1213 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1213 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2006 June 10
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to help implement virtual tables.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| #include "sqliteInt.h"
 | |
| 
 | |
| /*
 | |
| ** Before a virtual table xCreate() or xConnect() method is invoked, the
 | |
| ** sqlite3.pVtabCtx member variable is set to point to an instance of
 | |
| ** this struct allocated on the stack. It is used by the implementation of 
 | |
| ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
 | |
| ** are invoked only from within xCreate and xConnect methods.
 | |
| */
 | |
| struct VtabCtx {
 | |
|   VTable *pVTable;    /* The virtual table being constructed */
 | |
|   Table *pTab;        /* The Table object to which the virtual table belongs */
 | |
|   VtabCtx *pPrior;    /* Parent context (if any) */
 | |
|   int bDeclared;      /* True after sqlite3_declare_vtab() is called */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The actual function that does the work of creating a new module.
 | |
| ** This function implements the sqlite3_create_module() and
 | |
| ** sqlite3_create_module_v2() interfaces.
 | |
| */
 | |
| static int createModule(
 | |
|   sqlite3 *db,                    /* Database in which module is registered */
 | |
|   const char *zName,              /* Name assigned to this module */
 | |
|   const sqlite3_module *pModule,  /* The definition of the module */
 | |
|   void *pAux,                     /* Context pointer for xCreate/xConnect */
 | |
|   void (*xDestroy)(void *)        /* Module destructor function */
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   int nName;
 | |
| 
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   nName = sqlite3Strlen30(zName);
 | |
|   if( sqlite3HashFind(&db->aModule, zName) ){
 | |
|     rc = SQLITE_MISUSE_BKPT;
 | |
|   }else{
 | |
|     Module *pMod;
 | |
|     pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1);
 | |
|     if( pMod ){
 | |
|       Module *pDel;
 | |
|       char *zCopy = (char *)(&pMod[1]);
 | |
|       memcpy(zCopy, zName, nName+1);
 | |
|       pMod->zName = zCopy;
 | |
|       pMod->pModule = pModule;
 | |
|       pMod->pAux = pAux;
 | |
|       pMod->xDestroy = xDestroy;
 | |
|       pMod->pEpoTab = 0;
 | |
|       pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
 | |
|       assert( pDel==0 || pDel==pMod );
 | |
|       if( pDel ){
 | |
|         sqlite3OomFault(db);
 | |
|         sqlite3DbFree(db, pDel);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
 | |
| 
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** External API function used to create a new virtual-table module.
 | |
| */
 | |
| int sqlite3_create_module(
 | |
|   sqlite3 *db,                    /* Database in which module is registered */
 | |
|   const char *zName,              /* Name assigned to this module */
 | |
|   const sqlite3_module *pModule,  /* The definition of the module */
 | |
|   void *pAux                      /* Context pointer for xCreate/xConnect */
 | |
| ){
 | |
| #ifdef SQLITE_ENABLE_API_ARMOR
 | |
|   if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
 | |
| #endif
 | |
|   return createModule(db, zName, pModule, pAux, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** External API function used to create a new virtual-table module.
 | |
| */
 | |
| int sqlite3_create_module_v2(
 | |
|   sqlite3 *db,                    /* Database in which module is registered */
 | |
|   const char *zName,              /* Name assigned to this module */
 | |
|   const sqlite3_module *pModule,  /* The definition of the module */
 | |
|   void *pAux,                     /* Context pointer for xCreate/xConnect */
 | |
|   void (*xDestroy)(void *)        /* Module destructor function */
 | |
| ){
 | |
| #ifdef SQLITE_ENABLE_API_ARMOR
 | |
|   if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
 | |
| #endif
 | |
|   return createModule(db, zName, pModule, pAux, xDestroy);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lock the virtual table so that it cannot be disconnected.
 | |
| ** Locks nest.  Every lock should have a corresponding unlock.
 | |
| ** If an unlock is omitted, resources leaks will occur.  
 | |
| **
 | |
| ** If a disconnect is attempted while a virtual table is locked,
 | |
| ** the disconnect is deferred until all locks have been removed.
 | |
| */
 | |
| void sqlite3VtabLock(VTable *pVTab){
 | |
|   pVTab->nRef++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** pTab is a pointer to a Table structure representing a virtual-table.
 | |
| ** Return a pointer to the VTable object used by connection db to access 
 | |
| ** this virtual-table, if one has been created, or NULL otherwise.
 | |
| */
 | |
| VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
 | |
|   VTable *pVtab;
 | |
|   assert( IsVirtual(pTab) );
 | |
|   for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
 | |
|   return pVtab;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Decrement the ref-count on a virtual table object. When the ref-count
 | |
| ** reaches zero, call the xDisconnect() method to delete the object.
 | |
| */
 | |
| void sqlite3VtabUnlock(VTable *pVTab){
 | |
|   sqlite3 *db = pVTab->db;
 | |
| 
 | |
|   assert( db );
 | |
|   assert( pVTab->nRef>0 );
 | |
|   assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );
 | |
| 
 | |
|   pVTab->nRef--;
 | |
|   if( pVTab->nRef==0 ){
 | |
|     sqlite3_vtab *p = pVTab->pVtab;
 | |
|     if( p ){
 | |
|       p->pModule->xDisconnect(p);
 | |
|     }
 | |
|     sqlite3DbFree(db, pVTab);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Table p is a virtual table. This function moves all elements in the
 | |
| ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
 | |
| ** database connections to be disconnected at the next opportunity. 
 | |
| ** Except, if argument db is not NULL, then the entry associated with
 | |
| ** connection db is left in the p->pVTable list.
 | |
| */
 | |
| static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
 | |
|   VTable *pRet = 0;
 | |
|   VTable *pVTable = p->pVTable;
 | |
|   p->pVTable = 0;
 | |
| 
 | |
|   /* Assert that the mutex (if any) associated with the BtShared database 
 | |
|   ** that contains table p is held by the caller. See header comments 
 | |
|   ** above function sqlite3VtabUnlockList() for an explanation of why
 | |
|   ** this makes it safe to access the sqlite3.pDisconnect list of any
 | |
|   ** database connection that may have an entry in the p->pVTable list.
 | |
|   */
 | |
|   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
 | |
| 
 | |
|   while( pVTable ){
 | |
|     sqlite3 *db2 = pVTable->db;
 | |
|     VTable *pNext = pVTable->pNext;
 | |
|     assert( db2 );
 | |
|     if( db2==db ){
 | |
|       pRet = pVTable;
 | |
|       p->pVTable = pRet;
 | |
|       pRet->pNext = 0;
 | |
|     }else{
 | |
|       pVTable->pNext = db2->pDisconnect;
 | |
|       db2->pDisconnect = pVTable;
 | |
|     }
 | |
|     pVTable = pNext;
 | |
|   }
 | |
| 
 | |
|   assert( !db || pRet );
 | |
|   return pRet;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Table *p is a virtual table. This function removes the VTable object
 | |
| ** for table *p associated with database connection db from the linked
 | |
| ** list in p->pVTab. It also decrements the VTable ref count. This is
 | |
| ** used when closing database connection db to free all of its VTable
 | |
| ** objects without disturbing the rest of the Schema object (which may
 | |
| ** be being used by other shared-cache connections).
 | |
| */
 | |
| void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
 | |
|   VTable **ppVTab;
 | |
| 
 | |
|   assert( IsVirtual(p) );
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(db) );
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
| 
 | |
|   for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
 | |
|     if( (*ppVTab)->db==db  ){
 | |
|       VTable *pVTab = *ppVTab;
 | |
|       *ppVTab = pVTab->pNext;
 | |
|       sqlite3VtabUnlock(pVTab);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
 | |
| **
 | |
| ** This function may only be called when the mutexes associated with all
 | |
| ** shared b-tree databases opened using connection db are held by the 
 | |
| ** caller. This is done to protect the sqlite3.pDisconnect list. The
 | |
| ** sqlite3.pDisconnect list is accessed only as follows:
 | |
| **
 | |
| **   1) By this function. In this case, all BtShared mutexes and the mutex
 | |
| **      associated with the database handle itself must be held.
 | |
| **
 | |
| **   2) By function vtabDisconnectAll(), when it adds a VTable entry to
 | |
| **      the sqlite3.pDisconnect list. In this case either the BtShared mutex
 | |
| **      associated with the database the virtual table is stored in is held
 | |
| **      or, if the virtual table is stored in a non-sharable database, then
 | |
| **      the database handle mutex is held.
 | |
| **
 | |
| ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 
 | |
| ** by multiple threads. It is thread-safe.
 | |
| */
 | |
| void sqlite3VtabUnlockList(sqlite3 *db){
 | |
|   VTable *p = db->pDisconnect;
 | |
|   db->pDisconnect = 0;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(db) );
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
| 
 | |
|   if( p ){
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|     do {
 | |
|       VTable *pNext = p->pNext;
 | |
|       sqlite3VtabUnlock(p);
 | |
|       p = pNext;
 | |
|     }while( p );
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear any and all virtual-table information from the Table record.
 | |
| ** This routine is called, for example, just before deleting the Table
 | |
| ** record.
 | |
| **
 | |
| ** Since it is a virtual-table, the Table structure contains a pointer
 | |
| ** to the head of a linked list of VTable structures. Each VTable 
 | |
| ** structure is associated with a single sqlite3* user of the schema.
 | |
| ** The reference count of the VTable structure associated with database 
 | |
| ** connection db is decremented immediately (which may lead to the 
 | |
| ** structure being xDisconnected and free). Any other VTable structures
 | |
| ** in the list are moved to the sqlite3.pDisconnect list of the associated 
 | |
| ** database connection.
 | |
| */
 | |
| void sqlite3VtabClear(sqlite3 *db, Table *p){
 | |
|   if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
 | |
|   if( p->azModuleArg ){
 | |
|     int i;
 | |
|     for(i=0; i<p->nModuleArg; i++){
 | |
|       if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]);
 | |
|     }
 | |
|     sqlite3DbFree(db, p->azModuleArg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new module argument to pTable->azModuleArg[].
 | |
| ** The string is not copied - the pointer is stored.  The
 | |
| ** string will be freed automatically when the table is
 | |
| ** deleted.
 | |
| */
 | |
| static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
 | |
|   int nBytes = sizeof(char *)*(2+pTable->nModuleArg);
 | |
|   char **azModuleArg;
 | |
|   azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
 | |
|   if( azModuleArg==0 ){
 | |
|     sqlite3DbFree(db, zArg);
 | |
|   }else{
 | |
|     int i = pTable->nModuleArg++;
 | |
|     azModuleArg[i] = zArg;
 | |
|     azModuleArg[i+1] = 0;
 | |
|     pTable->azModuleArg = azModuleArg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
 | |
| ** statement.  The module name has been parsed, but the optional list
 | |
| ** of parameters that follow the module name are still pending.
 | |
| */
 | |
| void sqlite3VtabBeginParse(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   Token *pName1,        /* Name of new table, or database name */
 | |
|   Token *pName2,        /* Name of new table or NULL */
 | |
|   Token *pModuleName,   /* Name of the module for the virtual table */
 | |
|   int ifNotExists       /* No error if the table already exists */
 | |
| ){
 | |
|   int iDb;              /* The database the table is being created in */
 | |
|   Table *pTable;        /* The new virtual table */
 | |
|   sqlite3 *db;          /* Database connection */
 | |
| 
 | |
|   sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
 | |
|   pTable = pParse->pNewTable;
 | |
|   if( pTable==0 ) return;
 | |
|   assert( 0==pTable->pIndex );
 | |
| 
 | |
|   db = pParse->db;
 | |
|   iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
 | |
|   assert( iDb>=0 );
 | |
| 
 | |
|   pTable->tabFlags |= TF_Virtual;
 | |
|   pTable->nModuleArg = 0;
 | |
|   addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
 | |
|   addModuleArgument(db, pTable, 0);
 | |
|   addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
 | |
|   assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
 | |
|        || (pParse->sNameToken.z==pName1->z && pName2->z==0)
 | |
|   );
 | |
|   pParse->sNameToken.n = (int)(
 | |
|       &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
 | |
|   );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   /* Creating a virtual table invokes the authorization callback twice.
 | |
|   ** The first invocation, to obtain permission to INSERT a row into the
 | |
|   ** sqlite_master table, has already been made by sqlite3StartTable().
 | |
|   ** The second call, to obtain permission to create the table, is made now.
 | |
|   */
 | |
|   if( pTable->azModuleArg ){
 | |
|     sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 
 | |
|             pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine takes the module argument that has been accumulating
 | |
| ** in pParse->zArg[] and appends it to the list of arguments on the
 | |
| ** virtual table currently under construction in pParse->pTable.
 | |
| */
 | |
| static void addArgumentToVtab(Parse *pParse){
 | |
|   if( pParse->sArg.z && pParse->pNewTable ){
 | |
|     const char *z = (const char*)pParse->sArg.z;
 | |
|     int n = pParse->sArg.n;
 | |
|     sqlite3 *db = pParse->db;
 | |
|     addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
 | |
| ** has been completely parsed.
 | |
| */
 | |
| void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
 | |
|   Table *pTab = pParse->pNewTable;  /* The table being constructed */
 | |
|   sqlite3 *db = pParse->db;         /* The database connection */
 | |
| 
 | |
|   if( pTab==0 ) return;
 | |
|   addArgumentToVtab(pParse);
 | |
|   pParse->sArg.z = 0;
 | |
|   if( pTab->nModuleArg<1 ) return;
 | |
|   
 | |
|   /* If the CREATE VIRTUAL TABLE statement is being entered for the
 | |
|   ** first time (in other words if the virtual table is actually being
 | |
|   ** created now instead of just being read out of sqlite_master) then
 | |
|   ** do additional initialization work and store the statement text
 | |
|   ** in the sqlite_master table.
 | |
|   */
 | |
|   if( !db->init.busy ){
 | |
|     char *zStmt;
 | |
|     char *zWhere;
 | |
|     int iDb;
 | |
|     int iReg;
 | |
|     Vdbe *v;
 | |
| 
 | |
|     /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
 | |
|     if( pEnd ){
 | |
|       pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
 | |
|     }
 | |
|     zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
 | |
| 
 | |
|     /* A slot for the record has already been allocated in the 
 | |
|     ** SQLITE_MASTER table.  We just need to update that slot with all
 | |
|     ** the information we've collected.  
 | |
|     **
 | |
|     ** The VM register number pParse->regRowid holds the rowid of an
 | |
|     ** entry in the sqlite_master table tht was created for this vtab
 | |
|     ** by sqlite3StartTable().
 | |
|     */
 | |
|     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|     sqlite3NestedParse(pParse,
 | |
|       "UPDATE %Q.%s "
 | |
|          "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
 | |
|        "WHERE rowid=#%d",
 | |
|       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|       pTab->zName,
 | |
|       pTab->zName,
 | |
|       zStmt,
 | |
|       pParse->regRowid
 | |
|     );
 | |
|     sqlite3DbFree(db, zStmt);
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
| 
 | |
|     sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
 | |
|     zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
 | |
|     sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
 | |
| 
 | |
|     iReg = ++pParse->nMem;
 | |
|     sqlite3VdbeLoadString(v, iReg, pTab->zName);
 | |
|     sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
 | |
|   }
 | |
| 
 | |
|   /* If we are rereading the sqlite_master table create the in-memory
 | |
|   ** record of the table. The xConnect() method is not called until
 | |
|   ** the first time the virtual table is used in an SQL statement. This
 | |
|   ** allows a schema that contains virtual tables to be loaded before
 | |
|   ** the required virtual table implementations are registered.  */
 | |
|   else {
 | |
|     Table *pOld;
 | |
|     Schema *pSchema = pTab->pSchema;
 | |
|     const char *zName = pTab->zName;
 | |
|     assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
 | |
|     pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
 | |
|     if( pOld ){
 | |
|       sqlite3OomFault(db);
 | |
|       assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
 | |
|       return;
 | |
|     }
 | |
|     pParse->pNewTable = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine when it sees the first token
 | |
| ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
 | |
| */
 | |
| void sqlite3VtabArgInit(Parse *pParse){
 | |
|   addArgumentToVtab(pParse);
 | |
|   pParse->sArg.z = 0;
 | |
|   pParse->sArg.n = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine for each token after the first token
 | |
| ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
 | |
| */
 | |
| void sqlite3VtabArgExtend(Parse *pParse, Token *p){
 | |
|   Token *pArg = &pParse->sArg;
 | |
|   if( pArg->z==0 ){
 | |
|     pArg->z = p->z;
 | |
|     pArg->n = p->n;
 | |
|   }else{
 | |
|     assert(pArg->z <= p->z);
 | |
|     pArg->n = (int)(&p->z[p->n] - pArg->z);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke a virtual table constructor (either xCreate or xConnect). The
 | |
| ** pointer to the function to invoke is passed as the fourth parameter
 | |
| ** to this procedure.
 | |
| */
 | |
| static int vtabCallConstructor(
 | |
|   sqlite3 *db, 
 | |
|   Table *pTab,
 | |
|   Module *pMod,
 | |
|   int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
 | |
|   char **pzErr
 | |
| ){
 | |
|   VtabCtx sCtx;
 | |
|   VTable *pVTable;
 | |
|   int rc;
 | |
|   const char *const*azArg = (const char *const*)pTab->azModuleArg;
 | |
|   int nArg = pTab->nModuleArg;
 | |
|   char *zErr = 0;
 | |
|   char *zModuleName;
 | |
|   int iDb;
 | |
|   VtabCtx *pCtx;
 | |
| 
 | |
|   /* Check that the virtual-table is not already being initialized */
 | |
|   for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
 | |
|     if( pCtx->pTab==pTab ){
 | |
|       *pzErr = sqlite3MPrintf(db, 
 | |
|           "vtable constructor called recursively: %s", pTab->zName
 | |
|       );
 | |
|       return SQLITE_LOCKED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
 | |
|   if( !zModuleName ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
 | |
|   if( !pVTable ){
 | |
|     sqlite3DbFree(db, zModuleName);
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   pVTable->db = db;
 | |
|   pVTable->pMod = pMod;
 | |
| 
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   pTab->azModuleArg[1] = db->aDb[iDb].zName;
 | |
| 
 | |
|   /* Invoke the virtual table constructor */
 | |
|   assert( &db->pVtabCtx );
 | |
|   assert( xConstruct );
 | |
|   sCtx.pTab = pTab;
 | |
|   sCtx.pVTable = pVTable;
 | |
|   sCtx.pPrior = db->pVtabCtx;
 | |
|   sCtx.bDeclared = 0;
 | |
|   db->pVtabCtx = &sCtx;
 | |
|   rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
 | |
|   db->pVtabCtx = sCtx.pPrior;
 | |
|   if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
 | |
|   assert( sCtx.pTab==pTab );
 | |
| 
 | |
|   if( SQLITE_OK!=rc ){
 | |
|     if( zErr==0 ){
 | |
|       *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
 | |
|     }else {
 | |
|       *pzErr = sqlite3MPrintf(db, "%s", zErr);
 | |
|       sqlite3_free(zErr);
 | |
|     }
 | |
|     sqlite3DbFree(db, pVTable);
 | |
|   }else if( ALWAYS(pVTable->pVtab) ){
 | |
|     /* Justification of ALWAYS():  A correct vtab constructor must allocate
 | |
|     ** the sqlite3_vtab object if successful.  */
 | |
|     memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
 | |
|     pVTable->pVtab->pModule = pMod->pModule;
 | |
|     pVTable->nRef = 1;
 | |
|     if( sCtx.bDeclared==0 ){
 | |
|       const char *zFormat = "vtable constructor did not declare schema: %s";
 | |
|       *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
 | |
|       sqlite3VtabUnlock(pVTable);
 | |
|       rc = SQLITE_ERROR;
 | |
|     }else{
 | |
|       int iCol;
 | |
|       u8 oooHidden = 0;
 | |
|       /* If everything went according to plan, link the new VTable structure
 | |
|       ** into the linked list headed by pTab->pVTable. Then loop through the 
 | |
|       ** columns of the table to see if any of them contain the token "hidden".
 | |
|       ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
 | |
|       ** the type string.  */
 | |
|       pVTable->pNext = pTab->pVTable;
 | |
|       pTab->pVTable = pVTable;
 | |
| 
 | |
|       for(iCol=0; iCol<pTab->nCol; iCol++){
 | |
|         char *zType = pTab->aCol[iCol].zType;
 | |
|         int nType;
 | |
|         int i = 0;
 | |
|         if( !zType ){
 | |
|           pTab->tabFlags |= oooHidden;
 | |
|           continue;
 | |
|         }
 | |
|         nType = sqlite3Strlen30(zType);
 | |
|         if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
 | |
|           for(i=0; i<nType; i++){
 | |
|             if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
 | |
|              && (zType[i+7]=='\0' || zType[i+7]==' ')
 | |
|             ){
 | |
|               i++;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( i<nType ){
 | |
|           int j;
 | |
|           int nDel = 6 + (zType[i+6] ? 1 : 0);
 | |
|           for(j=i; (j+nDel)<=nType; j++){
 | |
|             zType[j] = zType[j+nDel];
 | |
|           }
 | |
|           if( zType[i]=='\0' && i>0 ){
 | |
|             assert(zType[i-1]==' ');
 | |
|             zType[i-1] = '\0';
 | |
|           }
 | |
|           pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
 | |
|           oooHidden = TF_OOOHidden;
 | |
|         }else{
 | |
|           pTab->tabFlags |= oooHidden;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3DbFree(db, zModuleName);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is invoked by the parser to call the xConnect() method
 | |
| ** of the virtual table pTab. If an error occurs, an error code is returned 
 | |
| ** and an error left in pParse.
 | |
| **
 | |
| ** This call is a no-op if table pTab is not a virtual table.
 | |
| */
 | |
| int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   const char *zMod;
 | |
|   Module *pMod;
 | |
|   int rc;
 | |
| 
 | |
|   assert( pTab );
 | |
|   if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Locate the required virtual table module */
 | |
|   zMod = pTab->azModuleArg[0];
 | |
|   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
 | |
| 
 | |
|   if( !pMod ){
 | |
|     const char *zModule = pTab->azModuleArg[0];
 | |
|     sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     char *zErr = 0;
 | |
|     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3ErrorMsg(pParse, "%s", zErr);
 | |
|     }
 | |
|     sqlite3DbFree(db, zErr);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| /*
 | |
| ** Grow the db->aVTrans[] array so that there is room for at least one
 | |
| ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
 | |
| */
 | |
| static int growVTrans(sqlite3 *db){
 | |
|   const int ARRAY_INCR = 5;
 | |
| 
 | |
|   /* Grow the sqlite3.aVTrans array if required */
 | |
|   if( (db->nVTrans%ARRAY_INCR)==0 ){
 | |
|     VTable **aVTrans;
 | |
|     int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
 | |
|     aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
 | |
|     if( !aVTrans ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
 | |
|     db->aVTrans = aVTrans;
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
 | |
| ** have already been reserved using growVTrans().
 | |
| */
 | |
| static void addToVTrans(sqlite3 *db, VTable *pVTab){
 | |
|   /* Add pVtab to the end of sqlite3.aVTrans */
 | |
|   db->aVTrans[db->nVTrans++] = pVTab;
 | |
|   sqlite3VtabLock(pVTab);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is invoked by the vdbe to call the xCreate method
 | |
| ** of the virtual table named zTab in database iDb. 
 | |
| **
 | |
| ** If an error occurs, *pzErr is set to point an an English language
 | |
| ** description of the error and an SQLITE_XXX error code is returned.
 | |
| ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
 | |
| */
 | |
| int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
 | |
|   int rc = SQLITE_OK;
 | |
|   Table *pTab;
 | |
|   Module *pMod;
 | |
|   const char *zMod;
 | |
| 
 | |
|   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
 | |
|   assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
 | |
| 
 | |
|   /* Locate the required virtual table module */
 | |
|   zMod = pTab->azModuleArg[0];
 | |
|   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
 | |
| 
 | |
|   /* If the module has been registered and includes a Create method, 
 | |
|   ** invoke it now. If the module has not been registered, return an 
 | |
|   ** error. Otherwise, do nothing.
 | |
|   */
 | |
|   if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
 | |
|     *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
 | |
|   }
 | |
| 
 | |
|   /* Justification of ALWAYS():  The xConstructor method is required to
 | |
|   ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
 | |
|   if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
 | |
|     rc = growVTrans(db);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       addToVTrans(db, sqlite3GetVTable(db, pTab));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is used to set the schema of a virtual table.  It is only
 | |
| ** valid to call this function from within the xCreate() or xConnect() of a
 | |
| ** virtual table module.
 | |
| */
 | |
| int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
 | |
|   VtabCtx *pCtx;
 | |
|   Parse *pParse;
 | |
|   int rc = SQLITE_OK;
 | |
|   Table *pTab;
 | |
|   char *zErr = 0;
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_API_ARMOR
 | |
|   if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
 | |
|     return SQLITE_MISUSE_BKPT;
 | |
|   }
 | |
| #endif
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pCtx = db->pVtabCtx;
 | |
|   if( !pCtx || pCtx->bDeclared ){
 | |
|     sqlite3Error(db, SQLITE_MISUSE);
 | |
|     sqlite3_mutex_leave(db->mutex);
 | |
|     return SQLITE_MISUSE_BKPT;
 | |
|   }
 | |
|   pTab = pCtx->pTab;
 | |
|   assert( (pTab->tabFlags & TF_Virtual)!=0 );
 | |
| 
 | |
|   pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
 | |
|   if( pParse==0 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }else{
 | |
|     pParse->declareVtab = 1;
 | |
|     pParse->db = db;
 | |
|     pParse->nQueryLoop = 1;
 | |
|   
 | |
|     if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 
 | |
|      && pParse->pNewTable
 | |
|      && !db->mallocFailed
 | |
|      && !pParse->pNewTable->pSelect
 | |
|      && (pParse->pNewTable->tabFlags & TF_Virtual)==0
 | |
|     ){
 | |
|       if( !pTab->aCol ){
 | |
|         pTab->aCol = pParse->pNewTable->aCol;
 | |
|         pTab->nCol = pParse->pNewTable->nCol;
 | |
|         pParse->pNewTable->nCol = 0;
 | |
|         pParse->pNewTable->aCol = 0;
 | |
|       }
 | |
|       pCtx->bDeclared = 1;
 | |
|     }else{
 | |
|       sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
 | |
|       sqlite3DbFree(db, zErr);
 | |
|       rc = SQLITE_ERROR;
 | |
|     }
 | |
|     pParse->declareVtab = 0;
 | |
|   
 | |
|     if( pParse->pVdbe ){
 | |
|       sqlite3VdbeFinalize(pParse->pVdbe);
 | |
|     }
 | |
|     sqlite3DeleteTable(db, pParse->pNewTable);
 | |
|     sqlite3ParserReset(pParse);
 | |
|     sqlite3StackFree(db, pParse);
 | |
|   }
 | |
| 
 | |
|   assert( (rc&0xff)==rc );
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is invoked by the vdbe to call the xDestroy method
 | |
| ** of the virtual table named zTab in database iDb. This occurs
 | |
| ** when a DROP TABLE is mentioned.
 | |
| **
 | |
| ** This call is a no-op if zTab is not a virtual table.
 | |
| */
 | |
| int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
 | |
|   int rc = SQLITE_OK;
 | |
|   Table *pTab;
 | |
| 
 | |
|   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
 | |
|   if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
 | |
|     VTable *p;
 | |
|     int (*xDestroy)(sqlite3_vtab *);
 | |
|     for(p=pTab->pVTable; p; p=p->pNext){
 | |
|       assert( p->pVtab );
 | |
|       if( p->pVtab->nRef>0 ){
 | |
|         return SQLITE_LOCKED;
 | |
|       }
 | |
|     }
 | |
|     p = vtabDisconnectAll(db, pTab);
 | |
|     xDestroy = p->pMod->pModule->xDestroy;
 | |
|     assert( xDestroy!=0 );  /* Checked before the virtual table is created */
 | |
|     rc = xDestroy(p->pVtab);
 | |
|     /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
 | |
|     if( rc==SQLITE_OK ){
 | |
|       assert( pTab->pVTable==p && p->pNext==0 );
 | |
|       p->pVtab = 0;
 | |
|       pTab->pVTable = 0;
 | |
|       sqlite3VtabUnlock(p);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function invokes either the xRollback or xCommit method
 | |
| ** of each of the virtual tables in the sqlite3.aVTrans array. The method
 | |
| ** called is identified by the second argument, "offset", which is
 | |
| ** the offset of the method to call in the sqlite3_module structure.
 | |
| **
 | |
| ** The array is cleared after invoking the callbacks. 
 | |
| */
 | |
| static void callFinaliser(sqlite3 *db, int offset){
 | |
|   int i;
 | |
|   if( db->aVTrans ){
 | |
|     VTable **aVTrans = db->aVTrans;
 | |
|     db->aVTrans = 0;
 | |
|     for(i=0; i<db->nVTrans; i++){
 | |
|       VTable *pVTab = aVTrans[i];
 | |
|       sqlite3_vtab *p = pVTab->pVtab;
 | |
|       if( p ){
 | |
|         int (*x)(sqlite3_vtab *);
 | |
|         x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
 | |
|         if( x ) x(p);
 | |
|       }
 | |
|       pVTab->iSavepoint = 0;
 | |
|       sqlite3VtabUnlock(pVTab);
 | |
|     }
 | |
|     sqlite3DbFree(db, aVTrans);
 | |
|     db->nVTrans = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
 | |
| ** array. Return the error code for the first error that occurs, or
 | |
| ** SQLITE_OK if all xSync operations are successful.
 | |
| **
 | |
| ** If an error message is available, leave it in p->zErrMsg.
 | |
| */
 | |
| int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
 | |
|   int i;
 | |
|   int rc = SQLITE_OK;
 | |
|   VTable **aVTrans = db->aVTrans;
 | |
| 
 | |
|   db->aVTrans = 0;
 | |
|   for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
 | |
|     int (*x)(sqlite3_vtab *);
 | |
|     sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
 | |
|     if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
 | |
|       rc = x(pVtab);
 | |
|       sqlite3VtabImportErrmsg(p, pVtab);
 | |
|     }
 | |
|   }
 | |
|   db->aVTrans = aVTrans;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the xRollback method of all virtual tables in the 
 | |
| ** sqlite3.aVTrans array. Then clear the array itself.
 | |
| */
 | |
| int sqlite3VtabRollback(sqlite3 *db){
 | |
|   callFinaliser(db, offsetof(sqlite3_module,xRollback));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the xCommit method of all virtual tables in the 
 | |
| ** sqlite3.aVTrans array. Then clear the array itself.
 | |
| */
 | |
| int sqlite3VtabCommit(sqlite3 *db){
 | |
|   callFinaliser(db, offsetof(sqlite3_module,xCommit));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the virtual table pVtab supports the transaction interface
 | |
| ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
 | |
| ** not currently open, invoke the xBegin method now.
 | |
| **
 | |
| ** If the xBegin call is successful, place the sqlite3_vtab pointer
 | |
| ** in the sqlite3.aVTrans array.
 | |
| */
 | |
| int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
 | |
|   int rc = SQLITE_OK;
 | |
|   const sqlite3_module *pModule;
 | |
| 
 | |
|   /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
 | |
|   ** than zero, then this function is being called from within a
 | |
|   ** virtual module xSync() callback. It is illegal to write to 
 | |
|   ** virtual module tables in this case, so return SQLITE_LOCKED.
 | |
|   */
 | |
|   if( sqlite3VtabInSync(db) ){
 | |
|     return SQLITE_LOCKED;
 | |
|   }
 | |
|   if( !pVTab ){
 | |
|     return SQLITE_OK;
 | |
|   } 
 | |
|   pModule = pVTab->pVtab->pModule;
 | |
| 
 | |
|   if( pModule->xBegin ){
 | |
|     int i;
 | |
| 
 | |
|     /* If pVtab is already in the aVTrans array, return early */
 | |
|     for(i=0; i<db->nVTrans; i++){
 | |
|       if( db->aVTrans[i]==pVTab ){
 | |
|         return SQLITE_OK;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Invoke the xBegin method. If successful, add the vtab to the 
 | |
|     ** sqlite3.aVTrans[] array. */
 | |
|     rc = growVTrans(db);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = pModule->xBegin(pVTab->pVtab);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         int iSvpt = db->nStatement + db->nSavepoint;
 | |
|         addToVTrans(db, pVTab);
 | |
|         if( iSvpt ) rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, iSvpt-1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
 | |
| ** virtual tables that currently have an open transaction. Pass iSavepoint
 | |
| ** as the second argument to the virtual table method invoked.
 | |
| **
 | |
| ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
 | |
| ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 
 | |
| ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
 | |
| ** an open transaction is invoked.
 | |
| **
 | |
| ** If any virtual table method returns an error code other than SQLITE_OK, 
 | |
| ** processing is abandoned and the error returned to the caller of this
 | |
| ** function immediately. If all calls to virtual table methods are successful,
 | |
| ** SQLITE_OK is returned.
 | |
| */
 | |
| int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
 | |
|   assert( iSavepoint>=-1 );
 | |
|   if( db->aVTrans ){
 | |
|     int i;
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
 | |
|       VTable *pVTab = db->aVTrans[i];
 | |
|       const sqlite3_module *pMod = pVTab->pMod->pModule;
 | |
|       if( pVTab->pVtab && pMod->iVersion>=2 ){
 | |
|         int (*xMethod)(sqlite3_vtab *, int);
 | |
|         switch( op ){
 | |
|           case SAVEPOINT_BEGIN:
 | |
|             xMethod = pMod->xSavepoint;
 | |
|             pVTab->iSavepoint = iSavepoint+1;
 | |
|             break;
 | |
|           case SAVEPOINT_ROLLBACK:
 | |
|             xMethod = pMod->xRollbackTo;
 | |
|             break;
 | |
|           default:
 | |
|             xMethod = pMod->xRelease;
 | |
|             break;
 | |
|         }
 | |
|         if( xMethod && pVTab->iSavepoint>iSavepoint ){
 | |
|           rc = xMethod(pVTab->pVtab, iSavepoint);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The first parameter (pDef) is a function implementation.  The
 | |
| ** second parameter (pExpr) is the first argument to this function.
 | |
| ** If pExpr is a column in a virtual table, then let the virtual
 | |
| ** table implementation have an opportunity to overload the function.
 | |
| **
 | |
| ** This routine is used to allow virtual table implementations to
 | |
| ** overload MATCH, LIKE, GLOB, and REGEXP operators.
 | |
| **
 | |
| ** Return either the pDef argument (indicating no change) or a 
 | |
| ** new FuncDef structure that is marked as ephemeral using the
 | |
| ** SQLITE_FUNC_EPHEM flag.
 | |
| */
 | |
| FuncDef *sqlite3VtabOverloadFunction(
 | |
|   sqlite3 *db,    /* Database connection for reporting malloc problems */
 | |
|   FuncDef *pDef,  /* Function to possibly overload */
 | |
|   int nArg,       /* Number of arguments to the function */
 | |
|   Expr *pExpr     /* First argument to the function */
 | |
| ){
 | |
|   Table *pTab;
 | |
|   sqlite3_vtab *pVtab;
 | |
|   sqlite3_module *pMod;
 | |
|   void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
 | |
|   void *pArg = 0;
 | |
|   FuncDef *pNew;
 | |
|   int rc = 0;
 | |
|   char *zLowerName;
 | |
|   unsigned char *z;
 | |
| 
 | |
| 
 | |
|   /* Check to see the left operand is a column in a virtual table */
 | |
|   if( NEVER(pExpr==0) ) return pDef;
 | |
|   if( pExpr->op!=TK_COLUMN ) return pDef;
 | |
|   pTab = pExpr->pTab;
 | |
|   if( NEVER(pTab==0) ) return pDef;
 | |
|   if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
 | |
|   pVtab = sqlite3GetVTable(db, pTab)->pVtab;
 | |
|   assert( pVtab!=0 );
 | |
|   assert( pVtab->pModule!=0 );
 | |
|   pMod = (sqlite3_module *)pVtab->pModule;
 | |
|   if( pMod->xFindFunction==0 ) return pDef;
 | |
|  
 | |
|   /* Call the xFindFunction method on the virtual table implementation
 | |
|   ** to see if the implementation wants to overload this function 
 | |
|   */
 | |
|   zLowerName = sqlite3DbStrDup(db, pDef->zName);
 | |
|   if( zLowerName ){
 | |
|     for(z=(unsigned char*)zLowerName; *z; z++){
 | |
|       *z = sqlite3UpperToLower[*z];
 | |
|     }
 | |
|     rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg);
 | |
|     sqlite3DbFree(db, zLowerName);
 | |
|   }
 | |
|   if( rc==0 ){
 | |
|     return pDef;
 | |
|   }
 | |
| 
 | |
|   /* Create a new ephemeral function definition for the overloaded
 | |
|   ** function */
 | |
|   pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
 | |
|                              + sqlite3Strlen30(pDef->zName) + 1);
 | |
|   if( pNew==0 ){
 | |
|     return pDef;
 | |
|   }
 | |
|   *pNew = *pDef;
 | |
|   pNew->zName = (char *)&pNew[1];
 | |
|   memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
 | |
|   pNew->xSFunc = xSFunc;
 | |
|   pNew->pUserData = pArg;
 | |
|   pNew->funcFlags |= SQLITE_FUNC_EPHEM;
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
 | |
| ** array so that an OP_VBegin will get generated for it.  Add pTab to the
 | |
| ** array if it is missing.  If pTab is already in the array, this routine
 | |
| ** is a no-op.
 | |
| */
 | |
| void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
 | |
|   Parse *pToplevel = sqlite3ParseToplevel(pParse);
 | |
|   int i, n;
 | |
|   Table **apVtabLock;
 | |
| 
 | |
|   assert( IsVirtual(pTab) );
 | |
|   for(i=0; i<pToplevel->nVtabLock; i++){
 | |
|     if( pTab==pToplevel->apVtabLock[i] ) return;
 | |
|   }
 | |
|   n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
 | |
|   apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n);
 | |
|   if( apVtabLock ){
 | |
|     pToplevel->apVtabLock = apVtabLock;
 | |
|     pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
 | |
|   }else{
 | |
|     sqlite3OomFault(pToplevel->db);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to see if virtual tale module pMod can be have an eponymous
 | |
| ** virtual table instance.  If it can, create one if one does not already
 | |
| ** exist. Return non-zero if the eponymous virtual table instance exists
 | |
| ** when this routine returns, and return zero if it does not exist.
 | |
| **
 | |
| ** An eponymous virtual table instance is one that is named after its
 | |
| ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
 | |
| ** statement in order to come into existance.  Eponymous virtual table
 | |
| ** instances always exist.  They cannot be DROP-ed.
 | |
| **
 | |
| ** Any virtual table module for which xConnect and xCreate are the same
 | |
| ** method can have an eponymous virtual table instance.
 | |
| */
 | |
| int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
 | |
|   const sqlite3_module *pModule = pMod->pModule;
 | |
|   Table *pTab;
 | |
|   char *zErr = 0;
 | |
|   int nName;
 | |
|   int rc;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( pMod->pEpoTab ) return 1;
 | |
|   if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
 | |
|   nName = sqlite3Strlen30(pMod->zName) + 1;
 | |
|   pTab = sqlite3DbMallocZero(db, sizeof(Table) + nName);
 | |
|   if( pTab==0 ) return 0;
 | |
|   pMod->pEpoTab = pTab;
 | |
|   pTab->zName = (char*)&pTab[1];
 | |
|   memcpy(pTab->zName, pMod->zName, nName);
 | |
|   pTab->nRef = 1;
 | |
|   pTab->pSchema = db->aDb[0].pSchema;
 | |
|   pTab->tabFlags |= TF_Virtual;
 | |
|   pTab->nModuleArg = 0;
 | |
|   pTab->iPKey = -1;
 | |
|   addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName));
 | |
|   addModuleArgument(db, pTab, 0);
 | |
|   addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName));
 | |
|   rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
 | |
|   if( rc ){
 | |
|     sqlite3ErrorMsg(pParse, "%s", zErr);
 | |
|     sqlite3DbFree(db, zErr);
 | |
|     sqlite3VtabEponymousTableClear(db, pMod);
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Erase the eponymous virtual table instance associated with
 | |
| ** virtual table module pMod, if it exists.
 | |
| */
 | |
| void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
 | |
|   Table *pTab = pMod->pEpoTab;
 | |
|   if( pTab!=0 ){
 | |
|     sqlite3DeleteColumnNames(db, pTab);
 | |
|     sqlite3VtabClear(db, pTab);
 | |
|     sqlite3DbFree(db, pTab);
 | |
|     pMod->pEpoTab = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the ON CONFLICT resolution mode in effect for the virtual
 | |
| ** table update operation currently in progress.
 | |
| **
 | |
| ** The results of this routine are undefined unless it is called from
 | |
| ** within an xUpdate method.
 | |
| */
 | |
| int sqlite3_vtab_on_conflict(sqlite3 *db){
 | |
|   static const unsigned char aMap[] = { 
 | |
|     SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 
 | |
|   };
 | |
| #ifdef SQLITE_ENABLE_API_ARMOR
 | |
|   if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
 | |
| #endif
 | |
|   assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
 | |
|   assert( OE_Ignore==4 && OE_Replace==5 );
 | |
|   assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
 | |
|   return (int)aMap[db->vtabOnConflict-1];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call from within the xCreate() or xConnect() methods to provide 
 | |
| ** the SQLite core with additional information about the behavior
 | |
| ** of the virtual table being implemented.
 | |
| */
 | |
| int sqlite3_vtab_config(sqlite3 *db, int op, ...){
 | |
|   va_list ap;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_API_ARMOR
 | |
|   if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
 | |
| #endif
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   va_start(ap, op);
 | |
|   switch( op ){
 | |
|     case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
 | |
|       VtabCtx *p = db->pVtabCtx;
 | |
|       if( !p ){
 | |
|         rc = SQLITE_MISUSE_BKPT;
 | |
|       }else{
 | |
|         assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
 | |
|         p->pVTable->bConstraint = (u8)va_arg(ap, int);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       rc = SQLITE_MISUSE_BKPT;
 | |
|       break;
 | |
|   }
 | |
|   va_end(ap);
 | |
| 
 | |
|   if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
