc_sqlite: Handle the default case of affected fields.
5d02b3f qc_sqlite: Set operation when creating table
94a334d Add test for comparing qc-output
aa6f5d6 Allow a specific query classifier to be loaded explicitly
c799d37 Test both qc_mysqlembedded and qc_sqlite
f8d9aa1 qc_sqlite: Enable "set @user_var=@@system_var"
f190bdc qc_sqlite: Recognize /*!-comments
b694b55 Fixed binary Avro format streaming
c95fa86 qc_sqlite: Report correctly the type of set autocommit
9cb236c qc_sqlite: Add test case
77b4e62 Ensure classify test checks all types
962039e Change return type of qc_get_type
ae00df8 qc_sqlite: Add initial support for the SET statement.
88253c5 qc_sqlite: Rename functions
fa48043 Rework of MySQL backend protocol clean up to fix fault.
3851064 qc_sqlite: Correct recognition of system variables (@@xyz).
9d86f7f qc_sqlite: Detect user and system variables.
a683297 qc_sqlite: Recognize and accept system variables (@@xyz).
a4f64dd qc_sqlite: Add initial support for CREATE [TEMPORARY] TABLE
f834b4f MXS-661: Only COM_QUERY packets are parsed
30077c1 CMake policies set only for correct versions
a166f34 Suppress warning about unknown CMake target
1412730 Added more variables to launchable monitor scripts
358c194 MXS-656: Galera nodes with index 0 can be master again
842aec5 qc_sqlite: Add support for BEGIN, COMMIT, ROLLBACK
b9cad6d Add initial support for UPDATE.
95741cb Add initial support for insert.
3796158 Re-install sqlite whenever parse.y has changed
5bcd8cf Ensure that the query is the one passed
cf05533 Add support for obtaining the type of a query
400d8b4 Always log the outcome
45cf632 Fixed resource leaks and minor bugs
fa9e970 Printout the query when there is a mismatch.
263cb07 All classify to be used with any query classifier
ea381b9 Further cleanup of classify.c
23f6f30 Merge pull request #107 from godmodelabs/typo-dpkg
8c2a64e Fixed classify build failure
0c3070b Fixed binlog to Avro conversion bugs
b827ba9 MXS-653: Silence maxpasswd
30d981c MXS-654: Add test for checking maxpasswd
984039b Rearrange classify.c
837e46d Add log initialization
1cc7a6e Reformat query_classifier/test/classify.c
065a4e5 Merge branch 'develop' into develop-MXS-544-b-merge
ca27f13 Fixed binlog build failure
fb81be2 fixed typo dpgk <-> dpkg
1e88d5d Added python based CDC user creation script
040bbdd MXS-633: Monitor permission checks moved to modules
cde7595 Master-Slave clusters are now robust by default
158c776 Cleaned up core test suite
94c6e66 Fixed bugs resulting from merge
a491e11 Merge remote-tracking branch 'origin/MXS-544-b' into develop-MXS-544-b-merge
30f9f25 Cleaned up avro.c
6286f64 Merge branch 'release-1.4.1' into develop
00206ac MXS-194: Added support for more query types to dbfwfilter
267832b Fixed diagnostic output
a64b694 Fixed bugs in avrorouter
8faaba1 Fixed a bug in GTID seeking
a5fafb7 Fixed typos in avrorouter documentation
8080379 Added avrorouter documentation
fa07d8a Fixed dbfwfilter rule parser build failure
744ce0d Constraints are ignored in DDL statement processing
50808c6 Cleaned up avrorouter
47f6032 Merge branch '1.2.1-binlog_router_trx_lint' into develop
caa0956 Added missing dependencies to maxscale-core
92df61a Remove parallel make from travis coverity builds
fa2b2b4 Added more error logging to Avro record reading
9a98e8b Support for GTID requests and data bursts
c2a787b Small diagnostic fix
c4cee7e Added format output requested by client
50483c7 Cleaning up of Avro code
d485379 Added support for binary Avro protocol
c22cdbb Converted Avro GTID from string to integer representation
5795ca9 Added coverity notification email to .travis.yml
a06e44d Added coverity_scan to Travis
6b94384 Fixed memory leak in avro_schema.c
a11096c Support for db.table request for Avrorouter
4e5cbbf Fixed bugs in Avro record reading
a99e427 Fixed minor bugs in avrorouter
01db8ae Fixed errors with CREATE TABLE statements
f5f3d7a Diagnostic routine update
209324f Added missing include for log_manager.h
e62f764 Added sending of schemas and file rotation
8c8fcbb Added missing log_manager.h include
b13942d Changed printf calls in maxavro library to MXS_ERROR
1168962 More lint inspired changes, mainly in blr_master.c and blr_slave.c
ced8f2f Fixed directory checks in avrorouter
a8ae6be Minor fix to string processing
fbd2d95 Fixed typo in dbfwfilter's CMakeLists.txt
29c3cf4 Merge pull request #106 from mariadb-corporation/willfong-patch-1
854d4e9 Add password column name to example
2f956df Moved server state change logging to a common function
007121f Fixed truncated string values
782892b Fix lint errors and warnings for blr_file.c
4f99fc5 Added Avro testing script
2820980 Small fix to help clear lint problems in blr.c
3afeda4 Fixed errors and warnings located by lint
ecfff82 Fix most lint problems in blr.c
223689c Added ALTER TABLE support
80bc935 Fix final lint problems with mysql_common protocol functions.
e068310 Added preliminary alter table parsing
8c723f1 Lint monitor modules
fdb5620 Fix lint issues in authenticators.
84f0e04 Added function documentation and renamed files
365d9f5 Tidy up, mainly for lint
2ff3005 Added update rows event processing and event types to avro records
2ae0371 Fixed failing regex and improved data streaming
f19206a Renamed avrorouter header
aa7174b Moved relpacement and storage of ddl statements to a separate function
0c10be8 Improved client notification and added Avro block size managemet
91405a7 Cleaned up instance creation
dd97485 Removed useless vars
af64e9e Added CDC authentication with a db file
b73a118 Streamline and lint MySQL backend protocol.
65034ce Merge branch 'release-1.4.0' into develop
28f7e4e Added callback for AVRO client async data transmission
628c27a Added MAXAVRO_FILE struct to AVRO_CLIENT
32b3645 Fixed slavelag build failure
7b15542 Added default authentication method for CDC protocol
5f8e20f Renamed maxavro types and formatted files that use them
882cf84 Added more function documentation to maxavro library
9532f0b Fixed CDC protocol build failure
35a1d3a Added support for offsets in client requests
94577ac Fixed, formatted and refactored CDC protocol
da9bcad Use the maxavro library to read data from Avro files
3ececee Added low level error checking to maxavro library
01b0b8b Tidy and lint mysql_client.c
943f0a7 Added handling of Avro boolean data types to maxavro library
4c781f7 Cleaned up maxavro library and avrorouter
6b2e85d Renamed functions more consistently and cleaned up code
e07158a Moved query event handling to its own function
df7d4c0 Added avro_ prefix to rbr.c
fcbfceb Added seeking to a position in an Avro file
068243a CDC auth decoding
3584d54 Add checks to simplify downstream logic.
9b2c323 Removed useless fprintf
bd5cd52 Added missing authfunc setup
e4aff59 Added record value processing
5cc8615 Added value length functions
7921ecc Merge branch 'MXS-615' into MXS-483
4b09cca Added Travis status to readme.md
cca3a48 Simplify interface to max admin authentication.
4739838 Authenticator API update
233505f Maxavrocheck now accepts multiple files
3fdd137 Improved the Avro file handling
a6ba913 Merge from MXS-615
417d742 Added maxavrocheck
014f9cf Remove obsolete second parameter from authenticate function in authenticators.
ece7ece MaxAdmin authentication converted to a module. Fix quirk in SSL setup.
7c8b37e Moved contents of avro_schema.h into mxs_avro.h
d6660cf Improvements to type handling
71ed0cf Protocol API to have entry point for obtaining default authenticator name.
9d35de2 Fixed transaction tracking
5be02a2 Avrorouter internal state is now stored in the Avro file directory
9293464 Added new info to avro diagnostics
06e0e93 Protocol modules can still handle the authentication outside authenticator modules
6d7108b Added JSON output when Requesting an avro file
6188211 Added new CDC protocol state
c8af27f CDC authentication uses its own authenticator
6590f94 Factor out qc_get_qtype_str
b7880f1 Fix qc_sqlite CMakeLists.txt
bd4ff43 Fixed connector-c being updated and built after every make invokation
0d9e57b Fixed non-MariaDB connectors being used in builds
3d3b779 FIX BUG IN CLIENT DCB SHUTDOWN THAT CAN CAUSE CRASHES
e45ba33 Fixed Connector-C .cmake files
c130189 Fixed connector-c being updated and built after every make invokation
7f3cdf3 Fixed errors on binlog rotation
9d3c83a Remove qc_sqlite
15e8ba5 CDC protocol is now compliant with new protocol structure
4460869 Merge branch 'release-1.4.0' into MXS-483
ea40812 Cleaned up the binlog processing loop
cb646ca Add minimal select recognition to qc_sqlite
ac1a9c5 Fixed binlogrouter test
85dd227 Re-route sqlite's sqlite3Select.
7a2e6f3 Update CMakeLists.txt for qc_sqlite
7a751c3 Added timestamps to records and fixed minor bugs
f73bdde Avrorouter state storage to disk
fcf0488 Fixed Connector-C .cmake files
48b8e4e Merge branch 'MXS-615' into MXS-615-binlog-merge
7c8e19f Add missing dependencies for qc_sqlite
bb9b667 Improvements to type handling and binlog position tracking
dc66b74 Client UUID added
f12fce4 AVRO registration is now handled by avro router
575b809 Add skeleton sqlite-based query classifier.
d09d5fc Build sqlite
146d1f9 Fixed BLOB type handling and refined error messages
6e9e521 Added client user to diagnostics
4538bb8 Merge pull request #104 from rasmushoj/develop
7e18d95 Avro router diagnostics routine update
01e3f75 reverted changes in CMakeLists.txt
52f7c78 reverted changes in postinst.in
eaed577 Added sqlite 3110100
a58cdda Travis configuration for MaxScale. ...
38b452d MIGRATE FREE CLIENT DATA TO AUTH MODULE; BUG FIXES; TIDY UP
6e64506 Fixed minor bugs
aff2411 Enabled CDC protocol
f669100 Fixed NULL Avro value being assigned to a field which cannot be NULL
8f6b16a Added row event processing to avrorouter
2939fe0 Updated Avro schema management to use actual column names
9e3b0cb Removed use of RBR related functions in binlogrouter
d674903 Formatted avro files
fe028d1 DEVELOPMENT OF AUTHENTICATION AS MODULE - WILL NOT WORK YET
977aded Added authenticator modules to the build
a2b384f MOVE MYSQL AUTH CODE INTO AUTHENTICATOR MODULES DIRECTORY
a5d7484 PRELIMINARY CHANGES TO CREATE AUTHENTICATORS AS MODULES
66cf802 Merge remote-tracking branch 'origin/develop' into MXS-615
bca0a7d MINOR CHANGES TO SATISFY LINT
5a9e397 Added Avrorouter binlog file walking
fbc737f Fixed binlogrouter test
3c7c9d7 Added avrorouter main event handling loop
07ad81b Moved common binlogrouter code to a separate file
8c605ed Fixed avrorouter build failures
aa1ba05 Moved binlog definitions to a separate header and fixed build failures
eee7c55 Added create table statement detection
e52b27e Added AVRO_INSTANCE and AVRO_CLIENT
0830caa Change test for client DCB to use role being DCB_ROLE_CLIENT_HANDLER. ...
997bbca Change protocols to continue looping if an accept fails; ...
522e42d Make use of dcb_accept and dcb_listen in httpd and telnetd protocols.
4e692b0 Generalise dcb_listen to tailor log messages to different protocols. ...
52c431d Remove support for passing default port number when handling ...
afe5abc Fix bug in creation of SSL listener structure; fix bugs in ...
0bd6c77 Merge remote-tracking branch 'origin/MXS-544' into MXS-544-a ...
7598597 Add dcb_listen function to make a given DCB into a listener, ...
a275d89 Maxbinlogcheck avro version can detect proper end of file
9bb55a5 Moved row event and table map event handling to a separate file
b7d9e09 Add/improve comments, fix mistake with premature return.
c598770 First attempt at extracting general code into dcb_accept, ...
f20f28f Testing with maxbinlogcheck
b3c60b7 Added mysql_binlog files
0ff9971 Added MariaDB/MySQL binary data processing functions
124560c Merge branch '1.2.1-binlog_router_trx' into MXS-483
4deccff New router fro cdc client
2c11434 Fixed test compiler errors
c1f7d24 Obliged to merge remote-tracking branch 'origin/develop' ...
1775599 Merge remote-tracking branch 'origin/MXS-544' into Test-dev-544-merge
c5317da Small modifications in comments
11c0666 Code cleanup
64a5e9a Merge branch 'release-1.3.0' into MXS-483
2c11e89 First Implementation of CDC
2016-08-11 12:44:07 +03:00

4616 lines
168 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. This module is responsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"
#include "whereInt.h"
/* Forward declaration of methods */
static int whereLoopResize(sqlite3*, WhereLoop*, int);
/* Test variable that can be set to enable WHERE tracing */
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;
#endif
/*
** Return the estimated number of output rows from a WHERE clause
*/
u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
return sqlite3LogEstToInt(pWInfo->nRowOut);
}
/*
** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
** WHERE clause returns outputs for DISTINCT processing.
*/
int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
return pWInfo->eDistinct;
}
/*
** Return TRUE if the WHERE clause returns rows in ORDER BY order.
** Return FALSE if the output needs to be sorted.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
return pWInfo->nOBSat;
}
/*
** Return the VDBE address or label to jump to in order to continue
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
assert( pWInfo->iContinue!=0 );
return pWInfo->iContinue;
}
/*
** Return the VDBE address or label to jump to in order to break
** out of a WHERE loop.
*/
int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
return pWInfo->iBreak;
}
/*
** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
** operate directly on the rowis returned by a WHERE clause. Return
** ONEPASS_SINGLE (1) if the statement can operation directly because only
** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
** optimization can be used on multiple
**
** If the ONEPASS optimization is used (if this routine returns true)
** then also write the indices of open cursors used by ONEPASS
** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
** table and iaCur[1] gets the cursor used by an auxiliary index.
** Either value may be -1, indicating that cursor is not used.
** Any cursors returned will have been opened for writing.
**
** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
** unable to use the ONEPASS optimization.
*/
int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
sqlite3DebugPrintf("%s cursors: %d %d\n",
pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
aiCur[0], aiCur[1]);
}
#endif
return pWInfo->eOnePass;
}
/*
** Move the content of pSrc into pDest
*/
static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
pDest->n = pSrc->n;
memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
}
/*
** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
**
** The new entry might overwrite an existing entry, or it might be
** appended, or it might be discarded. Do whatever is the right thing
** so that pSet keeps the N_OR_COST best entries seen so far.
*/
static int whereOrInsert(
WhereOrSet *pSet, /* The WhereOrSet to be updated */
Bitmask prereq, /* Prerequisites of the new entry */
LogEst rRun, /* Run-cost of the new entry */
LogEst nOut /* Number of outputs for the new entry */
){
u16 i;
WhereOrCost *p;
for(i=pSet->n, p=pSet->a; i>0; i--, p++){
if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
goto whereOrInsert_done;
}
if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
return 0;
}
}
if( pSet->n<N_OR_COST ){
p = &pSet->a[pSet->n++];
p->nOut = nOut;
}else{
p = pSet->a;
for(i=1; i<pSet->n; i++){
if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
}
if( p->rRun<=rRun ) return 0;
}
whereOrInsert_done:
p->prereq = prereq;
p->rRun = rRun;
if( p->nOut>nOut ) p->nOut = nOut;
return 1;
}
/*
** Return the bitmask for the given cursor number. Return 0 if
** iCursor is not in the set.
*/
Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
int i;
assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
for(i=0; i<pMaskSet->n; i++){
if( pMaskSet->ix[i]==iCursor ){
return MASKBIT(i);
}
}
return 0;
}
/*
** Create a new mask for cursor iCursor.
**
** There is one cursor per table in the FROM clause. The number of
** tables in the FROM clause is limited by a test early in the
** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
** array will never overflow.
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
pMaskSet->ix[pMaskSet->n++] = iCursor;
}
/*
** Advance to the next WhereTerm that matches according to the criteria
** established when the pScan object was initialized by whereScanInit().
** Return NULL if there are no more matching WhereTerms.
*/
static WhereTerm *whereScanNext(WhereScan *pScan){
int iCur; /* The cursor on the LHS of the term */
i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
Expr *pX; /* An expression being tested */
WhereClause *pWC; /* Shorthand for pScan->pWC */
WhereTerm *pTerm; /* The term being tested */
int k = pScan->k; /* Where to start scanning */
while( pScan->iEquiv<=pScan->nEquiv ){
iCur = pScan->aiCur[pScan->iEquiv-1];
iColumn = pScan->aiColumn[pScan->iEquiv-1];
if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0;
while( (pWC = pScan->pWC)!=0 ){
for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
if( pTerm->leftCursor==iCur
&& pTerm->u.leftColumn==iColumn
&& (iColumn!=XN_EXPR
|| sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0)
&& (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
){
if( (pTerm->eOperator & WO_EQUIV)!=0
&& pScan->nEquiv<ArraySize(pScan->aiCur)
&& (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
){
int j;
for(j=0; j<pScan->nEquiv; j++){
if( pScan->aiCur[j]==pX->iTable
&& pScan->aiColumn[j]==pX->iColumn ){
break;
}
}
if( j==pScan->nEquiv ){
pScan->aiCur[j] = pX->iTable;
pScan->aiColumn[j] = pX->iColumn;
pScan->nEquiv++;
}
}
if( (pTerm->eOperator & pScan->opMask)!=0 ){
/* Verify the affinity and collating sequence match */
if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
CollSeq *pColl;
Parse *pParse = pWC->pWInfo->pParse;
pX = pTerm->pExpr;
if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
continue;
}
assert(pX->pLeft);
pColl = sqlite3BinaryCompareCollSeq(pParse,
pX->pLeft, pX->pRight);
if( pColl==0 ) pColl = pParse->db->pDfltColl;
if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
continue;
}
}
if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
&& (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
&& pX->iTable==pScan->aiCur[0]
&& pX->iColumn==pScan->aiColumn[0]
){
testcase( pTerm->eOperator & WO_IS );
continue;
}
pScan->k = k+1;
return pTerm;
}
}
}
pScan->pWC = pScan->pWC->pOuter;
k = 0;
}
pScan->pWC = pScan->pOrigWC;
k = 0;
pScan->iEquiv++;
}
return 0;
}
/*
** Initialize a WHERE clause scanner object. Return a pointer to the
** first match. Return NULL if there are no matches.
**
** The scanner will be searching the WHERE clause pWC. It will look
** for terms of the form "X <op> <expr>" where X is column iColumn of table
** iCur. The <op> must be one of the operators described by opMask.
**
** If the search is for X and the WHERE clause contains terms of the
** form X=Y then this routine might also return terms of the form
** "Y <op> <expr>". The number of levels of transitivity is limited,
** but is enough to handle most commonly occurring SQL statements.
**
** If X is not the INTEGER PRIMARY KEY then X must be compatible with
** index pIdx.
*/
static WhereTerm *whereScanInit(
WhereScan *pScan, /* The WhereScan object being initialized */
WhereClause *pWC, /* The WHERE clause to be scanned */
int iCur, /* Cursor to scan for */
int iColumn, /* Column to scan for */
u32 opMask, /* Operator(s) to scan for */
Index *pIdx /* Must be compatible with this index */
){
int j = 0;
/* memset(pScan, 0, sizeof(*pScan)); */
pScan->pOrigWC = pWC;
pScan->pWC = pWC;
pScan->pIdxExpr = 0;
if( pIdx ){
j = iColumn;
iColumn = pIdx->aiColumn[j];
if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
}
if( pIdx && iColumn>=0 ){
pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
pScan->zCollName = pIdx->azColl[j];
}else{
pScan->idxaff = 0;
pScan->zCollName = 0;
}
pScan->opMask = opMask;
pScan->k = 0;
pScan->aiCur[0] = iCur;
pScan->aiColumn[0] = iColumn;
pScan->nEquiv = 1;
pScan->iEquiv = 1;
return whereScanNext(pScan);
}
/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term. Return 0 if not found.
**
** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx
** rather than the iColumn-th column of table iCur.
**
** The term returned might by Y=<expr> if there is another constraint in
** the WHERE clause that specifies that X=Y. Any such constraints will be
** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
** other equivalent values. Hence a search for X will return <expr> if X=A1
** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
**
** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
** then try for the one with no dependencies on <expr> - in other words where
** <expr> is a constant expression of some kind. Only return entries of
** the form "X <op> Y" where Y is a column in another table if no terms of
** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
** exist, try to return a term that does not use WO_EQUIV.
*/
WhereTerm *sqlite3WhereFindTerm(
WhereClause *pWC, /* The WHERE clause to be searched */
int iCur, /* Cursor number of LHS */
int iColumn, /* Column number of LHS */
Bitmask notReady, /* RHS must not overlap with this mask */
u32 op, /* Mask of WO_xx values describing operator */
Index *pIdx /* Must be compatible with this index, if not NULL */
){
WhereTerm *pResult = 0;
WhereTerm *p;
WhereScan scan;
p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
op &= WO_EQ|WO_IS;
while( p ){
if( (p->prereqRight & notReady)==0 ){
if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
testcase( p->eOperator & WO_IS );
return p;
}
if( pResult==0 ) pResult = p;
}
p = whereScanNext(&scan);
}
return pResult;
}
/*
** This function searches pList for an entry that matches the iCol-th column
** of index pIdx.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
Parse *pParse, /* Parse context */
ExprList *pList, /* Expression list to search */
int iBase, /* Cursor for table associated with pIdx */
Index *pIdx, /* Index to match column of */
int iCol /* Column of index to match */
){
int i;
const char *zColl = pIdx->azColl[iCol];
for(i=0; i<pList->nExpr; i++){
Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
if( p->op==TK_COLUMN
&& p->iColumn==pIdx->aiColumn[iCol]
&& p->iTable==iBase
){
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
return i;
}
}
}
return -1;
}
/*
** Return TRUE if the iCol-th column of index pIdx is NOT NULL
*/
static int indexColumnNotNull(Index *pIdx, int iCol){
int j;
assert( pIdx!=0 );
assert( iCol>=0 && iCol<pIdx->nColumn );
j = pIdx->aiColumn[iCol];
if( j>=0 ){
return pIdx->pTable->aCol[j].notNull;
}else if( j==(-1) ){
return 1;
}else{
assert( j==(-2) );
return 0; /* Assume an indexed expression can always yield a NULL */
}
}
/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant.
**
** A DISTINCT list is redundant if any subset of the columns in the
** DISTINCT list are collectively unique and individually non-null.
*/
static int isDistinctRedundant(
Parse *pParse, /* Parsing context */
SrcList *pTabList, /* The FROM clause */
WhereClause *pWC, /* The WHERE clause */
ExprList *pDistinct /* The result set that needs to be DISTINCT */
){
Table *pTab;
Index *pIdx;
int i;
int iBase;
/* If there is more than one table or sub-select in the FROM clause of
** this query, then it will not be possible to show that the DISTINCT
** clause is redundant. */
if( pTabList->nSrc!=1 ) return 0;
iBase = pTabList->a[0].iCursor;
pTab = pTabList->a[0].pTab;
/* If any of the expressions is an IPK column on table iBase, then return
** true. Note: The (p->iTable==iBase) part of this test may be false if the
** current SELECT is a correlated sub-query.
*/
for(i=0; i<pDistinct->nExpr; i++){
Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
}
/* Loop through all indices on the table, checking each to see if it makes
** the DISTINCT qualifier redundant. It does so if:
**
** 1. The index is itself UNIQUE, and
**
** 2. All of the columns in the index are either part of the pDistinct
** list, or else the WHERE clause contains a term of the form "col=X",
** where X is a constant value. The collation sequences of the
** comparison and select-list expressions must match those of the index.
**
** 3. All of those index columns for which the WHERE clause does not
** contain a "col=X" term are subject to a NOT NULL constraint.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
if( !IsUniqueIndex(pIdx) ) continue;
for(i=0; i<pIdx->nKeyCol; i++){
if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
if( indexColumnNotNull(pIdx, i)==0 ) break;
}
}
if( i==pIdx->nKeyCol ){
/* This index implies that the DISTINCT qualifier is redundant. */
return 1;
}
}
return 0;
}
/*
** Estimate the logarithm of the input value to base 2.
*/
static LogEst estLog(LogEst N){
return N<=10 ? 0 : sqlite3LogEst(N) - 33;
}
/*
** Convert OP_Column opcodes to OP_Copy in previously generated code.
**
** This routine runs over generated VDBE code and translates OP_Column
** opcodes into OP_Copy when the table is being accessed via co-routine
** instead of via table lookup.
**
** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
** then each OP_Rowid is transformed into an instruction to increment the
** value stored in its output register.
*/
static void translateColumnToCopy(
Vdbe *v, /* The VDBE containing code to translate */
int iStart, /* Translate from this opcode to the end */
int iTabCur, /* OP_Column/OP_Rowid references to this table */
int iRegister, /* The first column is in this register */
int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */
){
VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
int iEnd = sqlite3VdbeCurrentAddr(v);
for(; iStart<iEnd; iStart++, pOp++){
if( pOp->p1!=iTabCur ) continue;
if( pOp->opcode==OP_Column ){
pOp->opcode = OP_Copy;
pOp->p1 = pOp->p2 + iRegister;
pOp->p2 = pOp->p3;
pOp->p3 = 0;
}else if( pOp->opcode==OP_Rowid ){
if( bIncrRowid ){
/* Increment the value stored in the P2 operand of the OP_Rowid. */
pOp->opcode = OP_AddImm;
pOp->p1 = pOp->p2;
pOp->p2 = 1;
}else{
pOp->opcode = OP_Null;
pOp->p1 = 0;
pOp->p3 = 0;
}
}
}
}
/*
** Two routines for printing the content of an sqlite3_index_info
** structure. Used for testing and debugging only. If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
int i;
if( !sqlite3WhereTrace ) return;
for(i=0; i<p->nConstraint; i++){
sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
i,
p->aConstraint[i].iColumn,
p->aConstraint[i].iTermOffset,
p->aConstraint[i].op,
p->aConstraint[i].usable);
}
for(i=0; i<p->nOrderBy; i++){
sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
i,
p->aOrderBy[i].iColumn,
p->aOrderBy[i].desc);
}
}
static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
int i;
if( !sqlite3WhereTrace ) return;
for(i=0; i<p->nConstraint; i++){
sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
i,
p->aConstraintUsage[i].argvIndex,
p->aConstraintUsage[i].omit);
}
sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
}
#else
#define TRACE_IDX_INPUTS(A)
#define TRACE_IDX_OUTPUTS(A)
#endif
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
WhereTerm *pTerm, /* WHERE clause term to check */
struct SrcList_item *pSrc, /* Table we are trying to access */
Bitmask notReady /* Tables in outer loops of the join */
){
char aff;
if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
if( (pTerm->prereqRight & notReady)!=0 ) return 0;
if( pTerm->u.leftColumn<0 ) return 0;
aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
testcase( pTerm->pExpr->op==TK_IS );
return 1;
}
#endif
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Generate code to construct the Index object for an automatic index
** and to set up the WhereLevel object pLevel so that the code generator
** makes use of the automatic index.
*/
static void constructAutomaticIndex(
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
Bitmask notReady, /* Mask of cursors that are not available */
WhereLevel *pLevel /* Write new index here */
){
int nKeyCol; /* Number of columns in the constructed index */
WhereTerm *pTerm; /* A single term of the WHERE clause */
WhereTerm *pWCEnd; /* End of pWC->a[] */
Index *pIdx; /* Object describing the transient index */
Vdbe *v; /* Prepared statement under construction */
int addrInit; /* Address of the initialization bypass jump */
Table *pTable; /* The table being indexed */
int addrTop; /* Top of the index fill loop */
int regRecord; /* Register holding an index record */
int n; /* Column counter */
int i; /* Loop counter */
int mxBitCol; /* Maximum column in pSrc->colUsed */
CollSeq *pColl; /* Collating sequence to on a column */
WhereLoop *pLoop; /* The Loop object */
char *zNotUsed; /* Extra space on the end of pIdx */
Bitmask idxCols; /* Bitmap of columns used for indexing */
Bitmask extraCols; /* Bitmap of additional columns */
u8 sentWarning = 0; /* True if a warnning has been issued */
Expr *pPartial = 0; /* Partial Index Expression */
int iContinue = 0; /* Jump here to skip excluded rows */
struct SrcList_item *pTabItem; /* FROM clause term being indexed */
int addrCounter = 0; /* Address where integer counter is initialized */
int regBase; /* Array of registers where record is assembled */
/* Generate code to skip over the creation and initialization of the
** transient index on 2nd and subsequent iterations of the loop. */
v = pParse->pVdbe;
assert( v!=0 );
addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
/* Count the number of columns that will be added to the index
** and used to match WHERE clause constraints */
nKeyCol = 0;
pTable = pSrc->pTab;
pWCEnd = &pWC->a[pWC->nTerm];
pLoop = pLevel->pWLoop;
idxCols = 0;
for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
Expr *pExpr = pTerm->pExpr;
assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
|| pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
|| pLoop->prereq!=0 ); /* table of a LEFT JOIN */
if( pLoop->prereq==0
&& (pTerm->wtFlags & TERM_VIRTUAL)==0
&& !ExprHasProperty(pExpr, EP_FromJoin)
&& sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
pPartial = sqlite3ExprAnd(pParse->db, pPartial,
sqlite3ExprDup(pParse->db, pExpr, 0));
}
if( termCanDriveIndex(pTerm, pSrc, notReady) ){
int iCol = pTerm->u.leftColumn;
Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
testcase( iCol==BMS );
testcase( iCol==BMS-1 );
if( !sentWarning ){
sqlite3_log(SQLITE_WARNING_AUTOINDEX,
"automatic index on %s(%s)", pTable->zName,
pTable->aCol[iCol].zName);
sentWarning = 1;
}
if( (idxCols & cMask)==0 ){
if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
goto end_auto_index_create;
}
pLoop->aLTerm[nKeyCol++] = pTerm;
idxCols |= cMask;
}
}
}
assert( nKeyCol>0 );
pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
| WHERE_AUTO_INDEX;
/* Count the number of additional columns needed to create a
** covering index. A "covering index" is an index that contains all
** columns that are needed by the query. With a covering index, the
** original table never needs to be accessed. Automatic indices must
** be a covering index because the index will not be updated if the
** original table changes and the index and table cannot both be used
** if they go out of sync.
*/
extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
mxBitCol = MIN(BMS-1,pTable->nCol);
testcase( pTable->nCol==BMS-1 );
testcase( pTable->nCol==BMS-2 );
for(i=0; i<mxBitCol; i++){
if( extraCols & MASKBIT(i) ) nKeyCol++;
}
if( pSrc->colUsed & MASKBIT(BMS-1) ){
nKeyCol += pTable->nCol - BMS + 1;
}
/* Construct the Index object to describe this index */
pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
if( pIdx==0 ) goto end_auto_index_create;
pLoop->u.btree.pIndex = pIdx;
pIdx->zName = "auto-index";
pIdx->pTable = pTable;
n = 0;
idxCols = 0;
for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
if( termCanDriveIndex(pTerm, pSrc, notReady) ){
int iCol = pTerm->u.leftColumn;
Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
testcase( iCol==BMS-1 );
testcase( iCol==BMS );
if( (idxCols & cMask)==0 ){
Expr *pX = pTerm->pExpr;
idxCols |= cMask;
pIdx->aiColumn[n] = pTerm->u.leftColumn;
pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
n++;
}
}
}
assert( (u32)n==pLoop->u.btree.nEq );
/* Add additional columns needed to make the automatic index into
** a covering index */
for(i=0; i<mxBitCol; i++){
if( extraCols & MASKBIT(i) ){
pIdx->aiColumn[n] = i;
pIdx->azColl[n] = sqlite3StrBINARY;
n++;
}
}
if( pSrc->colUsed & MASKBIT(BMS-1) ){
for(i=BMS-1; i<pTable->nCol; i++){
pIdx->aiColumn[n] = i;
pIdx->azColl[n] = sqlite3StrBINARY;
n++;
}
}
assert( n==nKeyCol );
pIdx->aiColumn[n] = XN_ROWID;
pIdx->azColl[n] = sqlite3StrBINARY;
/* Create the automatic index */
assert( pLevel->iIdxCur>=0 );
pLevel->iIdxCur = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
VdbeComment((v, "for %s", pTable->zName));
/* Fill the automatic index with content */
sqlite3ExprCachePush(pParse);
pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
if( pTabItem->fg.viaCoroutine ){
int regYield = pTabItem->regReturn;
addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
VdbeCoverage(v);
VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
}else{
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
}
if( pPartial ){
iContinue = sqlite3VdbeMakeLabel(v);
sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
pLoop->wsFlags |= WHERE_PARTIALIDX;
}
regRecord = sqlite3GetTempReg(pParse);
regBase = sqlite3GenerateIndexKey(
pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
if( pTabItem->fg.viaCoroutine ){
sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1);
sqlite3VdbeGoto(v, addrTop);
pTabItem->fg.viaCoroutine = 0;
}else{
sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
}
sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
sqlite3VdbeJumpHere(v, addrTop);
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3ExprCachePop(pParse);
/* Jump here when skipping the initialization */
sqlite3VdbeJumpHere(v, addrInit);
end_auto_index_create:
sqlite3ExprDelete(pParse->db, pPartial);
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
Parse *pParse,
WhereClause *pWC,
Bitmask mUnusable, /* Ignore terms with these prereqs */
struct SrcList_item *pSrc,
ExprList *pOrderBy
){
int i, j;
int nTerm;
struct sqlite3_index_constraint *pIdxCons;
struct sqlite3_index_orderby *pIdxOrderBy;
struct sqlite3_index_constraint_usage *pUsage;
WhereTerm *pTerm;
int nOrderBy;
sqlite3_index_info *pIdxInfo;
/* Count the number of possible WHERE clause constraints referring
** to this virtual table */
for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
if( pTerm->leftCursor != pSrc->iCursor ) continue;
if( pTerm->prereqRight & mUnusable ) continue;
assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
testcase( pTerm->eOperator & WO_IN );
testcase( pTerm->eOperator & WO_ISNULL );
testcase( pTerm->eOperator & WO_IS );
testcase( pTerm->eOperator & WO_ALL );
if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
if( pTerm->wtFlags & TERM_VNULL ) continue;
assert( pTerm->u.leftColumn>=(-1) );
nTerm++;
}
/* If the ORDER BY clause contains only columns in the current
** virtual table then allocate space for the aOrderBy part of
** the sqlite3_index_info structure.
*/
nOrderBy = 0;
if( pOrderBy ){
int n = pOrderBy->nExpr;
for(i=0; i<n; i++){
Expr *pExpr = pOrderBy->a[i].pExpr;
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
}
if( i==n){
nOrderBy = n;
}
}
/* Allocate the sqlite3_index_info structure
*/
pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ sizeof(*pIdxOrderBy)*nOrderBy );
if( pIdxInfo==0 ){
sqlite3ErrorMsg(pParse, "out of memory");
return 0;
}
/* Initialize the structure. The sqlite3_index_info structure contains
** many fields that are declared "const" to prevent xBestIndex from
** changing them. We have to do some funky casting in order to
** initialize those fields.
*/
pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
*(int*)&pIdxInfo->nConstraint = nTerm;
*(int*)&pIdxInfo->nOrderBy = nOrderBy;
*(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
*(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
*(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
pUsage;
for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
u8 op;
if( pTerm->leftCursor != pSrc->iCursor ) continue;
if( pTerm->prereqRight & mUnusable ) continue;
assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
testcase( pTerm->eOperator & WO_IN );
testcase( pTerm->eOperator & WO_IS );
testcase( pTerm->eOperator & WO_ISNULL );
testcase( pTerm->eOperator & WO_ALL );
if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
if( pTerm->wtFlags & TERM_VNULL ) continue;
assert( pTerm->u.leftColumn>=(-1) );
pIdxCons[j].iColumn = pTerm->u.leftColumn;
pIdxCons[j].iTermOffset = i;
op = (u8)pTerm->eOperator & WO_ALL;
if( op==WO_IN ) op = WO_EQ;
if( op==WO_MATCH ){
op = pTerm->eMatchOp;
}
pIdxCons[j].op = op;
/* The direct assignment in the previous line is possible only because
** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
** following asserts verify this fact. */
assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
j++;
}
for(i=0; i<nOrderBy; i++){
Expr *pExpr = pOrderBy->a[i].pExpr;
pIdxOrderBy[i].iColumn = pExpr->iColumn;
pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
}
return pIdxInfo;
}
/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
** comes in as the 3rd argument to this function.
**
** If an error occurs, pParse is populated with an error message and a
** non-zero value is returned. Otherwise, 0 is returned and the output
** part of the sqlite3_index_info structure is left populated.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
int i;
int rc;
TRACE_IDX_INPUTS(p);
rc = pVtab->pModule->xBestIndex(pVtab, p);
TRACE_IDX_OUTPUTS(p);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_NOMEM ){
sqlite3OomFault(pParse->db);
}else if( !pVtab->zErrMsg ){
sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
}else{
sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
}
}
sqlite3_free(pVtab->zErrMsg);
pVtab->zErrMsg = 0;
for(i=0; i<p->nConstraint; i++){
if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
sqlite3ErrorMsg(pParse,
"table %s: xBestIndex returned an invalid plan", pTab->zName);
}
}
return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index. Store the results in aStat as follows:
**
** aStat[0] Est. number of rows less than pRec
** aStat[1] Est. number of rows equal to pRec
**
** Return the index of the sample that is the smallest sample that
** is greater than or equal to pRec. Note that this index is not an index
** into the aSample[] array - it is an index into a virtual set of samples
** based on the contents of aSample[] and the number of fields in record
** pRec.
*/
static int whereKeyStats(
Parse *pParse, /* Database connection */
Index *pIdx, /* Index to consider domain of */
UnpackedRecord *pRec, /* Vector of values to consider */
int roundUp, /* Round up if true. Round down if false */
tRowcnt *aStat /* OUT: stats written here */
){
IndexSample *aSample = pIdx->aSample;
int iCol; /* Index of required stats in anEq[] etc. */
int i; /* Index of first sample >= pRec */
int iSample; /* Smallest sample larger than or equal to pRec */
int iMin = 0; /* Smallest sample not yet tested */
int iTest; /* Next sample to test */
int res; /* Result of comparison operation */
int nField; /* Number of fields in pRec */
tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
#ifndef SQLITE_DEBUG
UNUSED_PARAMETER( pParse );
#endif
assert( pRec!=0 );
assert( pIdx->nSample>0 );
assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
/* Do a binary search to find the first sample greater than or equal
** to pRec. If pRec contains a single field, the set of samples to search
** is simply the aSample[] array. If the samples in aSample[] contain more
** than one fields, all fields following the first are ignored.
**
** If pRec contains N fields, where N is more than one, then as well as the
** samples in aSample[] (truncated to N fields), the search also has to
** consider prefixes of those samples. For example, if the set of samples
** in aSample is:
**
** aSample[0] = (a, 5)
** aSample[1] = (a, 10)
** aSample[2] = (b, 5)
** aSample[3] = (c, 100)
** aSample[4] = (c, 105)
**
** Then the search space should ideally be the samples above and the
** unique prefixes [a], [b] and [c]. But since that is hard to organize,
** the code actually searches this set:
**
** 0: (a)
** 1: (a, 5)
** 2: (a, 10)
** 3: (a, 10)
** 4: (b)
** 5: (b, 5)
** 6: (c)
** 7: (c, 100)
** 8: (c, 105)
** 9: (c, 105)
**
** For each sample in the aSample[] array, N samples are present in the
** effective sample array. In the above, samples 0 and 1 are based on
** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
**
** Often, sample i of each block of N effective samples has (i+1) fields.
** Except, each sample may be extended to ensure that it is greater than or
** equal to the previous sample in the array. For example, in the above,
** sample 2 is the first sample of a block of N samples, so at first it
** appears that it should be 1 field in size. However, that would make it
** smaller than sample 1, so the binary search would not work. As a result,
** it is extended to two fields. The duplicates that this creates do not
** cause any problems.
*/
nField = pRec->nField;
iCol = 0;
iSample = pIdx->nSample * nField;
do{
int iSamp; /* Index in aSample[] of test sample */
int n; /* Number of fields in test sample */
iTest = (iMin+iSample)/2;
iSamp = iTest / nField;
if( iSamp>0 ){
/* The proposed effective sample is a prefix of sample aSample[iSamp].
** Specifically, the shortest prefix of at least (1 + iTest%nField)
** fields that is greater than the previous effective sample. */
for(n=(iTest % nField) + 1; n<nField; n++){
if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
}
}else{
n = iTest + 1;
}
pRec->nField = n;
res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
if( res<0 ){
iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
iMin = iTest+1;
}else if( res==0 && n<nField ){
iLower = aSample[iSamp].anLt[n-1];
iMin = iTest+1;
res = -1;
}else{
iSample = iTest;
iCol = n-1;
}
}while( res && iMin<iSample );
i = iSample / nField;
#ifdef SQLITE_DEBUG
/* The following assert statements check that the binary search code
** above found the right answer. This block serves no purpose other
** than to invoke the asserts. */
if( pParse->db->mallocFailed==0 ){
if( res==0 ){
/* If (res==0) is true, then pRec must be equal to sample i. */
assert( i<pIdx->nSample );
assert( iCol==nField-1 );
pRec->nField = nField;
assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
|| pParse->db->mallocFailed
);
}else{
/* Unless i==pIdx->nSample, indicating that pRec is larger than
** all samples in the aSample[] array, pRec must be smaller than the
** (iCol+1) field prefix of sample i. */
assert( i<=pIdx->nSample && i>=0 );
pRec->nField = iCol+1;
assert( i==pIdx->nSample
|| sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
|| pParse->db->mallocFailed );
/* if i==0 and iCol==0, then record pRec is smaller than all samples
** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
** be greater than or equal to the (iCol) field prefix of sample i.
** If (i>0), then pRec must also be greater than sample (i-1). */
if( iCol>0 ){
pRec->nField = iCol;
assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
|| pParse->db->mallocFailed );
}
if( i>0 ){
pRec->nField = nField;
assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
|| pParse->db->mallocFailed );
}
}
}
#endif /* ifdef SQLITE_DEBUG */
if( res==0 ){
/* Record pRec is equal to sample i */
assert( iCol==nField-1 );
aStat[0] = aSample[i].anLt[iCol];
aStat[1] = aSample[i].anEq[iCol];
}else{
/* At this point, the (iCol+1) field prefix of aSample[i] is the first
** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
** is larger than all samples in the array. */
tRowcnt iUpper, iGap;
if( i>=pIdx->nSample ){
iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
}else{
iUpper = aSample[i].anLt[iCol];
}
if( iLower>=iUpper ){
iGap = 0;
}else{
iGap = iUpper - iLower;
}
if( roundUp ){
iGap = (iGap*2)/3;
}else{
iGap = iGap/3;
}
aStat[0] = iLower + iGap;
aStat[1] = pIdx->aAvgEq[iCol];
}
/* Restore the pRec->nField value before returning. */
pRec->nField = nField;
return i;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated
** that the scan will visit nNew rows. This function returns the number
** estimated to be visited after taking pTerm into account.
**
** If the user explicitly specified a likelihood() value for this term,
** then the return value is the likelihood multiplied by the number of
** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
** has a likelihood of 0.50, and any other term a likelihood of 0.25.
*/
static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
LogEst nRet = nNew;
if( pTerm ){
if( pTerm->truthProb<=0 ){
nRet += pTerm->truthProb;
}else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
nRet -= 20; assert( 20==sqlite3LogEst(4) );
}
}
return nRet;
}
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Return the affinity for a single column of an index.
*/
static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
assert( iCol>=0 && iCol<pIdx->nColumn );
if( !pIdx->zColAff ){
if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
}
return pIdx->zColAff[iCol];
}
#endif
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** This function is called to estimate the number of rows visited by a
** range-scan on a skip-scan index. For example:
**
** CREATE INDEX i1 ON t1(a, b, c);
** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
**
** Value pLoop->nOut is currently set to the estimated number of rows
** visited for scanning (a=? AND b=?). This function reduces that estimate
** by some factor to account for the (c BETWEEN ? AND ?) expression based
** on the stat4 data for the index. this scan will be peformed multiple
** times (once for each (a,b) combination that matches a=?) is dealt with
** by the caller.
**
** It does this by scanning through all stat4 samples, comparing values
** extracted from pLower and pUpper with the corresponding column in each
** sample. If L and U are the number of samples found to be less than or
** equal to the values extracted from pLower and pUpper respectively, and
** N is the total number of samples, the pLoop->nOut value is adjusted
** as follows:
**
** nOut = nOut * ( min(U - L, 1) / N )
**
** If pLower is NULL, or a value cannot be extracted from the term, L is
** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
** U is set to N.
**
** Normally, this function sets *pbDone to 1 before returning. However,
** if no value can be extracted from either pLower or pUpper (and so the
** estimate of the number of rows delivered remains unchanged), *pbDone
** is left as is.
**
** If an error occurs, an SQLite error code is returned. Otherwise,
** SQLITE_OK.
*/
static int whereRangeSkipScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
WhereLoop *pLoop, /* Update the .nOut value of this loop */
int *pbDone /* Set to true if at least one expr. value extracted */
){
Index *p = pLoop->u.btree.pIndex;
int nEq = pLoop->u.btree.nEq;
sqlite3 *db = pParse->db;
int nLower = -1;
int nUpper = p->nSample+1;
int rc = SQLITE_OK;
u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
CollSeq *pColl;
sqlite3_value *p1 = 0; /* Value extracted from pLower */
sqlite3_value *p2 = 0; /* Value extracted from pUpper */
sqlite3_value *pVal = 0; /* Value extracted from record */
pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
if( pLower ){
rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
nLower = 0;
}
if( pUpper && rc==SQLITE_OK ){
rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
nUpper = p2 ? 0 : p->nSample;
}
if( p1 || p2 ){
int i;
int nDiff;
for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
if( rc==SQLITE_OK && p1 ){
int res = sqlite3MemCompare(p1, pVal, pColl);
if( res>=0 ) nLower++;
}
if( rc==SQLITE_OK && p2 ){
int res = sqlite3MemCompare(p2, pVal, pColl);
if( res>=0 ) nUpper++;
}
}
nDiff = (nUpper - nLower);
if( nDiff<=0 ) nDiff = 1;
/* If there is both an upper and lower bound specified, and the
** comparisons indicate that they are close together, use the fallback
** method (assume that the scan visits 1/64 of the rows) for estimating
** the number of rows visited. Otherwise, estimate the number of rows
** using the method described in the header comment for this function. */
if( nDiff!=1 || pUpper==0 || pLower==0 ){
int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
pLoop->nOut -= nAdjust;
*pbDone = 1;
WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
nLower, nUpper, nAdjust*-1, pLoop->nOut));
}
}else{
assert( *pbDone==0 );
}
sqlite3ValueFree(p1);
sqlite3ValueFree(p2);
sqlite3ValueFree(pVal);
return rc;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
**
** ... FROM t1 WHERE a > ? AND a < ? ...
** |_____| |_____|
** | |
** pLower pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second
** left-most column of the index). Or, if the query is:
**
** ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without
** considering the range constraints. If nEq is 0, then *pnOut is the number of
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
**
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4.
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.
*/
static int whereRangeScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereLoopBuilder *pBuilder,
WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
){
int rc = SQLITE_OK;
int nOut = pLoop->nOut;
LogEst nNew;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
Index *p = pLoop->u.btree.pIndex;
int nEq = pLoop->u.btree.nEq;
if( p->nSample>0 && nEq<p->nSampleCol ){
if( nEq==pBuilder->nRecValid ){
UnpackedRecord *pRec = pBuilder->pRec;
tRowcnt a[2];
u8 aff;
/* Variable iLower will be set to the estimate of the number of rows in
** the index that are less than the lower bound of the range query. The
** lower bound being the concatenation of $P and $L, where $P is the
** key-prefix formed by the nEq values matched against the nEq left-most
** columns of the index, and $L is the value in pLower.
**
** Or, if pLower is NULL or $L cannot be extracted from it (because it
** is not a simple variable or literal value), the lower bound of the
** range is $P. Due to a quirk in the way whereKeyStats() works, even
** if $L is available, whereKeyStats() is called for both ($P) and
** ($P:$L) and the larger of the two returned values is used.
**
** Similarly, iUpper is to be set to the estimate of the number of rows
** less than the upper bound of the range query. Where the upper bound
** is either ($P) or ($P:$U). Again, even if $U is available, both values
** of iUpper are requested of whereKeyStats() and the smaller used.
**
** The number of rows between the two bounds is then just iUpper-iLower.
*/
tRowcnt iLower; /* Rows less than the lower bound */
tRowcnt iUpper; /* Rows less than the upper bound */
int iLwrIdx = -2; /* aSample[] for the lower bound */
int iUprIdx = -1; /* aSample[] for the upper bound */
if( pRec ){
testcase( pRec->nField!=pBuilder->nRecValid );
pRec->nField = pBuilder->nRecValid;
}
aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq);
assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER );
/* Determine iLower and iUpper using ($P) only. */
if( nEq==0 ){
iLower = 0;
iUpper = p->nRowEst0;
}else{
/* Note: this call could be optimized away - since the same values must
** have been requested when testing key $P in whereEqualScanEst(). */
whereKeyStats(pParse, p, pRec, 0, a);
iLower = a[0];
iUpper = a[0] + a[1];
}
assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
assert( p->aSortOrder!=0 );
if( p->aSortOrder[nEq] ){
/* The roles of pLower and pUpper are swapped for a DESC index */
SWAP(WhereTerm*, pLower, pUpper);
}
/* If possible, improve on the iLower estimate using ($P:$L). */
if( pLower ){
int bOk; /* True if value is extracted from pExpr */
Expr *pExpr = pLower->pExpr->pRight;
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
if( rc==SQLITE_OK && bOk ){
tRowcnt iNew;
iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
if( iNew>iLower ) iLower = iNew;
nOut--;
pLower = 0;
}
}
/* If possible, improve on the iUpper estimate using ($P:$U). */
if( pUpper ){
int bOk; /* True if value is extracted from pExpr */
Expr *pExpr = pUpper->pExpr->pRight;
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
if( rc==SQLITE_OK && bOk ){
tRowcnt iNew;
iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
if( iNew<iUpper ) iUpper = iNew;
nOut--;
pUpper = 0;
}
}
pBuilder->pRec = pRec;
if( rc==SQLITE_OK ){
if( iUpper>iLower ){
nNew = sqlite3LogEst(iUpper - iLower);
/* TUNING: If both iUpper and iLower are derived from the same
** sample, then assume they are 4x more selective. This brings
** the estimated selectivity more in line with what it would be
** if estimated without the use of STAT3/4 tables. */
if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
}else{
nNew = 10; assert( 10==sqlite3LogEst(2) );
}
if( nNew<nOut ){
nOut = nNew;
}
WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
(u32)iLower, (u32)iUpper, nOut));
}
}else{
int bDone = 0;
rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
if( bDone ) return rc;
}
}
#else
UNUSED_PARAMETER(pParse);
UNUSED_PARAMETER(pBuilder);
assert( pLower || pUpper );
#endif
assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
nNew = whereRangeAdjust(pLower, nOut);
nNew = whereRangeAdjust(pUpper, nNew);
/* TUNING: If there is both an upper and lower limit and neither limit
** has an application-defined likelihood(), assume the range is
** reduced by an additional 75%. This means that, by default, an open-ended
** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
** match 1/64 of the index. */
if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
nNew -= 20;
}
nOut -= (pLower!=0) + (pUpper!=0);
if( nNew<10 ) nNew = 10;
if( nNew<nOut ) nOut = nNew;
#if defined(WHERETRACE_ENABLED)
if( pLoop->nOut>nOut ){
WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
pLoop->nOut, nOut));
}
#endif
pLoop->nOut = (LogEst)nOut;
return rc;
}
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data. This only works when x is the left-most
** column of an index and sqlite_stat3 histogram data is available
** for that index. When pExpr==NULL that means the constraint is
** "x IS NULL" instead of "x=VALUE".
**
** Write the estimated row count into *pnRow and return SQLITE_OK.
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison. The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereLoopBuilder *pBuilder,
Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
tRowcnt *pnRow /* Write the revised row estimate here */
){
Index *p = pBuilder->pNew->u.btree.pIndex;
int nEq = pBuilder->pNew->u.btree.nEq;
UnpackedRecord *pRec = pBuilder->pRec;
u8 aff; /* Column affinity */
int rc; /* Subfunction return code */
tRowcnt a[2]; /* Statistics */
int bOk;
assert( nEq>=1 );
assert( nEq<=p->nColumn );
assert( p->aSample!=0 );
assert( p->nSample>0 );
assert( pBuilder->nRecValid<nEq );
/* If values are not available for all fields of the index to the left
** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
if( pBuilder->nRecValid<(nEq-1) ){
return SQLITE_NOTFOUND;
}
/* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
** below would return the same value. */
if( nEq>=p->nColumn ){
*pnRow = 1;
return SQLITE_OK;
}
aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1);
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
pBuilder->pRec = pRec;
if( rc!=SQLITE_OK ) return rc;
if( bOk==0 ) return SQLITE_NOTFOUND;
pBuilder->nRecValid = nEq;
whereKeyStats(pParse, p, pRec, 0, a);
WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1]));
*pnRow = a[1];
return rc;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values. Example:
**
** WHERE x IN (1,2,3,4)
**
** Write the estimated row count into *pnRow and return SQLITE_OK.
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison. The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
Parse *pParse, /* Parsing & code generating context */
WhereLoopBuilder *pBuilder,
ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
tRowcnt *pnRow /* Write the revised row estimate here */
){
Index *p = pBuilder->pNew->u.btree.pIndex;
i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
int nRecValid = pBuilder->nRecValid;
int rc = SQLITE_OK; /* Subfunction return code */
tRowcnt nEst; /* Number of rows for a single term */
tRowcnt nRowEst = 0; /* New estimate of the number of rows */
int i; /* Loop counter */
assert( p->aSample!=0 );
for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
nEst = nRow0;
rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
nRowEst += nEst;
pBuilder->nRecValid = nRecValid;
}
if( rc==SQLITE_OK ){
if( nRowEst > nRow0 ) nRowEst = nRow0;
*pnRow = nRowEst;
WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
}
assert( pBuilder->nRecValid==nRecValid );
return rc;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
#ifdef WHERETRACE_ENABLED
/*
** Print the content of a WhereTerm object
*/
static void whereTermPrint(WhereTerm *pTerm, int iTerm){
if( pTerm==0 ){
sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
}else{
char zType[4];
memcpy(zType, "...", 4);
if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
sqlite3DebugPrintf(
"TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n",
iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb,
pTerm->eOperator, pTerm->wtFlags);
sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
}
}
#endif
#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
WhereInfo *pWInfo = pWC->pWInfo;
int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
Table *pTab = pItem->pTab;
sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
p->iTab, nb, p->maskSelf, nb, p->prereq);
sqlite3DebugPrintf(" %12s",
pItem->zAlias ? pItem->zAlias : pTab->zName);
if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
const char *zName;
if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
int i = sqlite3Strlen30(zName) - 1;
while( zName[i]!='_' ) i--;
zName += i;
}
sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
}else{
sqlite3DebugPrintf("%20s","");
}
}else{
char *z;
if( p->u.vtab.idxStr ){
z = sqlite3_mprintf("(%d,\"%s\",%x)",
p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
}else{
z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
}
sqlite3DebugPrintf(" %-19s", z);
sqlite3_free(z);
}
if( p->wsFlags & WHERE_SKIPSCAN ){
sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
}else{
sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
}
sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
int i;
for(i=0; i<p->nLTerm; i++){
whereTermPrint(p->aLTerm[i], i);
}
}
}
#endif
/*
** Convert bulk memory into a valid WhereLoop that can be passed
** to whereLoopClear harmlessly.
*/
static void whereLoopInit(WhereLoop *p){
p->aLTerm = p->aLTermSpace;
p->nLTerm = 0;
p->nLSlot = ArraySize(p->aLTermSpace);
p->wsFlags = 0;
}
/*
** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
*/
static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
sqlite3_free(p->u.vtab.idxStr);
p->u.vtab.needFree = 0;
p->u.vtab.idxStr = 0;
}else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
sqlite3DbFree(db, p->u.btree.pIndex);
p->u.btree.pIndex = 0;
}
}
}
/*
** Deallocate internal memory used by a WhereLoop object
*/
static void whereLoopClear(sqlite3 *db, WhereLoop *p){
if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
whereLoopClearUnion(db, p);
whereLoopInit(p);
}
/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
WhereTerm **paNew;
if( p->nLSlot>=n ) return SQLITE_OK;
n = (n+7)&~7;
paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
if( paNew==0 ) return SQLITE_NOMEM;
memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
p->aLTerm = paNew;
p->nLSlot = n;
return SQLITE_OK;
}
/*
** Transfer content from the second pLoop into the first.
*/
static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
whereLoopClearUnion(db, pTo);
if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
memset(&pTo->u, 0, sizeof(pTo->u));
return SQLITE_NOMEM;
}
memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
pFrom->u.vtab.needFree = 0;
}else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
pFrom->u.btree.pIndex = 0;
}
return SQLITE_OK;
}
/*
** Delete a WhereLoop object
*/
static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
whereLoopClear(db, p);
sqlite3DbFree(db, p);
}
/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
if( ALWAYS(pWInfo) ){
int i;
for(i=0; i<pWInfo->nLevel; i++){
WhereLevel *pLevel = &pWInfo->a[i];
if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
sqlite3DbFree(db, pLevel->u.in.aInLoop);
}
}
sqlite3WhereClauseClear(&pWInfo->sWC);
while( pWInfo->pLoops ){
WhereLoop *p = pWInfo->pLoops;
pWInfo->pLoops = p->pNextLoop;
whereLoopDelete(db, p);
}
sqlite3DbFree(db, pWInfo);
}
}
/*
** Return TRUE if all of the following are true:
**
** (1) X has the same or lower cost that Y
** (2) X is a proper subset of Y
** (3) X skips at least as many columns as Y
**
** By "proper subset" we mean that X uses fewer WHERE clause terms
** than Y and that every WHERE clause term used by X is also used
** by Y.
**
** If X is a proper subset of Y then Y is a better choice and ought
** to have a lower cost. This routine returns TRUE when that cost
** relationship is inverted and needs to be adjusted. The third rule
** was added because if X uses skip-scan less than Y it still might
** deserve a lower cost even if it is a proper subset of Y.
*/
static int whereLoopCheaperProperSubset(
const WhereLoop *pX, /* First WhereLoop to compare */
const WhereLoop *pY /* Compare against this WhereLoop */
){
int i, j;
if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
return 0; /* X is not a subset of Y */
}
if( pY->nSkip > pX->nSkip ) return 0;
if( pX->rRun >= pY->rRun ){
if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
}
for(i=pX->nLTerm-1; i>=0; i--){
if( pX->aLTerm[i]==0 ) continue;
for(j=pY->nLTerm-1; j>=0; j--){
if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
}
if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
}
return 1; /* All conditions meet */
}
/*
** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
** that:
**
** (1) pTemplate costs less than any other WhereLoops that are a proper
** subset of pTemplate
**
** (2) pTemplate costs more than any other WhereLoops for which pTemplate
** is a proper subset.
**
** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
** WHERE clause terms than Y and that every WHERE clause term used by X is
** also used by Y.
*/
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
for(; p; p=p->pNextLoop){
if( p->iTab!=pTemplate->iTab ) continue;
if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
if( whereLoopCheaperProperSubset(p, pTemplate) ){
/* Adjust pTemplate cost downward so that it is cheaper than its
** subset p. */
WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
pTemplate->rRun = p->rRun;
pTemplate->nOut = p->nOut - 1;
}else if( whereLoopCheaperProperSubset(pTemplate, p) ){
/* Adjust pTemplate cost upward so that it is costlier than p since
** pTemplate is a proper subset of p */
WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
pTemplate->rRun = p->rRun;
pTemplate->nOut = p->nOut + 1;
}
}
}
/*
** Search the list of WhereLoops in *ppPrev looking for one that can be
** supplanted by pTemplate.
**
** Return NULL if the WhereLoop list contains an entry that can supplant
** pTemplate, in other words if pTemplate does not belong on the list.
**
** If pX is a WhereLoop that pTemplate can supplant, then return the
** link that points to pX.
**
** If pTemplate cannot supplant any existing element of the list but needs
** to be added to the list, then return a pointer to the tail of the list.
*/
static WhereLoop **whereLoopFindLesser(
WhereLoop **ppPrev,
const WhereLoop *pTemplate
){
WhereLoop *p;
for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
/* If either the iTab or iSortIdx values for two WhereLoop are different
** then those WhereLoops need to be considered separately. Neither is
** a candidate to replace the other. */
continue;
}
/* In the current implementation, the rSetup value is either zero
** or the cost of building an automatic index (NlogN) and the NlogN
** is the same for compatible WhereLoops. */
assert( p->rSetup==0 || pTemplate->rSetup==0
|| p->rSetup==pTemplate->rSetup );
/* whereLoopAddBtree() always generates and inserts the automatic index
** case first. Hence compatible candidate WhereLoops never have a larger
** rSetup. Call this SETUP-INVARIANT */
assert( p->rSetup>=pTemplate->rSetup );
/* Any loop using an appliation-defined index (or PRIMARY KEY or
** UNIQUE constraint) with one or more == constraints is better
** than an automatic index. Unless it is a skip-scan. */
if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
&& (pTemplate->nSkip)==0
&& (pTemplate->wsFlags & WHERE_INDEXED)!=0
&& (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
&& (p->prereq & pTemplate->prereq)==pTemplate->prereq
){
break;
}
/* If existing WhereLoop p is better than pTemplate, pTemplate can be
** discarded. WhereLoop p is better if:
** (1) p has no more dependencies than pTemplate, and
** (2) p has an equal or lower cost than pTemplate
*/
if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
&& p->rSetup<=pTemplate->rSetup /* (2a) */
&& p->rRun<=pTemplate->rRun /* (2b) */
&& p->nOut<=pTemplate->nOut /* (2c) */
){
return 0; /* Discard pTemplate */
}
/* If pTemplate is always better than p, then cause p to be overwritten
** with pTemplate. pTemplate is better than p if:
** (1) pTemplate has no more dependences than p, and
** (2) pTemplate has an equal or lower cost than p.
*/
if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
&& p->rRun>=pTemplate->rRun /* (2a) */
&& p->nOut>=pTemplate->nOut /* (2b) */
){
assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
break; /* Cause p to be overwritten by pTemplate */
}
}
return ppPrev;
}
/*
** Insert or replace a WhereLoop entry using the template supplied.
**
** An existing WhereLoop entry might be overwritten if the new template
** is better and has fewer dependencies. Or the template will be ignored
** and no insert will occur if an existing WhereLoop is faster and has
** fewer dependencies than the template. Otherwise a new WhereLoop is
** added based on the template.
**
** If pBuilder->pOrSet is not NULL then we care about only the
** prerequisites and rRun and nOut costs of the N best loops. That
** information is gathered in the pBuilder->pOrSet object. This special
** processing mode is used only for OR clause processing.
**
** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
** still might overwrite similar loops with the new template if the
** new template is better. Loops may be overwritten if the following
** conditions are met:
**
** (1) They have the same iTab.
** (2) They have the same iSortIdx.
** (3) The template has same or fewer dependencies than the current loop
** (4) The template has the same or lower cost than the current loop
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
WhereLoop **ppPrev, *p;
WhereInfo *pWInfo = pBuilder->pWInfo;
sqlite3 *db = pWInfo->pParse->db;
/* If pBuilder->pOrSet is defined, then only keep track of the costs
** and prereqs.
*/
if( pBuilder->pOrSet!=0 ){
if( pTemplate->nLTerm ){
#if WHERETRACE_ENABLED
u16 n = pBuilder->pOrSet->n;
int x =
#endif
whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
pTemplate->nOut);
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
whereLoopPrint(pTemplate, pBuilder->pWC);
}
#endif
}
return SQLITE_OK;
}
/* Look for an existing WhereLoop to replace with pTemplate
*/
whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
if( ppPrev==0 ){
/* There already exists a WhereLoop on the list that is better
** than pTemplate, so just ignore pTemplate */
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
sqlite3DebugPrintf(" skip: ");
whereLoopPrint(pTemplate, pBuilder->pWC);
}
#endif
return SQLITE_OK;
}else{
p = *ppPrev;
}
/* If we reach this point it means that either p[] should be overwritten
** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
** WhereLoop and insert it.
*/
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
if( p!=0 ){
sqlite3DebugPrintf("replace: ");
whereLoopPrint(p, pBuilder->pWC);
}
sqlite3DebugPrintf(" add: ");
whereLoopPrint(pTemplate, pBuilder->pWC);
}
#endif
if( p==0 ){
/* Allocate a new WhereLoop to add to the end of the list */
*ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
if( p==0 ) return SQLITE_NOMEM;
whereLoopInit(p);
p->pNextLoop = 0;
}else{
/* We will be overwriting WhereLoop p[]. But before we do, first
** go through the rest of the list and delete any other entries besides
** p[] that are also supplated by pTemplate */
WhereLoop **ppTail = &p->pNextLoop;
WhereLoop *pToDel;
while( *ppTail ){
ppTail = whereLoopFindLesser(ppTail, pTemplate);
if( ppTail==0 ) break;
pToDel = *ppTail;
if( pToDel==0 ) break;
*ppTail = pToDel->pNextLoop;
#if WHERETRACE_ENABLED /* 0x8 */
if( sqlite3WhereTrace & 0x8 ){
sqlite3DebugPrintf(" delete: ");
whereLoopPrint(pToDel, pBuilder->pWC);
}
#endif
whereLoopDelete(db, pToDel);
}
}
whereLoopXfer(db, p, pTemplate);
if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
Index *pIndex = p->u.btree.pIndex;
if( pIndex && pIndex->tnum==0 ){
p->u.btree.pIndex = 0;
}
}
return SQLITE_OK;
}
/*
** Adjust the WhereLoop.nOut value downward to account for terms of the
** WHERE clause that reference the loop but which are not used by an
** index.
*
** For every WHERE clause term that is not used by the index
** and which has a truth probability assigned by one of the likelihood(),
** likely(), or unlikely() SQL functions, reduce the estimated number
** of output rows by the probability specified.
**
** TUNING: For every WHERE clause term that is not used by the index
** and which does not have an assigned truth probability, heuristics
** described below are used to try to estimate the truth probability.
** TODO --> Perhaps this is something that could be improved by better
** table statistics.
**
** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
** value corresponds to -1 in LogEst notation, so this means decrement
** the WhereLoop.nOut field for every such WHERE clause term.
**
** Heuristic 2: If there exists one or more WHERE clause terms of the
** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
** final output row estimate is no greater than 1/4 of the total number
** of rows in the table. In other words, assume that x==EXPR will filter
** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
** "x" column is boolean or else -1 or 0 or 1 is a common default value
** on the "x" column and so in that case only cap the output row estimate
** at 1/2 instead of 1/4.
*/
static void whereLoopOutputAdjust(
WhereClause *pWC, /* The WHERE clause */
WhereLoop *pLoop, /* The loop to adjust downward */
LogEst nRow /* Number of rows in the entire table */
){
WhereTerm *pTerm, *pX;
Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
int i, j, k;
LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
for(j=pLoop->nLTerm-1; j>=0; j--){
pX = pLoop->aLTerm[j];
if( pX==0 ) continue;
if( pX==pTerm ) break;
if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
}
if( j<0 ){
if( pTerm->truthProb<=0 ){
/* If a truth probability is specified using the likelihood() hints,
** then use the probability provided by the application. */
pLoop->nOut += pTerm->truthProb;
}else{
/* In the absence of explicit truth probabilities, use heuristics to
** guess a reasonable truth probability. */
pLoop->nOut--;
if( pTerm->eOperator&(WO_EQ|WO_IS) ){
Expr *pRight = pTerm->pExpr->pRight;
testcase( pTerm->pExpr->op==TK_IS );
if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
k = 10;
}else{
k = 20;
}
if( iReduce<k ) iReduce = k;
}
}
}
}
if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
}
/*
** Adjust the cost C by the costMult facter T. This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
# define ApplyCostMultiplier(C,T) C += T
#else
# define ApplyCostMultiplier(C,T)
#endif
/*
** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
** index pIndex. Try to match one more.
**
** When this function is called, pBuilder->pNew->nOut contains the
** number of rows expected to be visited by filtering using the nEq
** terms only. If it is modified, this value is restored before this
** function returns.
**
** If pProbe->tnum==0, that means pIndex is a fake index used for the
** INTEGER PRIMARY KEY.
*/
static int whereLoopAddBtreeIndex(
WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
struct SrcList_item *pSrc, /* FROM clause term being analyzed */
Index *pProbe, /* An index on pSrc */
LogEst nInMul /* log(Number of iterations due to IN) */
){
WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
Parse *pParse = pWInfo->pParse; /* Parsing context */
sqlite3 *db = pParse->db; /* Database connection malloc context */
WhereLoop *pNew; /* Template WhereLoop under construction */
WhereTerm *pTerm; /* A WhereTerm under consideration */
int opMask; /* Valid operators for constraints */
WhereScan scan; /* Iterator for WHERE terms */
Bitmask saved_prereq; /* Original value of pNew->prereq */
u16 saved_nLTerm; /* Original value of pNew->nLTerm */
u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
u16 saved_nSkip; /* Original value of pNew->nSkip */
u32 saved_wsFlags; /* Original value of pNew->wsFlags */
LogEst saved_nOut; /* Original value of pNew->nOut */
int rc = SQLITE_OK; /* Return code */
LogEst rSize; /* Number of rows in the table */
LogEst rLogSize; /* Logarithm of table size */
WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
pNew = pBuilder->pNew;
if( db->mallocFailed ) return SQLITE_NOMEM;
assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
if( pNew->wsFlags & WHERE_BTM_LIMIT ){
opMask = WO_LT|WO_LE;
}else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){
opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
}else{
opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
}
if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
assert( pNew->u.btree.nEq<pProbe->nColumn );
saved_nEq = pNew->u.btree.nEq;
saved_nSkip = pNew->nSkip;
saved_nLTerm = pNew->nLTerm;
saved_wsFlags = pNew->wsFlags;
saved_prereq = pNew->prereq;
saved_nOut = pNew->nOut;
pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
opMask, pProbe);
pNew->rSetup = 0;
rSize = pProbe->aiRowLogEst[0];
rLogSize = estLog(rSize);
for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
LogEst rCostIdx;
LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
int nIn = 0;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
int nRecValid = pBuilder->nRecValid;
#endif
if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
&& indexColumnNotNull(pProbe, saved_nEq)
){
continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
}
if( pTerm->prereqRight & pNew->maskSelf ) continue;
/* Do not allow the upper bound of a LIKE optimization range constraint
** to mix with a lower range bound from some other source */
if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
pNew->wsFlags = saved_wsFlags;
pNew->u.btree.nEq = saved_nEq;
pNew->nLTerm = saved_nLTerm;
if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
pNew->aLTerm[pNew->nLTerm++] = pTerm;
pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
assert( nInMul==0
|| (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
|| (pNew->wsFlags & WHERE_COLUMN_IN)!=0
|| (pNew->wsFlags & WHERE_SKIPSCAN)!=0
);
if( eOp & WO_IN ){
Expr *pExpr = pTerm->pExpr;
pNew->wsFlags |= WHERE_COLUMN_IN;
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
/* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
nIn = 46; assert( 46==sqlite3LogEst(25) );
}else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
/* "x IN (value, value, ...)" */
nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
}
assert( nIn>0 ); /* RHS always has 2 or more terms... The parser
** changes "x IN (?)" into "x=?". */
}else if( eOp & (WO_EQ|WO_IS) ){
int iCol = pProbe->aiColumn[saved_nEq];
pNew->wsFlags |= WHERE_COLUMN_EQ;
assert( saved_nEq==pNew->u.btree.nEq );
if( iCol==XN_ROWID
|| (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
){
if( iCol>=0 && pProbe->uniqNotNull==0 ){
pNew->wsFlags |= WHERE_UNQ_WANTED;
}else{
pNew->wsFlags |= WHERE_ONEROW;
}
}
}else if( eOp & WO_ISNULL ){
pNew->wsFlags |= WHERE_COLUMN_NULL;
}else if( eOp & (WO_GT|WO_GE) ){
testcase( eOp & WO_GT );
testcase( eOp & WO_GE );
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
pBtm = pTerm;
pTop = 0;
if( pTerm->wtFlags & TERM_LIKEOPT ){
/* Range contraints that come from the LIKE optimization are
** always used in pairs. */
pTop = &pTerm[1];
assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
assert( pTop->wtFlags & TERM_LIKEOPT );
assert( pTop->eOperator==WO_LT );
if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
pNew->aLTerm[pNew->nLTerm++] = pTop;
pNew->wsFlags |= WHERE_TOP_LIMIT;
}
}else{
assert( eOp & (WO_LT|WO_LE) );
testcase( eOp & WO_LT );
testcase( eOp & WO_LE );
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
pTop = pTerm;
pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
pNew->aLTerm[pNew->nLTerm-2] : 0;
}
/* At this point pNew->nOut is set to the number of rows expected to
** be visited by the index scan before considering term pTerm, or the
** values of nIn and nInMul. In other words, assuming that all
** "x IN(...)" terms are replaced with "x = ?". This block updates
** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
assert( pNew->nOut==saved_nOut );
if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
/* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
** data, using some other estimate. */
whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
}else{
int nEq = ++pNew->u.btree.nEq;
assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
assert( pNew->nOut==saved_nOut );
if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
assert( (eOp & WO_IN) || nIn==0 );
testcase( eOp & WO_IN );
pNew->nOut += pTerm->truthProb;
pNew->nOut -= nIn;
}else{
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
tRowcnt nOut = 0;
if( nInMul==0
&& pProbe->nSample
&& pNew->u.btree.nEq<=pProbe->nSampleCol
&& ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
){
Expr *pExpr = pTerm->pExpr;
if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
testcase( eOp & WO_EQ );
testcase( eOp & WO_IS );
testcase( eOp & WO_ISNULL );
rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
}else{
rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
}
if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
if( nOut ){
pNew->nOut = sqlite3LogEst(nOut);
if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
pNew->nOut -= nIn;
}
}
if( nOut==0 )
#endif
{
pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
if( eOp & WO_ISNULL ){
/* TUNING: If there is no likelihood() value, assume that a
** "col IS NULL" expression matches twice as many rows
** as (col=?). */
pNew->nOut += 10;
}
}
}
}
/* Set rCostIdx to the cost of visiting selected rows in index. Add
** it to pNew->rRun, which is currently set to the cost of the index
** seek only. Then, if this is a non-covering index, add the cost of
** visiting the rows in the main table. */
rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
}
ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
nOutUnadjusted = pNew->nOut;
pNew->rRun += nInMul + nIn;
pNew->nOut += nInMul + nIn;
whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
rc = whereLoopInsert(pBuilder, pNew);
if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
pNew->nOut = saved_nOut;
}else{
pNew->nOut = nOutUnadjusted;
}
if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
&& pNew->u.btree.nEq<pProbe->nColumn
){
whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
}
pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
pBuilder->nRecValid = nRecValid;
#endif
}
pNew->prereq = saved_prereq;
pNew->u.btree.nEq = saved_nEq;
pNew->nSkip = saved_nSkip;
pNew->wsFlags = saved_wsFlags;
pNew->nOut = saved_nOut;
pNew->nLTerm = saved_nLTerm;
/* Consider using a skip-scan if there are no WHERE clause constraints
** available for the left-most terms of the index, and if the average
** number of repeats in the left-most terms is at least 18.
**
** The magic number 18 is selected on the basis that scanning 17 rows
** is almost always quicker than an index seek (even though if the index
** contains fewer than 2^17 rows we assume otherwise in other parts of
** the code). And, even if it is not, it should not be too much slower.
** On the other hand, the extra seeks could end up being significantly
** more expensive. */
assert( 42==sqlite3LogEst(18) );
if( saved_nEq==saved_nSkip
&& saved_nEq+1<pProbe->nKeyCol
&& pProbe->noSkipScan==0
&& pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
&& (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
){
LogEst nIter;
pNew->u.btree.nEq++;
pNew->nSkip++;
pNew->aLTerm[pNew->nLTerm++] = 0;
pNew->wsFlags |= WHERE_SKIPSCAN;
nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
pNew->nOut -= nIter;
/* TUNING: Because uncertainties in the estimates for skip-scan queries,
** add a 1.375 fudge factor to make skip-scan slightly less likely. */
nIter += 5;
whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
pNew->nOut = saved_nOut;
pNew->u.btree.nEq = saved_nEq;
pNew->nSkip = saved_nSkip;
pNew->wsFlags = saved_wsFlags;
}
return rc;
}
/*
** Return True if it is possible that pIndex might be useful in
** implementing the ORDER BY clause in pBuilder.
**
** Return False if pBuilder does not contain an ORDER BY clause or
** if there is no way for pIndex to be useful in implementing that
** ORDER BY clause.
*/
static int indexMightHelpWithOrderBy(
WhereLoopBuilder *pBuilder,
Index *pIndex,
int iCursor
){
ExprList *pOB;
ExprList *aColExpr;
int ii, jj;
if( pIndex->bUnordered ) return 0;
if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
for(ii=0; ii<pOB->nExpr; ii++){
Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
if( pExpr->iColumn<0 ) return 1;
for(jj=0; jj<pIndex->nKeyCol; jj++){
if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
}
}else if( (aColExpr = pIndex->aColExpr)!=0 ){
for(jj=0; jj<pIndex->nKeyCol; jj++){
if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
return 1;
}
}
}
}
return 0;
}
/*
** Return a bitmask where 1s indicate that the corresponding column of
** the table is used by an index. Only the first 63 columns are considered.
*/
static Bitmask columnsInIndex(Index *pIdx){
Bitmask m = 0;
int j;
for(j=pIdx->nColumn-1; j>=0; j--){
int x = pIdx->aiColumn[j];
if( x>=0 ){
testcase( x==BMS-1 );
testcase( x==BMS-2 );
if( x<BMS-1 ) m |= MASKBIT(x);
}
}
return m;
}
/* Check to see if a partial index with pPartIndexWhere can be used
** in the current query. Return true if it can be and false if not.
*/
static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
int i;
WhereTerm *pTerm;
while( pWhere->op==TK_AND ){
if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
pWhere = pWhere->pRight;
}
for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
Expr *pExpr = pTerm->pExpr;
if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab)
&& (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
){
return 1;
}
}
return 0;
}
/*
** Add all WhereLoop objects for a single table of the join where the table
** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be
** a b-tree table, not a virtual table.
**
** The costs (WhereLoop.rRun) of the b-tree loops added by this function
** are calculated as follows:
**
** For a full scan, assuming the table (or index) contains nRow rows:
**
** cost = nRow * 3.0 // full-table scan
** cost = nRow * K // scan of covering index
** cost = nRow * (K+3.0) // scan of non-covering index
**
** where K is a value between 1.1 and 3.0 set based on the relative
** estimated average size of the index and table records.
**
** For an index scan, where nVisit is the number of index rows visited
** by the scan, and nSeek is the number of seek operations required on
** the index b-tree:
**
** cost = nSeek * (log(nRow) + K * nVisit) // covering index
** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
**
** Normally, nSeek is 1. nSeek values greater than 1 come about if the
** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
**
** The estimated values (nRow, nVisit, nSeek) often contain a large amount
** of uncertainty. For this reason, scoring is designed to pick plans that
** "do the least harm" if the estimates are inaccurate. For example, a
** log(nRow) factor is omitted from a non-covering index scan in order to
** bias the scoring in favor of using an index, since the worst-case
** performance of using an index is far better than the worst-case performance
** of a full table scan.
*/
static int whereLoopAddBtree(
WhereLoopBuilder *pBuilder, /* WHERE clause information */
Bitmask mExtra /* Extra prerequesites for using this table */
){
WhereInfo *pWInfo; /* WHERE analysis context */
Index *pProbe; /* An index we are evaluating */
Index sPk; /* A fake index object for the primary key */
LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
SrcList *pTabList; /* The FROM clause */
struct SrcList_item *pSrc; /* The FROM clause btree term to add */
WhereLoop *pNew; /* Template WhereLoop object */
int rc = SQLITE_OK; /* Return code */
int iSortIdx = 1; /* Index number */
int b; /* A boolean value */
LogEst rSize; /* number of rows in the table */
LogEst rLogSize; /* Logarithm of the number of rows in the table */
WhereClause *pWC; /* The parsed WHERE clause */
Table *pTab; /* Table being queried */
pNew = pBuilder->pNew;
pWInfo = pBuilder->pWInfo;
pTabList = pWInfo->pTabList;
pSrc = pTabList->a + pNew->iTab;
pTab = pSrc->pTab;
pWC = pBuilder->pWC;
assert( !IsVirtual(pSrc->pTab) );
if( pSrc->pIBIndex ){
/* An INDEXED BY clause specifies a particular index to use */
pProbe = pSrc->pIBIndex;
}else if( !HasRowid(pTab) ){
pProbe = pTab->pIndex;
}else{
/* There is no INDEXED BY clause. Create a fake Index object in local
** variable sPk to represent the rowid primary key index. Make this
** fake index the first in a chain of Index objects with all of the real
** indices to follow */
Index *pFirst; /* First of real indices on the table */
memset(&sPk, 0, sizeof(Index));
sPk.nKeyCol = 1;
sPk.nColumn = 1;
sPk.aiColumn = &aiColumnPk;
sPk.aiRowLogEst = aiRowEstPk;
sPk.onError = OE_Replace;
sPk.pTable = pTab;
sPk.szIdxRow = pTab->szTabRow;
aiRowEstPk[0] = pTab->nRowLogEst;
aiRowEstPk[1] = 0;
pFirst = pSrc->pTab->pIndex;
if( pSrc->fg.notIndexed==0 ){
/* The real indices of the table are only considered if the
** NOT INDEXED qualifier is omitted from the FROM clause */
sPk.pNext = pFirst;
}
pProbe = &sPk;
}
rSize = pTab->nRowLogEst;
rLogSize = estLog(rSize);
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/* Automatic indexes */
if( !pBuilder->pOrSet /* Not part of an OR optimization */
&& (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0
&& (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
&& pSrc->pIBIndex==0 /* Has no INDEXED BY clause */
&& !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
&& HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
&& !pSrc->fg.isCorrelated /* Not a correlated subquery */
&& !pSrc->fg.isRecursive /* Not a recursive common table expression. */
){
/* Generate auto-index WhereLoops */
WhereTerm *pTerm;
WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
if( pTerm->prereqRight & pNew->maskSelf ) continue;
if( termCanDriveIndex(pTerm, pSrc, 0) ){
pNew->u.btree.nEq = 1;
pNew->nSkip = 0;
pNew->u.btree.pIndex = 0;
pNew->nLTerm = 1;
pNew->aLTerm[0] = pTerm;
/* TUNING: One-time cost for computing the automatic index is
** estimated to be X*N*log2(N) where N is the number of rows in
** the table being indexed and where X is 7 (LogEst=28) for normal
** tables or 1.375 (LogEst=4) for views and subqueries. The value
** of X is smaller for views and subqueries so that the query planner
** will be more aggressive about generating automatic indexes for
** those objects, since there is no opportunity to add schema
** indexes on subqueries and views. */
pNew->rSetup = rLogSize + rSize + 4;
if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
pNew->rSetup += 24;
}
ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
/* TUNING: Each index lookup yields 20 rows in the table. This
** is more than the usual guess of 10 rows, since we have no way
** of knowing how selective the index will ultimately be. It would
** not be unreasonable to make this value much larger. */
pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
pNew->wsFlags = WHERE_AUTO_INDEX;
pNew->prereq = mExtra | pTerm->prereqRight;
rc = whereLoopInsert(pBuilder, pNew);
}
}
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
/* Loop over all indices
*/
for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
if( pProbe->pPartIdxWhere!=0
&& !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
continue; /* Partial index inappropriate for this query */
}
rSize = pProbe->aiRowLogEst[0];
pNew->u.btree.nEq = 0;
pNew->nSkip = 0;
pNew->nLTerm = 0;
pNew->iSortIdx = 0;
pNew->rSetup = 0;
pNew->prereq = mExtra;
pNew->nOut = rSize;
pNew->u.btree.pIndex = pProbe;
b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
/* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
if( pProbe->tnum<=0 ){
/* Integer primary key index */
pNew->wsFlags = WHERE_IPK;
/* Full table scan */
pNew->iSortIdx = b ? iSortIdx : 0;
/* TUNING: Cost of full table scan is (N*3.0). */
pNew->rRun = rSize + 16;
ApplyCostMultiplier(pNew->rRun, pTab->costMult);
whereLoopOutputAdjust(pWC, pNew, rSize);
rc = whereLoopInsert(pBuilder, pNew);
pNew->nOut = rSize;
if( rc ) break;
}else{
Bitmask m;
if( pProbe->isCovering ){
pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
m = 0;
}else{
m = pSrc->colUsed & ~columnsInIndex(pProbe);
pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
}
/* Full scan via index */
if( b
|| !HasRowid(pTab)
|| ( m==0
&& pProbe->bUnordered==0
&& (pProbe->szIdxRow<pTab->szTabRow)
&& (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
&& sqlite3GlobalConfig.bUseCis
&& OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
)
){
pNew->iSortIdx = b ? iSortIdx : 0;
/* The cost of visiting the index rows is N*K, where K is
** between 1.1 and 3.0, depending on the relative sizes of the
** index and table rows. If this is a non-covering index scan,
** also add the cost of visiting table rows (N*3.0). */
pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
if( m!=0 ){
pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
}
ApplyCostMultiplier(pNew->rRun, pTab->costMult);
whereLoopOutputAdjust(pWC, pNew, rSize);
rc = whereLoopInsert(pBuilder, pNew);
pNew->nOut = rSize;
if( rc ) break;
}
}
rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
sqlite3Stat4ProbeFree(pBuilder->pRec);
pBuilder->nRecValid = 0;
pBuilder->pRec = 0;
#endif
/* If there was an INDEXED BY clause, then only that one index is
** considered. */
if( pSrc->pIBIndex ) break;
}
return rc;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Add all WhereLoop objects for a table of the join identified by
** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
**
** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and
** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause
** entries that occur before the virtual table in the FROM clause and are
** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
** mUnusable mask contains all FROM clause entries that occur after the
** virtual table and are separated from it by at least one LEFT or
** CROSS JOIN.
**
** For example, if the query were:
**
** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
**
** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6).
**
** All the tables in mExtra must be scanned before the current virtual
** table. So any terms for which all prerequisites are satisfied by
** mExtra may be specified as "usable" in all calls to xBestIndex.
** Conversely, all tables in mUnusable must be scanned after the current
** virtual table, so any terms for which the prerequisites overlap with
** mUnusable should always be configured as "not-usable" for xBestIndex.
*/
static int whereLoopAddVirtual(
WhereLoopBuilder *pBuilder, /* WHERE clause information */
Bitmask mExtra, /* Tables that must be scanned before this one */
Bitmask mUnusable /* Tables that must be scanned after this one */
){
WhereInfo *pWInfo; /* WHERE analysis context */
Parse *pParse; /* The parsing context */
WhereClause *pWC; /* The WHERE clause */
struct SrcList_item *pSrc; /* The FROM clause term to search */
Table *pTab;
sqlite3 *db;
sqlite3_index_info *pIdxInfo;
struct sqlite3_index_constraint *pIdxCons;
struct sqlite3_index_constraint_usage *pUsage;
WhereTerm *pTerm;
int i, j;
int iTerm, mxTerm;
int nConstraint;
int seenIn = 0; /* True if an IN operator is seen */
int seenVar = 0; /* True if a non-constant constraint is seen */
int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */
WhereLoop *pNew;
int rc = SQLITE_OK;
assert( (mExtra & mUnusable)==0 );
pWInfo = pBuilder->pWInfo;
pParse = pWInfo->pParse;
db = pParse->db;
pWC = pBuilder->pWC;
pNew = pBuilder->pNew;
pSrc = &pWInfo->pTabList->a[pNew->iTab];
pTab = pSrc->pTab;
assert( IsVirtual(pTab) );
pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy);
if( pIdxInfo==0 ) return SQLITE_NOMEM;
pNew->prereq = 0;
pNew->rSetup = 0;
pNew->wsFlags = WHERE_VIRTUALTABLE;
pNew->nLTerm = 0;
pNew->u.vtab.needFree = 0;
pUsage = pIdxInfo->aConstraintUsage;
nConstraint = pIdxInfo->nConstraint;
if( whereLoopResize(db, pNew, nConstraint) ){
sqlite3DbFree(db, pIdxInfo);
return SQLITE_NOMEM;
}
for(iPhase=0; iPhase<=3; iPhase++){
if( !seenIn && (iPhase&1)!=0 ){
iPhase++;
if( iPhase>3 ) break;
}
if( !seenVar && iPhase>1 ) break;
pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
j = pIdxCons->iTermOffset;
pTerm = &pWC->a[j];
switch( iPhase ){
case 0: /* Constants without IN operator */
pIdxCons->usable = 0;
if( (pTerm->eOperator & WO_IN)!=0 ){
seenIn = 1;
}
if( (pTerm->prereqRight & ~mExtra)!=0 ){
seenVar = 1;
}else if( (pTerm->eOperator & WO_IN)==0 ){
pIdxCons->usable = 1;
}
break;
case 1: /* Constants with IN operators */
assert( seenIn );
pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0;
break;
case 2: /* Variables without IN */
assert( seenVar );
pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
break;
default: /* Variables with IN */
assert( seenVar && seenIn );
pIdxCons->usable = 1;
break;
}
}
memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
pIdxInfo->idxStr = 0;
pIdxInfo->idxNum = 0;
pIdxInfo->needToFreeIdxStr = 0;
pIdxInfo->orderByConsumed = 0;
pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
pIdxInfo->estimatedRows = 25;
pIdxInfo->idxFlags = 0;
pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
rc = vtabBestIndex(pParse, pTab, pIdxInfo);
if( rc ) goto whereLoopAddVtab_exit;
pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
pNew->prereq = mExtra;
mxTerm = -1;
assert( pNew->nLSlot>=nConstraint );
for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
pNew->u.vtab.omitMask = 0;
for(i=0; i<nConstraint; i++, pIdxCons++){
if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
j = pIdxCons->iTermOffset;
if( iTerm>=nConstraint
|| j<0
|| j>=pWC->nTerm
|| pNew->aLTerm[iTerm]!=0
){
rc = SQLITE_ERROR;
sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
goto whereLoopAddVtab_exit;
}
testcase( iTerm==nConstraint-1 );
testcase( j==0 );
testcase( j==pWC->nTerm-1 );
pTerm = &pWC->a[j];
pNew->prereq |= pTerm->prereqRight;
assert( iTerm<pNew->nLSlot );
pNew->aLTerm[iTerm] = pTerm;
if( iTerm>mxTerm ) mxTerm = iTerm;
testcase( iTerm==15 );
testcase( iTerm==16 );
if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
if( (pTerm->eOperator & WO_IN)!=0 ){
if( pUsage[i].omit==0 ){
/* Do not attempt to use an IN constraint if the virtual table
** says that the equivalent EQ constraint cannot be safely omitted.
** If we do attempt to use such a constraint, some rows might be
** repeated in the output. */
break;
}
/* A virtual table that is constrained by an IN clause may not
** consume the ORDER BY clause because (1) the order of IN terms
** is not necessarily related to the order of output terms and
** (2) Multiple outputs from a single IN value will not merge
** together. */
pIdxInfo->orderByConsumed = 0;
pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
}
}
}
if( i>=nConstraint ){
pNew->nLTerm = mxTerm+1;
assert( pNew->nLTerm<=pNew->nLSlot );
pNew->u.vtab.idxNum = pIdxInfo->idxNum;
pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
pIdxInfo->needToFreeIdxStr = 0;
pNew->u.vtab.idxStr = pIdxInfo->idxStr;
pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
pIdxInfo->nOrderBy : 0);
pNew->rSetup = 0;
pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
/* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
** that the scan will visit at most one row. Clear it otherwise. */
if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
pNew->wsFlags |= WHERE_ONEROW;
}else{
pNew->wsFlags &= ~WHERE_ONEROW;
}
whereLoopInsert(pBuilder, pNew);
if( pNew->u.vtab.needFree ){
sqlite3_free(pNew->u.vtab.idxStr);
pNew->u.vtab.needFree = 0;
}
}
}
whereLoopAddVtab_exit:
if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
sqlite3DbFree(db, pIdxInfo);
return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
** Add WhereLoop entries to handle OR terms. This works for either
** btrees or virtual tables.
*/
static int whereLoopAddOr(
WhereLoopBuilder *pBuilder,
Bitmask mExtra,
Bitmask mUnusable
){
WhereInfo *pWInfo = pBuilder->pWInfo;
WhereClause *pWC;
WhereLoop *pNew;
WhereTerm *pTerm, *pWCEnd;
int rc = SQLITE_OK;
int iCur;
WhereClause tempWC;
WhereLoopBuilder sSubBuild;
WhereOrSet sSum, sCur;
struct SrcList_item *pItem;
pWC = pBuilder->pWC;
pWCEnd = pWC->a + pWC->nTerm;
pNew = pBuilder->pNew;
memset(&sSum, 0, sizeof(sSum));
pItem = pWInfo->pTabList->a + pNew->iTab;
iCur = pItem->iCursor;
for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
if( (pTerm->eOperator & WO_OR)!=0
&& (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
){
WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
WhereTerm *pOrTerm;
int once = 1;
int i, j;
sSubBuild = *pBuilder;
sSubBuild.pOrderBy = 0;
sSubBuild.pOrSet = &sCur;
WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
if( (pOrTerm->eOperator & WO_AND)!=0 ){
sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
}else if( pOrTerm->leftCursor==iCur ){
tempWC.pWInfo = pWC->pWInfo;
tempWC.pOuter = pWC;
tempWC.op = TK_AND;
tempWC.nTerm = 1;
tempWC.a = pOrTerm;
sSubBuild.pWC = &tempWC;
}else{
continue;
}
sCur.n = 0;
#ifdef WHERETRACE_ENABLED
WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
(int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
if( sqlite3WhereTrace & 0x400 ){
for(i=0; i<sSubBuild.pWC->nTerm; i++){
whereTermPrint(&sSubBuild.pWC->a[i], i);
}
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pItem->pTab) ){
rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable);
}else
#endif
{
rc = whereLoopAddBtree(&sSubBuild, mExtra);
}
if( rc==SQLITE_OK ){
rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable);
}
assert( rc==SQLITE_OK || sCur.n==0 );
if( sCur.n==0 ){
sSum.n = 0;
break;
}else if( once ){
whereOrMove(&sSum, &sCur);
once = 0;
}else{
WhereOrSet sPrev;
whereOrMove(&sPrev, &sSum);
sSum.n = 0;
for(i=0; i<sPrev.n; i++){
for(j=0; j<sCur.n; j++){
whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
}
}
}
}
pNew->nLTerm = 1;
pNew->aLTerm[0] = pTerm;
pNew->wsFlags = WHERE_MULTI_OR;
pNew->rSetup = 0;
pNew->iSortIdx = 0;
memset(&pNew->u, 0, sizeof(pNew->u));
for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
/* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
** of all sub-scans required by the OR-scan. However, due to rounding
** errors, it may be that the cost of the OR-scan is equal to its
** most expensive sub-scan. Add the smallest possible penalty
** (equivalent to multiplying the cost by 1.07) to ensure that
** this does not happen. Otherwise, for WHERE clauses such as the
** following where there is an index on "y":
**
** WHERE likelihood(x=?, 0.99) OR y=?
**
** the planner may elect to "OR" together a full-table scan and an
** index lookup. And other similarly odd results. */
pNew->rRun = sSum.a[i].rRun + 1;
pNew->nOut = sSum.a[i].nOut;
pNew->prereq = sSum.a[i].prereq;
rc = whereLoopInsert(pBuilder, pNew);
}
WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
}
}
return rc;
}
/*
** Add all WhereLoop objects for all tables
*/
static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
WhereInfo *pWInfo = pBuilder->pWInfo;
Bitmask mExtra = 0;
Bitmask mPrior = 0;
int iTab;
SrcList *pTabList = pWInfo->pTabList;
struct SrcList_item *pItem;
struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
sqlite3 *db = pWInfo->pParse->db;
int rc = SQLITE_OK;
WhereLoop *pNew;
u8 priorJointype = 0;
/* Loop over the tables in the join, from left to right */
pNew = pBuilder->pNew;
whereLoopInit(pNew);
for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
Bitmask mUnusable = 0;
pNew->iTab = iTab;
pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
/* This condition is true when pItem is the FROM clause term on the
** right-hand-side of a LEFT or CROSS JOIN. */
mExtra = mPrior;
}
priorJointype = pItem->fg.jointype;
if( IsVirtual(pItem->pTab) ){
struct SrcList_item *p;
for(p=&pItem[1]; p<pEnd; p++){
if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
}
}
rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable);
}else{
rc = whereLoopAddBtree(pBuilder, mExtra);
}
if( rc==SQLITE_OK ){
rc = whereLoopAddOr(pBuilder, mExtra, mUnusable);
}
mPrior |= pNew->maskSelf;
if( rc || db->mallocFailed ) break;
}
whereLoopClear(db, pNew);
return rc;
}
/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation. Return N:
**
** N>0: N terms of the ORDER BY clause are satisfied
** N==0: No terms of the ORDER BY clause are satisfied
** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict. With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another. GROUP BY
** and DISTINCT do not require rows to appear in any particular order as long
** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order. With ORDER BY, the
** pOrderBy terms must be matched in strict left-to-right order.
*/
static i8 wherePathSatisfiesOrderBy(
WhereInfo *pWInfo, /* The WHERE clause */
ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
WherePath *pPath, /* The WherePath to check */
u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
u16 nLoop, /* Number of entries in pPath->aLoop[] */
WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
){
u8 revSet; /* True if rev is known */
u8 rev; /* Composite sort order */
u8 revIdx; /* Index sort order */
u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
u16 nKeyCol; /* Number of key columns in pIndex */
u16 nColumn; /* Total number of ordered columns in the index */
u16 nOrderBy; /* Number terms in the ORDER BY clause */
int iLoop; /* Index of WhereLoop in pPath being processed */
int i, j; /* Loop counters */
int iCur; /* Cursor number for current WhereLoop */
int iColumn; /* A column number within table iCur */
WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
WhereTerm *pTerm; /* A single term of the WHERE clause */
Expr *pOBExpr; /* An expression from the ORDER BY clause */
CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
Index *pIndex; /* The index associated with pLoop */
sqlite3 *db = pWInfo->pParse->db; /* Database connection */
Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
Bitmask obDone; /* Mask of all ORDER BY terms */
Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
Bitmask ready; /* Mask of inner loops */
/*
** We say the WhereLoop is "one-row" if it generates no more than one
** row of output. A WhereLoop is one-row if all of the following are true:
** (a) All index columns match with WHERE_COLUMN_EQ.
** (b) The index is unique
** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
**
** We say the WhereLoop is "order-distinct" if the set of columns from
** that WhereLoop that are in the ORDER BY clause are different for every
** row of the WhereLoop. Every one-row WhereLoop is automatically
** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
** is not order-distinct. To be order-distinct is not quite the same as being
** UNIQUE since a UNIQUE column or index can have multiple rows that
** are NULL and NULL values are equivalent for the purpose of order-distinct.
** To be order-distinct, the columns must be UNIQUE and NOT NULL.
**
** The rowid for a table is always UNIQUE and NOT NULL so whenever the
** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
** automatically order-distinct.
*/
assert( pOrderBy!=0 );
if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
nOrderBy = pOrderBy->nExpr;
testcase( nOrderBy==BMS-1 );
if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
isOrderDistinct = 1;
obDone = MASKBIT(nOrderBy)-1;
orderDistinctMask = 0;
ready = 0;
for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
if( iLoop>0 ) ready |= pLoop->maskSelf;
pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
if( pLoop->u.vtab.isOrdered ) obSat = obDone;
break;
}
iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
/* Mark off any ORDER BY term X that is a column in the table of
** the current loop for which there is term in the WHERE
** clause of the form X IS NULL or X=? that reference only outer
** loops.
*/
for(i=0; i<nOrderBy; i++){
if( MASKBIT(i) & obSat ) continue;
pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
if( pOBExpr->op!=TK_COLUMN ) continue;
if( pOBExpr->iTable!=iCur ) continue;
pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
~ready, WO_EQ|WO_ISNULL|WO_IS, 0);
if( pTerm==0 ) continue;
if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
const char *z1, *z2;
pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
if( !pColl ) pColl = db->pDfltColl;
z1 = pColl->zName;
pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
if( !pColl ) pColl = db->pDfltColl;
z2 = pColl->zName;
if( sqlite3StrICmp(z1, z2)!=0 ) continue;
testcase( pTerm->pExpr->op==TK_IS );
}
obSat |= MASKBIT(i);
}
if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
if( pLoop->wsFlags & WHERE_IPK ){
pIndex = 0;
nKeyCol = 0;
nColumn = 1;
}else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
return 0;
}else{
nKeyCol = pIndex->nKeyCol;
nColumn = pIndex->nColumn;
assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
|| !HasRowid(pIndex->pTable));
isOrderDistinct = IsUniqueIndex(pIndex);
}
/* Loop through all columns of the index and deal with the ones
** that are not constrained by == or IN.
*/
rev = revSet = 0;
distinctColumns = 0;
for(j=0; j<nColumn; j++){
u8 bOnce; /* True to run the ORDER BY search loop */
/* Skip over == and IS NULL terms */
if( j<pLoop->u.btree.nEq
&& pLoop->nSkip==0
&& ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0
){
if( i & WO_ISNULL ){
testcase( isOrderDistinct );
isOrderDistinct = 0;
}
continue;
}
/* Get the column number in the table (iColumn) and sort order
** (revIdx) for the j-th column of the index.
*/
if( pIndex ){
iColumn = pIndex->aiColumn[j];
revIdx = pIndex->aSortOrder[j];
if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
}else{
iColumn = XN_ROWID;
revIdx = 0;
}
/* An unconstrained column that might be NULL means that this
** WhereLoop is not well-ordered
*/
if( isOrderDistinct
&& iColumn>=0
&& j>=pLoop->u.btree.nEq
&& pIndex->pTable->aCol[iColumn].notNull==0
){
isOrderDistinct = 0;
}
/* Find the ORDER BY term that corresponds to the j-th column
** of the index and mark that ORDER BY term off
*/
bOnce = 1;
isMatch = 0;
for(i=0; bOnce && i<nOrderBy; i++){
if( MASKBIT(i) & obSat ) continue;
pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
testcase( wctrlFlags & WHERE_GROUPBY );
testcase( wctrlFlags & WHERE_DISTINCTBY );
if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
if( iColumn>=(-1) ){
if( pOBExpr->op!=TK_COLUMN ) continue;
if( pOBExpr->iTable!=iCur ) continue;
if( pOBExpr->iColumn!=iColumn ) continue;
}else{
if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
continue;
}
}
if( iColumn>=0 ){
pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
if( !pColl ) pColl = db->pDfltColl;
if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
}
isMatch = 1;
break;
}
if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
/* Make sure the sort order is compatible in an ORDER BY clause.
** Sort order is irrelevant for a GROUP BY clause. */
if( revSet ){
if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
}else{
rev = revIdx ^ pOrderBy->a[i].sortOrder;
if( rev ) *pRevMask |= MASKBIT(iLoop);
revSet = 1;
}
}
if( isMatch ){
if( iColumn<0 ){
testcase( distinctColumns==0 );
distinctColumns = 1;
}
obSat |= MASKBIT(i);
}else{
/* No match found */
if( j==0 || j<nKeyCol ){
testcase( isOrderDistinct!=0 );
isOrderDistinct = 0;
}
break;
}
} /* end Loop over all index columns */
if( distinctColumns ){
testcase( isOrderDistinct==0 );
isOrderDistinct = 1;
}
} /* end-if not one-row */
/* Mark off any other ORDER BY terms that reference pLoop */
if( isOrderDistinct ){
orderDistinctMask |= pLoop->maskSelf;
for(i=0; i<nOrderBy; i++){
Expr *p;
Bitmask mTerm;
if( MASKBIT(i) & obSat ) continue;
p = pOrderBy->a[i].pExpr;
mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
if( (mTerm&~orderDistinctMask)==0 ){
obSat |= MASKBIT(i);
}
}
}
} /* End the loop over all WhereLoops from outer-most down to inner-most */
if( obSat==obDone ) return (i8)nOrderBy;
if( !isOrderDistinct ){
for(i=nOrderBy-1; i>0; i--){
Bitmask m = MASKBIT(i) - 1;
if( (obSat&m)==m ) return i;
}
return 0;
}
return -1;
}
/*
** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
** the planner assumes that the specified pOrderBy list is actually a GROUP
** BY clause - and so any order that groups rows as required satisfies the
** request.
**
** Normally, in this case it is not possible for the caller to determine
** whether or not the rows are really being delivered in sorted order, or
** just in some other order that provides the required grouping. However,
** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
** this function may be called on the returned WhereInfo object. It returns
** true if the rows really will be sorted in the specified order, or false
** otherwise.
**
** For example, assuming:
**
** CREATE INDEX i1 ON t1(x, Y);
**
** then
**
** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
*/
int sqlite3WhereIsSorted(WhereInfo *pWInfo){
assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
return pWInfo->sorted;
}
#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
static char zName[65];
int i;
for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
if( pLast ) zName[i++] = pLast->cId;
zName[i] = 0;
return zName;
}
#endif
/*
** Return the cost of sorting nRow rows, assuming that the keys have
** nOrderby columns and that the first nSorted columns are already in
** order.
*/
static LogEst whereSortingCost(
LogEst nRow,
int nOrderBy,
int nSorted
){
/* TUNING: Estimated cost of a full external sort, where N is
** the number of rows to sort is:
**
** cost = (3.0 * N * log(N)).
**
** Or, if the order-by clause has X terms but only the last Y
** terms are out of order, then block-sorting will reduce the
** sorting cost to:
**
** cost = (3.0 * N * log(N)) * (Y/X)
**
** The (Y/X) term is implemented using stack variable rScale
** below. */
LogEst rScale, rSortCost;
assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
rSortCost = nRow + estLog(nRow) + rScale + 16;
return rSortCost;
}
/*
** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
** attempts to find the lowest cost path that visits each WhereLoop
** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
**
** Assume that the total number of output rows that will need to be sorted
** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
** costs if nRowEst==0.
**
** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
** error occurs.
*/
static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
int mxChoice; /* Maximum number of simultaneous paths tracked */
int nLoop; /* Number of terms in the join */
Parse *pParse; /* Parsing context */
sqlite3 *db; /* The database connection */
int iLoop; /* Loop counter over the terms of the join */
int ii, jj; /* Loop counters */
int mxI = 0; /* Index of next entry to replace */
int nOrderBy; /* Number of ORDER BY clause terms */
LogEst mxCost = 0; /* Maximum cost of a set of paths */
LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
WherePath *aFrom; /* All nFrom paths at the previous level */
WherePath *aTo; /* The nTo best paths at the current level */
WherePath *pFrom; /* An element of aFrom[] that we are working on */
WherePath *pTo; /* An element of aTo[] that we are working on */
WhereLoop *pWLoop; /* One of the WhereLoop objects */
WhereLoop **pX; /* Used to divy up the pSpace memory */
LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
char *pSpace; /* Temporary memory used by this routine */
int nSpace; /* Bytes of space allocated at pSpace */
pParse = pWInfo->pParse;
db = pParse->db;
nLoop = pWInfo->nLevel;
/* TUNING: For simple queries, only the best path is tracked.
** For 2-way joins, the 5 best paths are followed.
** For joins of 3 or more tables, track the 10 best paths */
mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
assert( nLoop<=pWInfo->pTabList->nSrc );
WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
/* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
** case the purpose of this call is to estimate the number of rows returned
** by the overall query. Once this estimate has been obtained, the caller
** will invoke this function a second time, passing the estimate as the
** nRowEst parameter. */
if( pWInfo->pOrderBy==0 || nRowEst==0 ){
nOrderBy = 0;
}else{
nOrderBy = pWInfo->pOrderBy->nExpr;
}
/* Allocate and initialize space for aTo, aFrom and aSortCost[] */
nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
nSpace += sizeof(LogEst) * nOrderBy;
pSpace = sqlite3DbMallocRawNN(db, nSpace);
if( pSpace==0 ) return SQLITE_NOMEM;
aTo = (WherePath*)pSpace;
aFrom = aTo+mxChoice;
memset(aFrom, 0, sizeof(aFrom[0]));
pX = (WhereLoop**)(aFrom+mxChoice);
for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
pFrom->aLoop = pX;
}
if( nOrderBy ){
/* If there is an ORDER BY clause and it is not being ignored, set up
** space for the aSortCost[] array. Each element of the aSortCost array
** is either zero - meaning it has not yet been initialized - or the
** cost of sorting nRowEst rows of data where the first X terms of
** the ORDER BY clause are already in order, where X is the array
** index. */
aSortCost = (LogEst*)pX;
memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
}
assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
/* Seed the search with a single WherePath containing zero WhereLoops.
**
** TUNING: Do not let the number of iterations go above 28. If the cost
** of computing an automatic index is not paid back within the first 28
** rows, then do not use the automatic index. */
aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
nFrom = 1;
assert( aFrom[0].isOrdered==0 );
if( nOrderBy ){
/* If nLoop is zero, then there are no FROM terms in the query. Since
** in this case the query may return a maximum of one row, the results
** are already in the requested order. Set isOrdered to nOrderBy to
** indicate this. Or, if nLoop is greater than zero, set isOrdered to
** -1, indicating that the result set may or may not be ordered,
** depending on the loops added to the current plan. */
aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
}
/* Compute successively longer WherePaths using the previous generation
** of WherePaths as the basis for the next. Keep track of the mxChoice
** best paths at each generation */
for(iLoop=0; iLoop<nLoop; iLoop++){
nTo = 0;
for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
LogEst rCost; /* Cost of path (pFrom+pWLoop) */
LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
Bitmask maskNew; /* Mask of src visited by (..) */
Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
/* At this point, pWLoop is a candidate to be the next loop.
** Compute its cost */
rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
nOut = pFrom->nRow + pWLoop->nOut;
maskNew = pFrom->maskLoop | pWLoop->maskSelf;
if( isOrdered<0 ){
isOrdered = wherePathSatisfiesOrderBy(pWInfo,
pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
iLoop, pWLoop, &revMask);
}else{
revMask = pFrom->revLoop;
}
if( isOrdered>=0 && isOrdered<nOrderBy ){
if( aSortCost[isOrdered]==0 ){
aSortCost[isOrdered] = whereSortingCost(
nRowEst, nOrderBy, isOrdered
);
}
rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
WHERETRACE(0x002,
("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
rUnsorted, rCost));
}else{
rCost = rUnsorted;
}
/* Check to see if pWLoop should be added to the set of
** mxChoice best-so-far paths.
**
** First look for an existing path among best-so-far paths
** that covers the same set of loops and has the same isOrdered
** setting as the current path candidate.
**
** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
** of legal values for isOrdered, -1..64.
*/
for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
if( pTo->maskLoop==maskNew
&& ((pTo->isOrdered^isOrdered)&0x80)==0
){
testcase( jj==nTo-1 );
break;
}
}
if( jj>=nTo ){
/* None of the existing best-so-far paths match the candidate. */
if( nTo>=mxChoice
&& (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
){
/* The current candidate is no better than any of the mxChoice
** paths currently in the best-so-far buffer. So discard
** this candidate as not viable. */
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
isOrdered>=0 ? isOrdered+'0' : '?');
}
#endif
continue;
}
/* If we reach this points it means that the new candidate path
** needs to be added to the set of best-so-far paths. */
if( nTo<mxChoice ){
/* Increase the size of the aTo set by one */
jj = nTo++;
}else{
/* New path replaces the prior worst to keep count below mxChoice */
jj = mxI;
}
pTo = &aTo[jj];
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
isOrdered>=0 ? isOrdered+'0' : '?');
}
#endif
}else{
/* Control reaches here if best-so-far path pTo=aTo[jj] covers the
** same set of loops and has the sam isOrdered setting as the
** candidate path. Check to see if the candidate should replace
** pTo or if the candidate should be skipped */
if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf(
"Skip %s cost=%-3d,%3d order=%c",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
isOrdered>=0 ? isOrdered+'0' : '?');
sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
}
#endif
/* Discard the candidate path from further consideration */
testcase( pTo->rCost==rCost );
continue;
}
testcase( pTo->rCost==rCost+1 );
/* Control reaches here if the candidate path is better than the
** pTo path. Replace pTo with the candidate. */
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf(
"Update %s cost=%-3d,%3d order=%c",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
isOrdered>=0 ? isOrdered+'0' : '?');
sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
}
#endif
}
/* pWLoop is a winner. Add it to the set of best so far */
pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
pTo->revLoop = revMask;
pTo->nRow = nOut;
pTo->rCost = rCost;
pTo->rUnsorted = rUnsorted;
pTo->isOrdered = isOrdered;
memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
pTo->aLoop[iLoop] = pWLoop;
if( nTo>=mxChoice ){
mxI = 0;
mxCost = aTo[0].rCost;
mxUnsorted = aTo[0].nRow;
for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
if( pTo->rCost>mxCost
|| (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
){
mxCost = pTo->rCost;
mxUnsorted = pTo->rUnsorted;
mxI = jj;
}
}
}
}
}
#ifdef WHERETRACE_ENABLED /* >=2 */
if( sqlite3WhereTrace & 0x02 ){
sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
if( pTo->isOrdered>0 ){
sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
}else{
sqlite3DebugPrintf("\n");
}
}
}
#endif
/* Swap the roles of aFrom and aTo for the next generation */
pFrom = aTo;
aTo = aFrom;
aFrom = pFrom;
nFrom = nTo;
}
if( nFrom==0 ){
sqlite3ErrorMsg(pParse, "no query solution");
sqlite3DbFree(db, pSpace);
return SQLITE_ERROR;
}
/* Find the lowest cost path. pFrom will be left pointing to that path */
pFrom = aFrom;
for(ii=1; ii<nFrom; ii++){
if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
}
assert( pWInfo->nLevel==nLoop );
/* Load the lowest cost path into pWInfo */
for(iLoop=0; iLoop<nLoop; iLoop++){
WhereLevel *pLevel = pWInfo->a + iLoop;
pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
pLevel->iFrom = pWLoop->iTab;
pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
}
if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
&& (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
&& pWInfo->eDistinct==WHERE_DISTINCT_NOOP
&& nRowEst
){
Bitmask notUsed;
int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
if( rc==pWInfo->pResultSet->nExpr ){
pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
}
}
if( pWInfo->pOrderBy ){
if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
}
}else{
pWInfo->nOBSat = pFrom->isOrdered;
if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
pWInfo->revMask = pFrom->revLoop;
}
if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
&& pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
){
Bitmask revMask = 0;
int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
);
assert( pWInfo->sorted==0 );
if( nOrder==pWInfo->pOrderBy->nExpr ){
pWInfo->sorted = 1;
pWInfo->revMask = revMask;
}
}
}
pWInfo->nRowOut = pFrom->nRow;
/* Free temporary memory and return success */
sqlite3DbFree(db, pSpace);
return SQLITE_OK;
}
/*
** Most queries use only a single table (they are not joins) and have
** simple == constraints against indexed fields. This routine attempts
** to plan those simple cases using much less ceremony than the
** general-purpose query planner, and thereby yield faster sqlite3_prepare()
** times for the common case.
**
** Return non-zero on success, if this query can be handled by this
** no-frills query planner. Return zero if this query needs the
** general-purpose query planner.
*/
static int whereShortCut(WhereLoopBuilder *pBuilder){
WhereInfo *pWInfo;
struct SrcList_item *pItem;
WhereClause *pWC;
WhereTerm *pTerm;
WhereLoop *pLoop;
int iCur;
int j;
Table *pTab;
Index *pIdx;
pWInfo = pBuilder->pWInfo;
if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
assert( pWInfo->pTabList->nSrc>=1 );
pItem = pWInfo->pTabList->a;
pTab = pItem->pTab;
if( IsVirtual(pTab) ) return 0;
if( pItem->fg.isIndexedBy ) return 0;
iCur = pItem->iCursor;
pWC = &pWInfo->sWC;
pLoop = pBuilder->pNew;
pLoop->wsFlags = 0;
pLoop->nSkip = 0;
pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
if( pTerm ){
testcase( pTerm->eOperator & WO_IS );
pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
pLoop->aLTerm[0] = pTerm;
pLoop->nLTerm = 1;
pLoop->u.btree.nEq = 1;
/* TUNING: Cost of a rowid lookup is 10 */
pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
}else{
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int opMask;
assert( pLoop->aLTermSpace==pLoop->aLTerm );
if( !IsUniqueIndex(pIdx)
|| pIdx->pPartIdxWhere!=0
|| pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
) continue;
opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
for(j=0; j<pIdx->nKeyCol; j++){
pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
if( pTerm==0 ) break;
testcase( pTerm->eOperator & WO_IS );
pLoop->aLTerm[j] = pTerm;
}
if( j!=pIdx->nKeyCol ) continue;
pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
pLoop->wsFlags |= WHERE_IDX_ONLY;
}
pLoop->nLTerm = j;
pLoop->u.btree.nEq = j;
pLoop->u.btree.pIndex = pIdx;
/* TUNING: Cost of a unique index lookup is 15 */
pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
break;
}
}
if( pLoop->wsFlags ){
pLoop->nOut = (LogEst)1;
pWInfo->a[0].pWLoop = pLoop;
pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
pWInfo->a[0].iTabCur = iCur;
pWInfo->nRowOut = 1;
if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}
#ifdef SQLITE_DEBUG
pLoop->cId = '0';
#endif
return 1;
}
return 0;
}
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select. (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.) For
** example, if the SQL is this:
**
** SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
** foreach row1 in t1 do \ Code generated
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
** foreach row3 in t3 do /
** ...
** end \ Code generated
** end |-- by sqlite3WhereEnd()
** end /
**
** Note that the loops might not be nested in the order in which they
** appear in the FROM clause if a different order is better able to make
** use of indices. Note also that when the IN operator appears in
** the WHERE clause, it might result in additional nested loops for
** scanning through all values on the right-hand side of the IN.
**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
** and sqlite3WhereEnd() generates the code to close them.
**
** The code that sqlite3WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries. The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
** data from the various tables of the loop.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables. Thus a three-way join is an O(N^3) operation. But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster. Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop. After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
** foreach row1 in t1 do
** flag = 0
** foreach row2 in t2 do
** start:
** ...
** flag = 1
** end
** if flag==0 then
** move the row2 cursor to a null row
** goto start
** fi
** end
**
** ORDER BY CLAUSE PROCESSING
**
** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
** if there is one. If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
**
** The iIdxCur parameter is the cursor number of an index. If
** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
** to use for OR clause processing. The WHERE clause should use this
** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
** the first cursor in an array of cursors for all indices. iIdxCur should
** be used to compute the appropriate cursor depending on which index is
** used.
*/
WhereInfo *sqlite3WhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
ExprList *pResultSet, /* Result set of the query */
u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
int nTabList; /* Number of elements in pTabList */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
Bitmask notReady; /* Cursors that are not yet positioned */
WhereLoopBuilder sWLB; /* The WhereLoop builder */
WhereMaskSet *pMaskSet; /* The expression mask set */
WhereLevel *pLevel; /* A single level in pWInfo->a[] */
WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
int ii; /* Loop counter */
sqlite3 *db; /* Database connection */
int rc; /* Return code */
u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
(wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
&& (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
));
/* Variable initialization */
db = pParse->db;
memset(&sWLB, 0, sizeof(sWLB));
/* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
sWLB.pOrderBy = pOrderBy;
/* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
wctrlFlags &= ~WHERE_WANT_DISTINCT;
}
/* The number of tables in the FROM clause is limited by the number of
** bits in a Bitmask
*/
testcase( pTabList->nSrc==BMS );
if( pTabList->nSrc>BMS ){
sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
return 0;
}
/* This function normally generates a nested loop for all tables in
** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
** only generate code for the first table in pTabList and assume that
** any cursors associated with subsequent tables are uninitialized.
*/
nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
/* Allocate and initialize the WhereInfo structure that will become the
** return value. A single allocation is used to store the WhereInfo
** struct, the contents of WhereInfo.a[], the WhereClause structure
** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
** field (type Bitmask) it must be aligned on an 8-byte boundary on
** some architectures. Hence the ROUND8() below.
*/
nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));
if( db->mallocFailed ){
sqlite3DbFree(db, pWInfo);
pWInfo = 0;
goto whereBeginError;
}
pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
pWInfo->nLevel = nTabList;
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->pOrderBy = pOrderBy;
pWInfo->pResultSet = pResultSet;
pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
pWInfo->wctrlFlags = wctrlFlags;
pWInfo->savedNQueryLoop = pParse->nQueryLoop;
assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
pMaskSet = &pWInfo->sMaskSet;
sWLB.pWInfo = pWInfo;
sWLB.pWC = &pWInfo->sWC;
sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
whereLoopInit(sWLB.pNew);
#ifdef SQLITE_DEBUG
sWLB.pNew->cId = '*';
#endif
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator.
*/
initMaskSet(pMaskSet);
sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
for(ii=0; ii<sWLB.pWC->nTerm; ii++){
if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
SQLITE_JUMPIFNULL);
sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
}
}
/* Special case: No FROM clause
*/
if( nTabList==0 ){
if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
if( wctrlFlags & WHERE_WANT_DISTINCT ){
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}
}
/* Assign a bit from the bitmask to every term in the FROM clause.
**
** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
**
** The rule of the previous sentence ensures thta if X is the bitmask for
** a table T, then X-1 is the bitmask for all other tables to the left of T.
** Knowing the bitmask for all tables to the left of a left join is
** important. Ticket #3015.
**
** Note that bitmasks are created for all pTabList->nSrc tables in
** pTabList, not just the first nTabList tables. nTabList is normally
** equal to pTabList->nSrc but might be shortened to 1 if the
** WHERE_ONETABLE_ONLY flag is set.
*/
for(ii=0; ii<pTabList->nSrc; ii++){
createMask(pMaskSet, pTabList->a[ii].iCursor);
sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
}
#ifdef SQLITE_DEBUG
for(ii=0; ii<pTabList->nSrc; ii++){
Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
assert( m==MASKBIT(ii) );
}
#endif
/* Analyze all of the subexpressions. */
sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
if( db->mallocFailed ) goto whereBeginError;
if( wctrlFlags & WHERE_WANT_DISTINCT ){
if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
/* The DISTINCT marking is pointless. Ignore it. */
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}else if( pOrderBy==0 ){
/* Try to ORDER BY the result set to make distinct processing easier */
pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
pWInfo->pOrderBy = pResultSet;
}
}
/* Construct the WhereLoop objects */
WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n",
wctrlFlags));
#if defined(WHERETRACE_ENABLED)
if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
int i;
for(i=0; i<sWLB.pWC->nTerm; i++){
whereTermPrint(&sWLB.pWC->a[i], i);
}
}
#endif
if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
rc = whereLoopAddAll(&sWLB);
if( rc ) goto whereBeginError;
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
WhereLoop *p;
int i;
static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
"ABCDEFGHIJKLMNOPQRSTUVWYXZ";
for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
p->cId = zLabel[i%sizeof(zLabel)];
whereLoopPrint(p, sWLB.pWC);
}
}
#endif
wherePathSolver(pWInfo, 0);
if( db->mallocFailed ) goto whereBeginError;
if( pWInfo->pOrderBy ){
wherePathSolver(pWInfo, pWInfo->nRowOut+1);
if( db->mallocFailed ) goto whereBeginError;
}
}
if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
pWInfo->revMask = (Bitmask)(-1);
}
if( pParse->nErr || NEVER(db->mallocFailed) ){
goto whereBeginError;
}
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace ){
sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
if( pWInfo->nOBSat>0 ){
sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
}
switch( pWInfo->eDistinct ){
case WHERE_DISTINCT_UNIQUE: {
sqlite3DebugPrintf(" DISTINCT=unique");
break;
}
case WHERE_DISTINCT_ORDERED: {
sqlite3DebugPrintf(" DISTINCT=ordered");
break;
}
case WHERE_DISTINCT_UNORDERED: {
sqlite3DebugPrintf(" DISTINCT=unordered");
break;
}
}
sqlite3DebugPrintf("\n");
for(ii=0; ii<pWInfo->nLevel; ii++){
whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
}
}
#endif
/* Attempt to omit tables from the join that do not effect the result */
if( pWInfo->nLevel>=2
&& pResultSet!=0
&& OptimizationEnabled(db, SQLITE_OmitNoopJoin)
){
Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
if( sWLB.pOrderBy ){
tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
}
while( pWInfo->nLevel>=2 ){
WhereTerm *pTerm, *pEnd;
pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
&& (pLoop->wsFlags & WHERE_ONEROW)==0
){
break;
}
if( (tabUsed & pLoop->maskSelf)!=0 ) break;
pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
if( (pTerm->prereqAll & pLoop->maskSelf)!=0
&& !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
){
break;
}
}
if( pTerm<pEnd ) break;
WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
pWInfo->nLevel--;
nTabList--;
}
}
WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
/* If the caller is an UPDATE or DELETE statement that is requesting
** to use a one-pass algorithm, determine if this is appropriate.
*/
assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
if( bOnerow
|| ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
&& 0==(wsFlags & WHERE_VIRTUALTABLE))
){
pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
bFordelete = OPFLAG_FORDELETE;
}
pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
}
}
}
/* Open all tables in the pTabList and any indices selected for
** searching those tables.
*/
for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
Table *pTab; /* Table to open */
int iDb; /* Index of database containing table/index */
struct SrcList_item *pTabItem;
pTabItem = &pTabList->a[pLevel->iFrom];
pTab = pTabItem->pTab;
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
pLoop = pLevel->pWLoop;
if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
/* Do nothing */
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
int iCur = pTabItem->iCursor;
sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
}else if( IsVirtual(pTab) ){
/* noop */
}else
#endif
if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
&& (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
int op = OP_OpenRead;
if( pWInfo->eOnePass!=ONEPASS_OFF ){
op = OP_OpenWrite;
pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
};
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
assert( pTabItem->iCursor==pLevel->iTabCur );
testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
Bitmask b = pTabItem->colUsed;
int n = 0;
for(; b; b=b>>1, n++){}
sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
assert( n<=pTab->nCol );
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
if( pLoop->u.btree.pIndex!=0 ){
sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
}else
#endif
{
sqlite3VdbeChangeP5(v, bFordelete);
}
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
(const u8*)&pTabItem->colUsed, P4_INT64);
#endif
}else{
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
}
if( pLoop->wsFlags & WHERE_INDEXED ){
Index *pIx = pLoop->u.btree.pIndex;
int iIndexCur;
int op = OP_OpenRead;
/* iIdxCur is always set if to a positive value if ONEPASS is possible */
assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
&& (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
){
/* This is one term of an OR-optimization using the PRIMARY KEY of a
** WITHOUT ROWID table. No need for a separate index */
iIndexCur = pLevel->iTabCur;
op = 0;
}else if( pWInfo->eOnePass!=ONEPASS_OFF ){
Index *pJ = pTabItem->pTab->pIndex;
iIndexCur = iIdxCur;
assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
while( ALWAYS(pJ) && pJ!=pIx ){
iIndexCur++;
pJ = pJ->pNext;
}
op = OP_OpenWrite;
pWInfo->aiCurOnePass[1] = iIndexCur;
}else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
iIndexCur = iIdxCur;
if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx;
}else{
iIndexCur = pParse->nTab++;
}
pLevel->iIdxCur = iIndexCur;
assert( pIx->pSchema==pTab->pSchema );
assert( iIndexCur>=0 );
if( op ){
sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pIx);
if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
&& (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
&& (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
){
sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
}
VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
{
u64 colUsed = 0;
int ii, jj;
for(ii=0; ii<pIx->nColumn; ii++){
jj = pIx->aiColumn[ii];
if( jj<0 ) continue;
if( jj>63 ) jj = 63;
if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
}
sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
(u8*)&colUsed, P4_INT64);
}
#endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
}
}
if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
if( db->mallocFailed ) goto whereBeginError;
/* Generate the code to do the search. Each iteration of the for
** loop below generates code for a single nested loop of the VM
** program.
*/
notReady = ~(Bitmask)0;
for(ii=0; ii<nTabList; ii++){
int addrExplain;
int wsFlags;
pLevel = &pWInfo->a[ii];
wsFlags = pLevel->pWLoop->wsFlags;
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
constructAutomaticIndex(pParse, &pWInfo->sWC,
&pTabList->a[pLevel->iFrom], notReady, pLevel);
if( db->mallocFailed ) goto whereBeginError;
}
#endif
addrExplain = sqlite3WhereExplainOneScan(
pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
);
pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
pWInfo->iContinue = pLevel->addrCont;
if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){
sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
}
}
/* Done. */
VdbeModuleComment((v, "Begin WHERE-core"));
return pWInfo;
/* Jump here if malloc fails */
whereBeginError:
if( pWInfo ){
pParse->nQueryLoop = pWInfo->savedNQueryLoop;
whereInfoFree(db, pWInfo);
}
return 0;
}
/*
** Generate the end of the WHERE loop. See comments on
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
Parse *pParse = pWInfo->pParse;
Vdbe *v = pParse->pVdbe;
int i;
WhereLevel *pLevel;
WhereLoop *pLoop;
SrcList *pTabList = pWInfo->pTabList;
sqlite3 *db = pParse->db;
/* Generate loop termination code.
*/
VdbeModuleComment((v, "End WHERE-core"));
sqlite3ExprCacheClear(pParse);
for(i=pWInfo->nLevel-1; i>=0; i--){
int addr;
pLevel = &pWInfo->a[i];
pLoop = pLevel->pWLoop;
sqlite3VdbeResolveLabel(v, pLevel->addrCont);
if( pLevel->op!=OP_Noop ){
sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
sqlite3VdbeChangeP5(v, pLevel->p5);
VdbeCoverage(v);
VdbeCoverageIf(v, pLevel->op==OP_Next);
VdbeCoverageIf(v, pLevel->op==OP_Prev);
VdbeCoverageIf(v, pLevel->op==OP_VNext);
}
if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
struct InLoop *pIn;
int j;
sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
VdbeCoverage(v);
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
}
}
sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
if( pLevel->addrSkip ){
sqlite3VdbeGoto(v, pLevel->addrSkip);
VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
sqlite3VdbeJumpHere(v, pLevel->addrSkip);
sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
}
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( pLevel->addrLikeRep ){
int op;
if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
op = OP_DecrJumpZero;
}else{
op = OP_JumpZeroIncr;
}
sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
VdbeCoverage(v);
}
#endif
if( pLevel->iLeftJoin ){
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
|| (pLoop->wsFlags & WHERE_INDEXED)!=0 );
if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
}
if( pLoop->wsFlags & WHERE_INDEXED ){
sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
}
if( pLevel->op==OP_Return ){
sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
}else{
sqlite3VdbeGoto(v, pLevel->addrFirst);
}
sqlite3VdbeJumpHere(v, addr);
}
VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
}
/* The "break" point is here, just past the end of the outer loop.
** Set it.
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
assert( pWInfo->nLevel<=pTabList->nSrc );
for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
int k, last;
VdbeOp *pOp;
Index *pIdx = 0;
struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
pLoop = pLevel->pWLoop;
/* For a co-routine, change all OP_Column references to the table of
** the co-routine into OP_Copy of result contained in a register.
** OP_Rowid becomes OP_Null.
*/
if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
pTabItem->regResult, 0);
continue;
}
/* Close all of the cursors that were opened by sqlite3WhereBegin.
** Except, do not close cursors that will be reused by the OR optimization
** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors
** created for the ONEPASS optimization.
*/
if( (pTab->tabFlags & TF_Ephemeral)==0
&& pTab->pSelect==0
&& (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
){
int ws = pLoop->wsFlags;
if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
}
if( (ws & WHERE_INDEXED)!=0
&& (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
&& pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
){
sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
}
}
/* If this scan uses an index, make VDBE code substitutions to read data
** from the index instead of from the table where possible. In some cases
** this optimization prevents the table from ever being read, which can
** yield a significant performance boost.
**
** Calls to the code generator in between sqlite3WhereBegin and
** sqlite3WhereEnd will have created code that references the table
** directly. This loop scans all that code looking for opcodes
** that reference the table and converts them into opcodes that
** reference the index.
*/
if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
pIdx = pLoop->u.btree.pIndex;
}else if( pLoop->wsFlags & WHERE_MULTI_OR ){
pIdx = pLevel->u.pCovidx;
}
if( pIdx
&& (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
&& !db->mallocFailed
){
last = sqlite3VdbeCurrentAddr(v);
k = pLevel->addrBody;
pOp = sqlite3VdbeGetOp(v, k);
for(; k<last; k++, pOp++){
if( pOp->p1!=pLevel->iTabCur ) continue;
if( pOp->opcode==OP_Column ){
int x = pOp->p2;
assert( pIdx->pTable==pTab );
if( !HasRowid(pTab) ){
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
x = pPk->aiColumn[x];
assert( x>=0 );
}
x = sqlite3ColumnOfIndex(pIdx, x);
if( x>=0 ){
pOp->p2 = x;
pOp->p1 = pLevel->iIdxCur;
}
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );
}else if( pOp->opcode==OP_Rowid ){
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRowid;
}
}
}
}
/* Final cleanup
*/
pParse->nQueryLoop = pWInfo->savedNQueryLoop;
whereInfoFree(db, pWInfo);
return;
}