1236 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1236 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2008 November 05
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file implements the default page cache implementation (the
 | |
| ** sqlite3_pcache interface). It also contains part of the implementation
 | |
| ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
 | |
| ** If the default page cache implementation is overridden, then neither of
 | |
| ** these two features are available.
 | |
| **
 | |
| ** A Page cache line looks like this:
 | |
| **
 | |
| **  -------------------------------------------------------------
 | |
| **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
 | |
| **  -------------------------------------------------------------
 | |
| **
 | |
| ** The database page content is up front (so that buffer overreads tend to
 | |
| ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
 | |
| ** is the extension added by the btree.c module containing information such
 | |
| ** as the database page number and how that database page is used.  PgHdr
 | |
| ** is added by the pcache.c layer and contains information used to keep track
 | |
| ** of which pages are "dirty".  PgHdr1 is an extension added by this
 | |
| ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
 | |
| ** PgHdr1 contains information needed to look up a page by its page number.
 | |
| ** The superclass sqlite3_pcache_page.pBuf points to the start of the
 | |
| ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
 | |
| **
 | |
| ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
 | |
| ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
 | |
| ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
 | |
| ** size can vary according to architecture, compile-time options, and
 | |
| ** SQLite library version number.
 | |
| **
 | |
| ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
 | |
| ** using a separate memory allocation from the database page content.  This
 | |
| ** seeks to overcome the "clownshoe" problem (also called "internal
 | |
| ** fragmentation" in academic literature) of allocating a few bytes more
 | |
| ** than a power of two with the memory allocator rounding up to the next
 | |
| ** power of two, and leaving the rounded-up space unused.
 | |
| **
 | |
| ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
 | |
| ** with this module.  Information is passed back and forth as PgHdr1 pointers.
 | |
| **
 | |
| ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
 | |
| ** The btree.c module deals with pointers to MemPage objects.
 | |
| **
 | |
| ** SOURCE OF PAGE CACHE MEMORY:
 | |
| **
 | |
| ** Memory for a page might come from any of three sources:
 | |
| **
 | |
| **    (1)  The general-purpose memory allocator - sqlite3Malloc()
 | |
| **    (2)  Global page-cache memory provided using sqlite3_config() with
 | |
| **         SQLITE_CONFIG_PAGECACHE.
 | |
| **    (3)  PCache-local bulk allocation.
 | |
| **
 | |
| ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
 | |
| ** that is allocated when the page cache is created.  The size of the local
 | |
| ** bulk allocation can be adjusted using 
 | |
| **
 | |
| **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
 | |
| **
 | |
| ** If N is positive, then N pages worth of memory are allocated using a single
 | |
| ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
 | |
| ** Or if N is negative, then -1024*N bytes of memory are allocated and used
 | |
| ** for as many pages as can be accomodated.
 | |
| **
 | |
| ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
 | |
| ** (3) is exhausted, subsequent allocations fail over to the general-purpose
 | |
| ** memory allocator (1).
 | |
| **
 | |
| ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
 | |
| ** show that method (3) with N==100 provides about a 5% performance boost for
 | |
| ** common workloads.
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| 
 | |
| typedef struct PCache1 PCache1;
 | |
| typedef struct PgHdr1 PgHdr1;
 | |
| typedef struct PgFreeslot PgFreeslot;
 | |
| typedef struct PGroup PGroup;
 | |
| 
 | |
| /*
 | |
| ** Each cache entry is represented by an instance of the following 
 | |
| ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
 | |
| ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 
 | |
| ** in memory.
 | |
| */
 | |
| struct PgHdr1 {
 | |
|   sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
 | |
|   unsigned int iKey;             /* Key value (page number) */
 | |
|   u8 isPinned;                   /* Page in use, not on the LRU list */
 | |
|   u8 isBulkLocal;                /* This page from bulk local storage */
 | |
|   u8 isAnchor;                   /* This is the PGroup.lru element */
 | |
|   PgHdr1 *pNext;                 /* Next in hash table chain */
 | |
|   PCache1 *pCache;               /* Cache that currently owns this page */
 | |
|   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
 | |
|   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
 | |
| };
 | |
| 
 | |
| /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set 
 | |
| ** of one or more PCaches that are able to recycle each other's unpinned
 | |
| ** pages when they are under memory pressure.  A PGroup is an instance of
 | |
| ** the following object.
 | |
| **
 | |
| ** This page cache implementation works in one of two modes:
 | |
| **
 | |
| **   (1)  Every PCache is the sole member of its own PGroup.  There is
 | |
| **        one PGroup per PCache.
 | |
| **
 | |
| **   (2)  There is a single global PGroup that all PCaches are a member
 | |
| **        of.
 | |
| **
 | |
| ** Mode 1 uses more memory (since PCache instances are not able to rob
 | |
| ** unused pages from other PCaches) but it also operates without a mutex,
 | |
| ** and is therefore often faster.  Mode 2 requires a mutex in order to be
 | |
| ** threadsafe, but recycles pages more efficiently.
 | |
| **
 | |
| ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
 | |
| ** PGroup which is the pcache1.grp global variable and its mutex is
 | |
| ** SQLITE_MUTEX_STATIC_LRU.
 | |
| */
 | |
| struct PGroup {
 | |
|   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
 | |
|   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
 | |
|   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
 | |
|   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
 | |
|   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
 | |
|   PgHdr1 lru;                    /* The beginning and end of the LRU list */
 | |
| };
 | |
| 
 | |
| /* Each page cache is an instance of the following object.  Every
 | |
| ** open database file (including each in-memory database and each
 | |
| ** temporary or transient database) has a single page cache which
 | |
| ** is an instance of this object.
 | |
| **
 | |
| ** Pointers to structures of this type are cast and returned as 
 | |
| ** opaque sqlite3_pcache* handles.
 | |
| */
 | |
| struct PCache1 {
 | |
|   /* Cache configuration parameters. Page size (szPage) and the purgeable
 | |
|   ** flag (bPurgeable) are set when the cache is created. nMax may be 
 | |
|   ** modified at any time by a call to the pcache1Cachesize() method.
 | |
|   ** The PGroup mutex must be held when accessing nMax.
 | |
|   */
 | |
|   PGroup *pGroup;                     /* PGroup this cache belongs to */
 | |
|   int szPage;                         /* Size of database content section */
 | |
|   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
 | |
|   int szAlloc;                        /* Total size of one pcache line */
 | |
|   int bPurgeable;                     /* True if cache is purgeable */
 | |
|   unsigned int nMin;                  /* Minimum number of pages reserved */
 | |
|   unsigned int nMax;                  /* Configured "cache_size" value */
 | |
|   unsigned int n90pct;                /* nMax*9/10 */
 | |
|   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
 | |
| 
 | |
|   /* Hash table of all pages. The following variables may only be accessed
 | |
|   ** when the accessor is holding the PGroup mutex.
 | |
|   */
 | |
|   unsigned int nRecyclable;           /* Number of pages in the LRU list */
 | |
|   unsigned int nPage;                 /* Total number of pages in apHash */
 | |
|   unsigned int nHash;                 /* Number of slots in apHash[] */
 | |
|   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
 | |
|   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
 | |
|   void *pBulk;                        /* Bulk memory used by pcache-local */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Free slots in the allocator used to divide up the global page cache
 | |
| ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
 | |
| */
 | |
| struct PgFreeslot {
 | |
|   PgFreeslot *pNext;  /* Next free slot */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Global data used by this cache.
 | |
| */
 | |
| static SQLITE_WSD struct PCacheGlobal {
 | |
|   PGroup grp;                    /* The global PGroup for mode (2) */
 | |
| 
 | |
|   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
 | |
|   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
 | |
|   ** fixed at sqlite3_initialize() time and do not require mutex protection.
 | |
|   ** The nFreeSlot and pFree values do require mutex protection.
 | |
|   */
 | |
|   int isInit;                    /* True if initialized */
 | |
|   int separateCache;             /* Use a new PGroup for each PCache */
 | |
|   int nInitPage;                 /* Initial bulk allocation size */   
 | |
|   int szSlot;                    /* Size of each free slot */
 | |
|   int nSlot;                     /* The number of pcache slots */
 | |
|   int nReserve;                  /* Try to keep nFreeSlot above this */
 | |
|   void *pStart, *pEnd;           /* Bounds of global page cache memory */
 | |
|   /* Above requires no mutex.  Use mutex below for variable that follow. */
 | |
|   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
 | |
|   PgFreeslot *pFree;             /* Free page blocks */
 | |
|   int nFreeSlot;                 /* Number of unused pcache slots */
 | |
|   /* The following value requires a mutex to change.  We skip the mutex on
 | |
|   ** reading because (1) most platforms read a 32-bit integer atomically and
 | |
|   ** (2) even if an incorrect value is read, no great harm is done since this
 | |
|   ** is really just an optimization. */
 | |
|   int bUnderPressure;            /* True if low on PAGECACHE memory */
 | |
| } pcache1_g;
 | |
| 
 | |
| /*
 | |
| ** All code in this file should access the global structure above via the
 | |
| ** alias "pcache1". This ensures that the WSD emulation is used when
 | |
| ** compiling for systems that do not support real WSD.
 | |
| */
 | |
| #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
 | |
| 
 | |
| /*
 | |
| ** Macros to enter and leave the PCache LRU mutex.
 | |
| */
 | |
| #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
 | |
| # define pcache1EnterMutex(X)  assert((X)->mutex==0)
 | |
| # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
 | |
| # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
 | |
| #else
 | |
| # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
 | |
| # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
 | |
| # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
 | |
| #endif
 | |
| 
 | |
| /******************************************************************************/
 | |
| /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is called during initialization if a static buffer is 
 | |
| ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
 | |
| ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
 | |
| ** enough to contain 'n' buffers of 'sz' bytes each.
 | |
| **
 | |
| ** This routine is called from sqlite3_initialize() and so it is guaranteed
 | |
| ** to be serialized already.  There is no need for further mutexing.
 | |
| */
 | |
| void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
 | |
|   if( pcache1.isInit ){
 | |
|     PgFreeslot *p;
 | |
|     if( pBuf==0 ) sz = n = 0;
 | |
|     sz = ROUNDDOWN8(sz);
 | |
|     pcache1.szSlot = sz;
 | |
|     pcache1.nSlot = pcache1.nFreeSlot = n;
 | |
|     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
 | |
|     pcache1.pStart = pBuf;
 | |
|     pcache1.pFree = 0;
 | |
|     pcache1.bUnderPressure = 0;
 | |
|     while( n-- ){
 | |
|       p = (PgFreeslot*)pBuf;
 | |
|       p->pNext = pcache1.pFree;
 | |
|       pcache1.pFree = p;
 | |
|       pBuf = (void*)&((char*)pBuf)[sz];
 | |
|     }
 | |
|     pcache1.pEnd = pBuf;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
 | |
| ** true if pCache->pFree ends up containing one or more free pages.
 | |
| */
 | |
| static int pcache1InitBulk(PCache1 *pCache){
 | |
|   i64 szBulk;
 | |
|   char *zBulk;
 | |
|   if( pcache1.nInitPage==0 ) return 0;
 | |
|   /* Do not bother with a bulk allocation if the cache size very small */
 | |
|   if( pCache->nMax<3 ) return 0;
 | |
|   sqlite3BeginBenignMalloc();
 | |
|   if( pcache1.nInitPage>0 ){
 | |
|     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
 | |
|   }else{
 | |
|     szBulk = -1024 * (i64)pcache1.nInitPage;
 | |
|   }
 | |
|   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
 | |
|     szBulk = pCache->szAlloc*pCache->nMax;
 | |
|   }
 | |
|   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
 | |
|   sqlite3EndBenignMalloc();
 | |
|   if( zBulk ){
 | |
|     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
 | |
|     int i;
 | |
|     for(i=0; i<nBulk; i++){
 | |
|       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
 | |
|       pX->page.pBuf = zBulk;
 | |
|       pX->page.pExtra = &pX[1];
 | |
|       pX->isBulkLocal = 1;
 | |
|       pX->isAnchor = 0;
 | |
|       pX->pNext = pCache->pFree;
 | |
|       pCache->pFree = pX;
 | |
|       zBulk += pCache->szAlloc;
 | |
|     }
 | |
|   }
 | |
|   return pCache->pFree!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Malloc function used within this file to allocate space from the buffer
 | |
| ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 
 | |
| ** such buffer exists or there is no space left in it, this function falls 
 | |
| ** back to sqlite3Malloc().
 | |
| **
 | |
| ** Multiple threads can run this routine at the same time.  Global variables
 | |
| ** in pcache1 need to be protected via mutex.
 | |
| */
 | |
| static void *pcache1Alloc(int nByte){
 | |
|   void *p = 0;
 | |
|   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
 | |
|   if( nByte<=pcache1.szSlot ){
 | |
|     sqlite3_mutex_enter(pcache1.mutex);
 | |
|     p = (PgHdr1 *)pcache1.pFree;
 | |
|     if( p ){
 | |
|       pcache1.pFree = pcache1.pFree->pNext;
 | |
|       pcache1.nFreeSlot--;
 | |
|       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
 | |
|       assert( pcache1.nFreeSlot>=0 );
 | |
|       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
 | |
|       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
 | |
|     }
 | |
|     sqlite3_mutex_leave(pcache1.mutex);
 | |
|   }
 | |
|   if( p==0 ){
 | |
|     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
 | |
|     ** it from sqlite3Malloc instead.
 | |
|     */
 | |
|     p = sqlite3Malloc(nByte);
 | |
| #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
 | |
|     if( p ){
 | |
|       int sz = sqlite3MallocSize(p);
 | |
|       sqlite3_mutex_enter(pcache1.mutex);
 | |
|       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
 | |
|       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
 | |
|       sqlite3_mutex_leave(pcache1.mutex);
 | |
|     }
 | |
| #endif
 | |
|     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free an allocated buffer obtained from pcache1Alloc().
 | |
| */
 | |
| static void pcache1Free(void *p){
 | |
|   int nFreed = 0;
 | |
|   if( p==0 ) return;
 | |
|   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
 | |
|     PgFreeslot *pSlot;
 | |
|     sqlite3_mutex_enter(pcache1.mutex);
 | |
|     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
 | |
|     pSlot = (PgFreeslot*)p;
 | |
|     pSlot->pNext = pcache1.pFree;
 | |
|     pcache1.pFree = pSlot;
 | |
|     pcache1.nFreeSlot++;
 | |
|     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
 | |
|     assert( pcache1.nFreeSlot<=pcache1.nSlot );
 | |
|     sqlite3_mutex_leave(pcache1.mutex);
 | |
|   }else{
 | |
|     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
 | |
|     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
 | |
| #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
 | |
|     nFreed = sqlite3MallocSize(p);
 | |
|     sqlite3_mutex_enter(pcache1.mutex);
 | |
|     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
 | |
|     sqlite3_mutex_leave(pcache1.mutex);
 | |
| #endif
 | |
|     sqlite3_free(p);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
| /*
 | |
| ** Return the size of a pcache allocation
 | |
| */
 | |
| static int pcache1MemSize(void *p){
 | |
|   if( p>=pcache1.pStart && p<pcache1.pEnd ){
 | |
|     return pcache1.szSlot;
 | |
|   }else{
 | |
|     int iSize;
 | |
|     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
 | |
|     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
 | |
|     iSize = sqlite3MallocSize(p);
 | |
|     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
 | |
|     return iSize;
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
 | |
| 
 | |
| /*
 | |
| ** Allocate a new page object initially associated with cache pCache.
 | |
| */
 | |
| static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
 | |
|   PgHdr1 *p = 0;
 | |
|   void *pPg;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
 | |
|   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
 | |
|     p = pCache->pFree;
 | |
|     pCache->pFree = p->pNext;
 | |
|     p->pNext = 0;
 | |
|   }else{
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|     /* The group mutex must be released before pcache1Alloc() is called. This
 | |
|     ** is because it might call sqlite3_release_memory(), which assumes that 
 | |
|     ** this mutex is not held. */
 | |
|     assert( pcache1.separateCache==0 );
 | |
|     assert( pCache->pGroup==&pcache1.grp );
 | |
|     pcache1LeaveMutex(pCache->pGroup);
 | |
| #endif
 | |
|     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
 | |
| #ifdef SQLITE_PCACHE_SEPARATE_HEADER
 | |
|     pPg = pcache1Alloc(pCache->szPage);
 | |
|     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
 | |
|     if( !pPg || !p ){
 | |
|       pcache1Free(pPg);
 | |
|       sqlite3_free(p);
 | |
|       pPg = 0;
 | |
|     }
 | |
| #else
 | |
|     pPg = pcache1Alloc(pCache->szAlloc);
 | |
|     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
 | |
| #endif
 | |
|     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|     pcache1EnterMutex(pCache->pGroup);
 | |
| #endif
 | |
|     if( pPg==0 ) return 0;
 | |
|     p->page.pBuf = pPg;
 | |
|     p->page.pExtra = &p[1];
 | |
|     p->isBulkLocal = 0;
 | |
|     p->isAnchor = 0;
 | |
|   }
 | |
|   if( pCache->bPurgeable ){
 | |
|     pCache->pGroup->nCurrentPage++;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free a page object allocated by pcache1AllocPage().
 | |
| */
 | |
| static void pcache1FreePage(PgHdr1 *p){
 | |
|   PCache1 *pCache;
 | |
|   assert( p!=0 );
 | |
|   pCache = p->pCache;
 | |
|   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
 | |
|   if( p->isBulkLocal ){
 | |
|     p->pNext = pCache->pFree;
 | |
|     pCache->pFree = p;
 | |
|   }else{
 | |
|     pcache1Free(p->page.pBuf);
 | |
| #ifdef SQLITE_PCACHE_SEPARATE_HEADER
 | |
|     sqlite3_free(p);
 | |
| #endif
 | |
|   }
 | |
|   if( pCache->bPurgeable ){
 | |
|     pCache->pGroup->nCurrentPage--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Malloc function used by SQLite to obtain space from the buffer configured
 | |
| ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
 | |
| ** exists, this function falls back to sqlite3Malloc().
 | |
| */
 | |
| void *sqlite3PageMalloc(int sz){
 | |
|   return pcache1Alloc(sz);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free an allocated buffer obtained from sqlite3PageMalloc().
 | |
| */
 | |
| void sqlite3PageFree(void *p){
 | |
|   pcache1Free(p);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return true if it desirable to avoid allocating a new page cache
 | |
| ** entry.
 | |
| **
 | |
| ** If memory was allocated specifically to the page cache using
 | |
| ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
 | |
| ** it is desirable to avoid allocating a new page cache entry because
 | |
| ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
 | |
| ** for all page cache needs and we should not need to spill the
 | |
| ** allocation onto the heap.
 | |
| **
 | |
| ** Or, the heap is used for all page cache memory but the heap is
 | |
| ** under memory pressure, then again it is desirable to avoid
 | |
| ** allocating a new page cache entry in order to avoid stressing
 | |
| ** the heap even further.
 | |
| */
 | |
| static int pcache1UnderMemoryPressure(PCache1 *pCache){
 | |
|   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
 | |
|     return pcache1.bUnderPressure;
 | |
|   }else{
 | |
|     return sqlite3HeapNearlyFull();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| /******** General Implementation Functions ************************************/
 | |
| 
 | |
| /*
 | |
| ** This function is used to resize the hash table used by the cache passed
 | |
| ** as the first argument.
 | |
| **
 | |
| ** The PCache mutex must be held when this function is called.
 | |
| */
 | |
| static void pcache1ResizeHash(PCache1 *p){
 | |
|   PgHdr1 **apNew;
 | |
|   unsigned int nNew;
 | |
|   unsigned int i;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(p->pGroup->mutex) );
 | |
| 
 | |
|   nNew = p->nHash*2;
 | |
|   if( nNew<256 ){
 | |
|     nNew = 256;
 | |
|   }
 | |
| 
 | |
|   pcache1LeaveMutex(p->pGroup);
 | |
|   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
 | |
|   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
 | |
|   if( p->nHash ){ sqlite3EndBenignMalloc(); }
 | |
|   pcache1EnterMutex(p->pGroup);
 | |
|   if( apNew ){
 | |
|     for(i=0; i<p->nHash; i++){
 | |
|       PgHdr1 *pPage;
 | |
|       PgHdr1 *pNext = p->apHash[i];
 | |
|       while( (pPage = pNext)!=0 ){
 | |
|         unsigned int h = pPage->iKey % nNew;
 | |
|         pNext = pPage->pNext;
 | |
|         pPage->pNext = apNew[h];
 | |
|         apNew[h] = pPage;
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(p->apHash);
 | |
|     p->apHash = apNew;
 | |
|     p->nHash = nNew;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is used internally to remove the page pPage from the 
 | |
| ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
 | |
| ** LRU list, then this function is a no-op.
 | |
| **
 | |
| ** The PGroup mutex must be held when this function is called.
 | |
| */
 | |
| static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
 | |
|   PCache1 *pCache;
 | |
| 
 | |
|   assert( pPage!=0 );
 | |
|   assert( pPage->isPinned==0 );
 | |
|   pCache = pPage->pCache;
 | |
|   assert( pPage->pLruNext );
 | |
|   assert( pPage->pLruPrev );
 | |
|   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
 | |
|   pPage->pLruPrev->pLruNext = pPage->pLruNext;
 | |
|   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
 | |
|   pPage->pLruNext = 0;
 | |
|   pPage->pLruPrev = 0;
 | |
|   pPage->isPinned = 1;
 | |
|   assert( pPage->isAnchor==0 );
 | |
|   assert( pCache->pGroup->lru.isAnchor==1 );
 | |
|   pCache->nRecyclable--;
 | |
|   return pPage;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Remove the page supplied as an argument from the hash table 
 | |
| ** (PCache1.apHash structure) that it is currently stored in.
 | |
| ** Also free the page if freePage is true.
 | |
| **
 | |
| ** The PGroup mutex must be held when this function is called.
 | |
| */
 | |
| static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
 | |
|   unsigned int h;
 | |
|   PCache1 *pCache = pPage->pCache;
 | |
|   PgHdr1 **pp;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
 | |
|   h = pPage->iKey % pCache->nHash;
 | |
|   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
 | |
|   *pp = (*pp)->pNext;
 | |
| 
 | |
|   pCache->nPage--;
 | |
|   if( freeFlag ) pcache1FreePage(pPage);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If there are currently more than nMaxPage pages allocated, try
 | |
| ** to recycle pages to reduce the number allocated to nMaxPage.
 | |
| */
 | |
| static void pcache1EnforceMaxPage(PCache1 *pCache){
 | |
|   PGroup *pGroup = pCache->pGroup;
 | |
|   PgHdr1 *p;
 | |
|   assert( sqlite3_mutex_held(pGroup->mutex) );
 | |
|   while( pGroup->nCurrentPage>pGroup->nMaxPage
 | |
|       && (p=pGroup->lru.pLruPrev)->isAnchor==0
 | |
|   ){
 | |
|     assert( p->pCache->pGroup==pGroup );
 | |
|     assert( p->isPinned==0 );
 | |
|     pcache1PinPage(p);
 | |
|     pcache1RemoveFromHash(p, 1);
 | |
|   }
 | |
|   if( pCache->nPage==0 && pCache->pBulk ){
 | |
|     sqlite3_free(pCache->pBulk);
 | |
|     pCache->pBulk = pCache->pFree = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Discard all pages from cache pCache with a page number (key value) 
 | |
| ** greater than or equal to iLimit. Any pinned pages that meet this 
 | |
| ** criteria are unpinned before they are discarded.
 | |
| **
 | |
| ** The PCache mutex must be held when this function is called.
 | |
| */
 | |
| static void pcache1TruncateUnsafe(
 | |
|   PCache1 *pCache,             /* The cache to truncate */
 | |
|   unsigned int iLimit          /* Drop pages with this pgno or larger */
 | |
| ){
 | |
|   TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
 | |
|   unsigned int h;
 | |
|   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
 | |
|   for(h=0; h<pCache->nHash; h++){
 | |
|     PgHdr1 **pp = &pCache->apHash[h]; 
 | |
|     PgHdr1 *pPage;
 | |
|     while( (pPage = *pp)!=0 ){
 | |
|       if( pPage->iKey>=iLimit ){
 | |
|         pCache->nPage--;
 | |
|         *pp = pPage->pNext;
 | |
|         if( !pPage->isPinned ) pcache1PinPage(pPage);
 | |
|         pcache1FreePage(pPage);
 | |
|       }else{
 | |
|         pp = &pPage->pNext;
 | |
|         TESTONLY( nPage++; )
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert( pCache->nPage==nPage );
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| /******** sqlite3_pcache Methods **********************************************/
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xInit method.
 | |
| */
 | |
| static int pcache1Init(void *NotUsed){
 | |
|   UNUSED_PARAMETER(NotUsed);
 | |
|   assert( pcache1.isInit==0 );
 | |
|   memset(&pcache1, 0, sizeof(pcache1));
 | |
| 
 | |
| 
 | |
|   /*
 | |
|   ** The pcache1.separateCache variable is true if each PCache has its own
 | |
|   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
 | |
|   ** PGroup in pcache1.grp is used for all page caches (mode-2).
 | |
|   **
 | |
|   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
 | |
|   **
 | |
|   **   *  Use a unified cache in single-threaded applications that have
 | |
|   **      configured a start-time buffer for use as page-cache memory using
 | |
|   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 
 | |
|   **      pBuf argument.
 | |
|   **
 | |
|   **   *  Otherwise use separate caches (mode-1)
 | |
|   */
 | |
| #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
 | |
|   pcache1.separateCache = 0;
 | |
| #elif SQLITE_THREADSAFE
 | |
|   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
 | |
|                           || sqlite3GlobalConfig.bCoreMutex>0;
 | |
| #else
 | |
|   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
 | |
| #endif
 | |
| 
 | |
| #if SQLITE_THREADSAFE
 | |
|   if( sqlite3GlobalConfig.bCoreMutex ){
 | |
|     pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
 | |
|     pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
 | |
|   }
 | |
| #endif
 | |
|   if( pcache1.separateCache
 | |
|    && sqlite3GlobalConfig.nPage!=0
 | |
|    && sqlite3GlobalConfig.pPage==0
 | |
|   ){
 | |
|     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
 | |
|   }else{
 | |
|     pcache1.nInitPage = 0;
 | |
|   }
 | |
|   pcache1.grp.mxPinned = 10;
 | |
|   pcache1.isInit = 1;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xShutdown method.
 | |
| ** Note that the static mutex allocated in xInit does 
 | |
| ** not need to be freed.
 | |
| */
 | |
| static void pcache1Shutdown(void *NotUsed){
 | |
|   UNUSED_PARAMETER(NotUsed);
 | |
|   assert( pcache1.isInit!=0 );
 | |
|   memset(&pcache1, 0, sizeof(pcache1));
 | |
| }
 | |
| 
 | |
| /* forward declaration */
 | |
| static void pcache1Destroy(sqlite3_pcache *p);
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xCreate method.
 | |
| **
 | |
| ** Allocate a new cache.
 | |
| */
 | |
| static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
 | |
|   PCache1 *pCache;      /* The newly created page cache */
 | |
|   PGroup *pGroup;       /* The group the new page cache will belong to */
 | |
|   int sz;               /* Bytes of memory required to allocate the new cache */
 | |
| 
 | |
|   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
 | |
|   assert( szExtra < 300 );
 | |
| 
 | |
|   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
 | |
|   pCache = (PCache1 *)sqlite3MallocZero(sz);
 | |
|   if( pCache ){
 | |
|     if( pcache1.separateCache ){
 | |
|       pGroup = (PGroup*)&pCache[1];
 | |
|       pGroup->mxPinned = 10;
 | |
|     }else{
 | |
|       pGroup = &pcache1.grp;
 | |
|     }
 | |
|     if( pGroup->lru.isAnchor==0 ){
 | |
|       pGroup->lru.isAnchor = 1;
 | |
|       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
 | |
|     }
 | |
|     pCache->pGroup = pGroup;
 | |
|     pCache->szPage = szPage;
 | |
|     pCache->szExtra = szExtra;
 | |
|     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
 | |
|     pCache->bPurgeable = (bPurgeable ? 1 : 0);
 | |
|     pcache1EnterMutex(pGroup);
 | |
|     pcache1ResizeHash(pCache);
 | |
|     if( bPurgeable ){
 | |
|       pCache->nMin = 10;
 | |
|       pGroup->nMinPage += pCache->nMin;
 | |
|       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
 | |
|     }
 | |
|     pcache1LeaveMutex(pGroup);
 | |
|     if( pCache->nHash==0 ){
 | |
|       pcache1Destroy((sqlite3_pcache*)pCache);
 | |
|       pCache = 0;
 | |
|     }
 | |
|   }
 | |
|   return (sqlite3_pcache *)pCache;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xCachesize method. 
 | |
| **
 | |
| ** Configure the cache_size limit for a cache.
 | |
| */
 | |
| static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   if( pCache->bPurgeable ){
 | |
|     PGroup *pGroup = pCache->pGroup;
 | |
|     pcache1EnterMutex(pGroup);
 | |
|     pGroup->nMaxPage += (nMax - pCache->nMax);
 | |
|     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
 | |
|     pCache->nMax = nMax;
 | |
|     pCache->n90pct = pCache->nMax*9/10;
 | |
|     pcache1EnforceMaxPage(pCache);
 | |
|     pcache1LeaveMutex(pGroup);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xShrink method. 
 | |
| **
 | |
| ** Free up as much memory as possible.
 | |
| */
 | |
| static void pcache1Shrink(sqlite3_pcache *p){
 | |
|   PCache1 *pCache = (PCache1*)p;
 | |
|   if( pCache->bPurgeable ){
 | |
|     PGroup *pGroup = pCache->pGroup;
 | |
|     int savedMaxPage;
 | |
|     pcache1EnterMutex(pGroup);
 | |
|     savedMaxPage = pGroup->nMaxPage;
 | |
|     pGroup->nMaxPage = 0;
 | |
|     pcache1EnforceMaxPage(pCache);
 | |
|     pGroup->nMaxPage = savedMaxPage;
 | |
|     pcache1LeaveMutex(pGroup);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xPagecount method. 
 | |
| */
 | |
| static int pcache1Pagecount(sqlite3_pcache *p){
 | |
|   int n;
 | |
|   PCache1 *pCache = (PCache1*)p;
 | |
|   pcache1EnterMutex(pCache->pGroup);
 | |
|   n = pCache->nPage;
 | |
|   pcache1LeaveMutex(pCache->pGroup);
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
 | |
| ** in the header of the pcache1Fetch() procedure.
 | |
| **
 | |
| ** This steps are broken out into a separate procedure because they are
 | |
| ** usually not needed, and by avoiding the stack initialization required
 | |
| ** for these steps, the main pcache1Fetch() procedure can run faster.
 | |
| */
 | |
| static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
 | |
|   PCache1 *pCache, 
 | |
|   unsigned int iKey, 
 | |
|   int createFlag
 | |
| ){
 | |
|   unsigned int nPinned;
 | |
|   PGroup *pGroup = pCache->pGroup;
 | |
|   PgHdr1 *pPage = 0;
 | |
| 
 | |
|   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
 | |
|   assert( pCache->nPage >= pCache->nRecyclable );
 | |
|   nPinned = pCache->nPage - pCache->nRecyclable;
 | |
|   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
 | |
|   assert( pCache->n90pct == pCache->nMax*9/10 );
 | |
|   if( createFlag==1 && (
 | |
|         nPinned>=pGroup->mxPinned
 | |
|      || nPinned>=pCache->n90pct
 | |
|      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
 | |
|   )){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
 | |
|   assert( pCache->nHash>0 && pCache->apHash );
 | |
| 
 | |
|   /* Step 4. Try to recycle a page. */
 | |
|   if( pCache->bPurgeable
 | |
|    && !pGroup->lru.pLruPrev->isAnchor
 | |
|    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
 | |
|   ){
 | |
|     PCache1 *pOther;
 | |
|     pPage = pGroup->lru.pLruPrev;
 | |
|     assert( pPage->isPinned==0 );
 | |
|     pcache1RemoveFromHash(pPage, 0);
 | |
|     pcache1PinPage(pPage);
 | |
|     pOther = pPage->pCache;
 | |
|     if( pOther->szAlloc != pCache->szAlloc ){
 | |
|       pcache1FreePage(pPage);
 | |
|       pPage = 0;
 | |
|     }else{
 | |
|       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Step 5. If a usable page buffer has still not been found, 
 | |
|   ** attempt to allocate a new one. 
 | |
|   */
 | |
|   if( !pPage ){
 | |
|     pPage = pcache1AllocPage(pCache, createFlag==1);
 | |
|   }
 | |
| 
 | |
|   if( pPage ){
 | |
|     unsigned int h = iKey % pCache->nHash;
 | |
|     pCache->nPage++;
 | |
|     pPage->iKey = iKey;
 | |
|     pPage->pNext = pCache->apHash[h];
 | |
|     pPage->pCache = pCache;
 | |
|     pPage->pLruPrev = 0;
 | |
|     pPage->pLruNext = 0;
 | |
|     pPage->isPinned = 1;
 | |
|     *(void **)pPage->page.pExtra = 0;
 | |
|     pCache->apHash[h] = pPage;
 | |
|     if( iKey>pCache->iMaxKey ){
 | |
|       pCache->iMaxKey = iKey;
 | |
|     }
 | |
|   }
 | |
|   return pPage;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xFetch method. 
 | |
| **
 | |
| ** Fetch a page by key value.
 | |
| **
 | |
| ** Whether or not a new page may be allocated by this function depends on
 | |
| ** the value of the createFlag argument.  0 means do not allocate a new
 | |
| ** page.  1 means allocate a new page if space is easily available.  2 
 | |
| ** means to try really hard to allocate a new page.
 | |
| **
 | |
| ** For a non-purgeable cache (a cache used as the storage for an in-memory
 | |
| ** database) there is really no difference between createFlag 1 and 2.  So
 | |
| ** the calling function (pcache.c) will never have a createFlag of 1 on
 | |
| ** a non-purgeable cache.
 | |
| **
 | |
| ** There are three different approaches to obtaining space for a page,
 | |
| ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
 | |
| **
 | |
| **   1. Regardless of the value of createFlag, the cache is searched for a 
 | |
| **      copy of the requested page. If one is found, it is returned.
 | |
| **
 | |
| **   2. If createFlag==0 and the page is not already in the cache, NULL is
 | |
| **      returned.
 | |
| **
 | |
| **   3. If createFlag is 1, and the page is not already in the cache, then
 | |
| **      return NULL (do not allocate a new page) if any of the following
 | |
| **      conditions are true:
 | |
| **
 | |
| **       (a) the number of pages pinned by the cache is greater than
 | |
| **           PCache1.nMax, or
 | |
| **
 | |
| **       (b) the number of pages pinned by the cache is greater than
 | |
| **           the sum of nMax for all purgeable caches, less the sum of 
 | |
| **           nMin for all other purgeable caches, or
 | |
| **
 | |
| **   4. If none of the first three conditions apply and the cache is marked
 | |
| **      as purgeable, and if one of the following is true:
 | |
| **
 | |
| **       (a) The number of pages allocated for the cache is already 
 | |
| **           PCache1.nMax, or
 | |
| **
 | |
| **       (b) The number of pages allocated for all purgeable caches is
 | |
| **           already equal to or greater than the sum of nMax for all
 | |
| **           purgeable caches,
 | |
| **
 | |
| **       (c) The system is under memory pressure and wants to avoid
 | |
| **           unnecessary pages cache entry allocations
 | |
| **
 | |
| **      then attempt to recycle a page from the LRU list. If it is the right
 | |
| **      size, return the recycled buffer. Otherwise, free the buffer and
 | |
| **      proceed to step 5. 
 | |
| **
 | |
| **   5. Otherwise, allocate and return a new page buffer.
 | |
| **
 | |
| ** There are two versions of this routine.  pcache1FetchWithMutex() is
 | |
| ** the general case.  pcache1FetchNoMutex() is a faster implementation for
 | |
| ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
 | |
| ** invokes the appropriate routine.
 | |
| */
 | |
| static PgHdr1 *pcache1FetchNoMutex(
 | |
|   sqlite3_pcache *p, 
 | |
|   unsigned int iKey, 
 | |
|   int createFlag
 | |
| ){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   PgHdr1 *pPage = 0;
 | |
| 
 | |
|   /* Step 1: Search the hash table for an existing entry. */
 | |
|   pPage = pCache->apHash[iKey % pCache->nHash];
 | |
|   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
 | |
| 
 | |
|   /* Step 2: If the page was found in the hash table, then return it.
 | |
|   ** If the page was not in the hash table and createFlag is 0, abort.
 | |
|   ** Otherwise (page not in hash and createFlag!=0) continue with
 | |
|   ** subsequent steps to try to create the page. */
 | |
|   if( pPage ){
 | |
|     if( !pPage->isPinned ){
 | |
|       return pcache1PinPage(pPage);
 | |
|     }else{
 | |
|       return pPage;
 | |
|     }
 | |
|   }else if( createFlag ){
 | |
|     /* Steps 3, 4, and 5 implemented by this subroutine */
 | |
|     return pcache1FetchStage2(pCache, iKey, createFlag);
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| #if PCACHE1_MIGHT_USE_GROUP_MUTEX
 | |
| static PgHdr1 *pcache1FetchWithMutex(
 | |
|   sqlite3_pcache *p, 
 | |
|   unsigned int iKey, 
 | |
|   int createFlag
 | |
| ){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   PgHdr1 *pPage;
 | |
| 
 | |
|   pcache1EnterMutex(pCache->pGroup);
 | |
|   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
 | |
|   assert( pPage==0 || pCache->iMaxKey>=iKey );
 | |
|   pcache1LeaveMutex(pCache->pGroup);
 | |
|   return pPage;
 | |
| }
 | |
| #endif
 | |
| static sqlite3_pcache_page *pcache1Fetch(
 | |
|   sqlite3_pcache *p, 
 | |
|   unsigned int iKey, 
 | |
|   int createFlag
 | |
| ){
 | |
| #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
| #endif
 | |
| 
 | |
|   assert( offsetof(PgHdr1,page)==0 );
 | |
|   assert( pCache->bPurgeable || createFlag!=1 );
 | |
|   assert( pCache->bPurgeable || pCache->nMin==0 );
 | |
|   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
 | |
|   assert( pCache->nMin==0 || pCache->bPurgeable );
 | |
|   assert( pCache->nHash>0 );
 | |
| #if PCACHE1_MIGHT_USE_GROUP_MUTEX
 | |
|   if( pCache->pGroup->mutex ){
 | |
|     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
 | |
|   }else
 | |
| #endif
 | |
|   {
 | |
|     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xUnpin method.
 | |
| **
 | |
| ** Mark a page as unpinned (eligible for asynchronous recycling).
 | |
| */
 | |
| static void pcache1Unpin(
 | |
|   sqlite3_pcache *p, 
 | |
|   sqlite3_pcache_page *pPg, 
 | |
|   int reuseUnlikely
 | |
| ){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   PgHdr1 *pPage = (PgHdr1 *)pPg;
 | |
|   PGroup *pGroup = pCache->pGroup;
 | |
|  
 | |
|   assert( pPage->pCache==pCache );
 | |
|   pcache1EnterMutex(pGroup);
 | |
| 
 | |
|   /* It is an error to call this function if the page is already 
 | |
|   ** part of the PGroup LRU list.
 | |
|   */
 | |
|   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
 | |
|   assert( pPage->isPinned==1 );
 | |
| 
 | |
|   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
 | |
|     pcache1RemoveFromHash(pPage, 1);
 | |
|   }else{
 | |
|     /* Add the page to the PGroup LRU list. */
 | |
|     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
 | |
|     pPage->pLruPrev = &pGroup->lru;
 | |
|     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
 | |
|     *ppFirst = pPage;
 | |
|     pCache->nRecyclable++;
 | |
|     pPage->isPinned = 0;
 | |
|   }
 | |
| 
 | |
|   pcache1LeaveMutex(pCache->pGroup);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xRekey method. 
 | |
| */
 | |
| static void pcache1Rekey(
 | |
|   sqlite3_pcache *p,
 | |
|   sqlite3_pcache_page *pPg,
 | |
|   unsigned int iOld,
 | |
|   unsigned int iNew
 | |
| ){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   PgHdr1 *pPage = (PgHdr1 *)pPg;
 | |
|   PgHdr1 **pp;
 | |
|   unsigned int h; 
 | |
|   assert( pPage->iKey==iOld );
 | |
|   assert( pPage->pCache==pCache );
 | |
| 
 | |
|   pcache1EnterMutex(pCache->pGroup);
 | |
| 
 | |
|   h = iOld%pCache->nHash;
 | |
|   pp = &pCache->apHash[h];
 | |
|   while( (*pp)!=pPage ){
 | |
|     pp = &(*pp)->pNext;
 | |
|   }
 | |
|   *pp = pPage->pNext;
 | |
| 
 | |
|   h = iNew%pCache->nHash;
 | |
|   pPage->iKey = iNew;
 | |
|   pPage->pNext = pCache->apHash[h];
 | |
|   pCache->apHash[h] = pPage;
 | |
|   if( iNew>pCache->iMaxKey ){
 | |
|     pCache->iMaxKey = iNew;
 | |
|   }
 | |
| 
 | |
|   pcache1LeaveMutex(pCache->pGroup);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xTruncate method. 
 | |
| **
 | |
| ** Discard all unpinned pages in the cache with a page number equal to
 | |
| ** or greater than parameter iLimit. Any pinned pages with a page number
 | |
| ** equal to or greater than iLimit are implicitly unpinned.
 | |
| */
 | |
| static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   pcache1EnterMutex(pCache->pGroup);
 | |
|   if( iLimit<=pCache->iMaxKey ){
 | |
|     pcache1TruncateUnsafe(pCache, iLimit);
 | |
|     pCache->iMaxKey = iLimit-1;
 | |
|   }
 | |
|   pcache1LeaveMutex(pCache->pGroup);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the sqlite3_pcache.xDestroy method. 
 | |
| **
 | |
| ** Destroy a cache allocated using pcache1Create().
 | |
| */
 | |
| static void pcache1Destroy(sqlite3_pcache *p){
 | |
|   PCache1 *pCache = (PCache1 *)p;
 | |
|   PGroup *pGroup = pCache->pGroup;
 | |
|   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
 | |
|   pcache1EnterMutex(pGroup);
 | |
|   pcache1TruncateUnsafe(pCache, 0);
 | |
|   assert( pGroup->nMaxPage >= pCache->nMax );
 | |
|   pGroup->nMaxPage -= pCache->nMax;
 | |
|   assert( pGroup->nMinPage >= pCache->nMin );
 | |
|   pGroup->nMinPage -= pCache->nMin;
 | |
|   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
 | |
|   pcache1EnforceMaxPage(pCache);
 | |
|   pcache1LeaveMutex(pGroup);
 | |
|   sqlite3_free(pCache->pBulk);
 | |
|   sqlite3_free(pCache->apHash);
 | |
|   sqlite3_free(pCache);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is called during initialization (sqlite3_initialize()) to
 | |
| ** install the default pluggable cache module, assuming the user has not
 | |
| ** already provided an alternative.
 | |
| */
 | |
| void sqlite3PCacheSetDefault(void){
 | |
|   static const sqlite3_pcache_methods2 defaultMethods = {
 | |
|     1,                       /* iVersion */
 | |
|     0,                       /* pArg */
 | |
|     pcache1Init,             /* xInit */
 | |
|     pcache1Shutdown,         /* xShutdown */
 | |
|     pcache1Create,           /* xCreate */
 | |
|     pcache1Cachesize,        /* xCachesize */
 | |
|     pcache1Pagecount,        /* xPagecount */
 | |
|     pcache1Fetch,            /* xFetch */
 | |
|     pcache1Unpin,            /* xUnpin */
 | |
|     pcache1Rekey,            /* xRekey */
 | |
|     pcache1Truncate,         /* xTruncate */
 | |
|     pcache1Destroy,          /* xDestroy */
 | |
|     pcache1Shrink            /* xShrink */
 | |
|   };
 | |
|   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the size of the header on each page of this PCACHE implementation.
 | |
| */
 | |
| int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
 | |
| 
 | |
| /*
 | |
| ** Return the global mutex used by this PCACHE implementation.  The
 | |
| ** sqlite3_status() routine needs access to this mutex.
 | |
| */
 | |
| sqlite3_mutex *sqlite3Pcache1Mutex(void){
 | |
|   return pcache1.mutex;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
| /*
 | |
| ** This function is called to free superfluous dynamically allocated memory
 | |
| ** held by the pager system. Memory in use by any SQLite pager allocated
 | |
| ** by the current thread may be sqlite3_free()ed.
 | |
| **
 | |
| ** nReq is the number of bytes of memory required. Once this much has
 | |
| ** been released, the function returns. The return value is the total number 
 | |
| ** of bytes of memory released.
 | |
| */
 | |
| int sqlite3PcacheReleaseMemory(int nReq){
 | |
|   int nFree = 0;
 | |
|   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
 | |
|   assert( sqlite3_mutex_notheld(pcache1.mutex) );
 | |
|   if( sqlite3GlobalConfig.nPage==0 ){
 | |
|     PgHdr1 *p;
 | |
|     pcache1EnterMutex(&pcache1.grp);
 | |
|     while( (nReq<0 || nFree<nReq)
 | |
|        &&  (p=pcache1.grp.lru.pLruPrev)!=0
 | |
|        &&  p->isAnchor==0
 | |
|     ){
 | |
|       nFree += pcache1MemSize(p->page.pBuf);
 | |
| #ifdef SQLITE_PCACHE_SEPARATE_HEADER
 | |
|       nFree += sqlite3MemSize(p);
 | |
| #endif
 | |
|       assert( p->isPinned==0 );
 | |
|       pcache1PinPage(p);
 | |
|       pcache1RemoveFromHash(p, 1);
 | |
|     }
 | |
|     pcache1LeaveMutex(&pcache1.grp);
 | |
|   }
 | |
|   return nFree;
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** This function is used by test procedures to inspect the internal state
 | |
| ** of the global cache.
 | |
| */
 | |
| void sqlite3PcacheStats(
 | |
|   int *pnCurrent,      /* OUT: Total number of pages cached */
 | |
|   int *pnMax,          /* OUT: Global maximum cache size */
 | |
|   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
 | |
|   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
 | |
| ){
 | |
|   PgHdr1 *p;
 | |
|   int nRecyclable = 0;
 | |
|   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
 | |
|     assert( p->isPinned==0 );
 | |
|     nRecyclable++;
 | |
|   }
 | |
|   *pnCurrent = pcache1.grp.nCurrentPage;
 | |
|   *pnMax = (int)pcache1.grp.nMaxPage;
 | |
|   *pnMin = (int)pcache1.grp.nMinPage;
 | |
|   *pnRecyclable = nRecyclable;
 | |
| }
 | |
| #endif
 | 
