1882 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1882 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2015-04-06
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This is a utility program that computes the differences in content
 | |
| ** between two SQLite databases.
 | |
| **
 | |
| ** To compile, simply link against SQLite.
 | |
| **
 | |
| ** See the showHelp() routine below for a brief description of how to
 | |
| ** run the utility.
 | |
| */
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdarg.h>
 | |
| #include <ctype.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include "sqlite3.h"
 | |
| 
 | |
| /*
 | |
| ** All global variables are gathered into the "g" singleton.
 | |
| */
 | |
| struct GlobalVars {
 | |
|   const char *zArgv0;       /* Name of program */
 | |
|   int bSchemaOnly;          /* Only show schema differences */
 | |
|   int bSchemaPK;            /* Use the schema-defined PK, not the true PK */
 | |
|   unsigned fDebug;          /* Debug flags */
 | |
|   sqlite3 *db;              /* The database connection */
 | |
| } g;
 | |
| 
 | |
| /*
 | |
| ** Allowed values for g.fDebug
 | |
| */
 | |
| #define DEBUG_COLUMN_NAMES  0x000001
 | |
| #define DEBUG_DIFF_SQL      0x000002
 | |
| 
 | |
| /*
 | |
| ** Dynamic string object
 | |
| */
 | |
| typedef struct Str Str;
 | |
| struct Str {
 | |
|   char *z;        /* Text of the string */
 | |
|   int nAlloc;     /* Bytes allocated in z[] */
 | |
|   int nUsed;      /* Bytes actually used in z[] */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Initialize a Str object
 | |
| */
 | |
| static void strInit(Str *p){
 | |
|   p->z = 0;
 | |
|   p->nAlloc = 0;
 | |
|   p->nUsed = 0;
 | |
| }
 | |
|   
 | |
| /*
 | |
| ** Print an error resulting from faulting command-line arguments and
 | |
| ** abort the program.
 | |
| */
 | |
| static void cmdlineError(const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   fprintf(stderr, "%s: ", g.zArgv0);
 | |
|   va_start(ap, zFormat);
 | |
|   vfprintf(stderr, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0);
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print an error message for an error that occurs at runtime, then
 | |
| ** abort the program.
 | |
| */
 | |
| static void runtimeError(const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   fprintf(stderr, "%s: ", g.zArgv0);
 | |
|   va_start(ap, zFormat);
 | |
|   vfprintf(stderr, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   fprintf(stderr, "\n");
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free all memory held by a Str object
 | |
| */
 | |
| static void strFree(Str *p){
 | |
|   sqlite3_free(p->z);
 | |
|   strInit(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add formatted text to the end of a Str object
 | |
| */
 | |
| static void strPrintf(Str *p, const char *zFormat, ...){
 | |
|   int nNew;
 | |
|   for(;;){
 | |
|     if( p->z ){
 | |
|       va_list ap;
 | |
|       va_start(ap, zFormat);
 | |
|       sqlite3_vsnprintf(p->nAlloc-p->nUsed, p->z+p->nUsed, zFormat, ap);
 | |
|       va_end(ap);
 | |
|       nNew = (int)strlen(p->z + p->nUsed);
 | |
|     }else{
 | |
|       nNew = p->nAlloc;
 | |
|     }
 | |
|     if( p->nUsed+nNew < p->nAlloc-1 ){
 | |
|       p->nUsed += nNew;
 | |
|       break;
 | |
|     }
 | |
|     p->nAlloc = p->nAlloc*2 + 1000;
 | |
|     p->z = sqlite3_realloc(p->z, p->nAlloc);
 | |
|     if( p->z==0 ) runtimeError("out of memory");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Safely quote an SQL identifier.  Use the minimum amount of transformation
 | |
| ** necessary to allow the string to be used with %s.
 | |
| **
 | |
| ** Space to hold the returned string is obtained from sqlite3_malloc().  The
 | |
| ** caller is responsible for ensuring this space is freed when no longer
 | |
| ** needed.
 | |
| */
 | |
| static char *safeId(const char *zId){
 | |
|   /* All SQLite keywords, in alphabetical order */
 | |
|   static const char *azKeywords[] = {
 | |
|     "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS",
 | |
|     "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY",
 | |
|     "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT",
 | |
|     "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE",
 | |
|     "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE",
 | |
|     "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH",
 | |
|     "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN",
 | |
|     "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF",
 | |
|     "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER",
 | |
|     "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY",
 | |
|     "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL",
 | |
|     "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA",
 | |
|     "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP",
 | |
|     "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT",
 | |
|     "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP",
 | |
|     "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE",
 | |
|     "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE",
 | |
|     "WITH", "WITHOUT",
 | |
|   };
 | |
|   int lwr, upr, mid, c, i, x;
 | |
|   if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
 | |
|   for(i=x=0; (c = zId[i])!=0; i++){
 | |
|     if( !isalpha(c) && c!='_' ){
 | |
|       if( i>0 && isdigit(c) ){
 | |
|         x++;
 | |
|       }else{
 | |
|         return sqlite3_mprintf("\"%w\"", zId);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( x ) return sqlite3_mprintf("%s", zId);
 | |
|   lwr = 0;
 | |
|   upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1;
 | |
|   while( lwr<=upr ){
 | |
|     mid = (lwr+upr)/2;
 | |
|     c = sqlite3_stricmp(azKeywords[mid], zId);
 | |
|     if( c==0 ) return sqlite3_mprintf("\"%w\"", zId);
 | |
|     if( c<0 ){
 | |
|       lwr = mid+1;
 | |
|     }else{
 | |
|       upr = mid-1;
 | |
|     }
 | |
|   }
 | |
|   return sqlite3_mprintf("%s", zId);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare a new SQL statement.  Print an error and abort if anything
 | |
| ** goes wrong.
 | |
| */
 | |
| static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){
 | |
|   char *zSql;
 | |
|   int rc;
 | |
|   sqlite3_stmt *pStmt;
 | |
| 
 | |
|   zSql = sqlite3_vmprintf(zFormat, ap);
 | |
|   if( zSql==0 ) runtimeError("out of memory");
 | |
|   rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0);
 | |
|   if( rc ){
 | |
|     runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db),
 | |
|                  zSql);
 | |
|   }
 | |
|   sqlite3_free(zSql);
 | |
|   return pStmt;
 | |
| }
 | |
| static sqlite3_stmt *db_prepare(const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   sqlite3_stmt *pStmt;
 | |
|   va_start(ap, zFormat);
 | |
|   pStmt = db_vprepare(zFormat, ap);
 | |
|   va_end(ap);
 | |
|   return pStmt;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free a list of strings
 | |
| */
 | |
| static void namelistFree(char **az){
 | |
|   if( az ){
 | |
|     int i;
 | |
|     for(i=0; az[i]; i++) sqlite3_free(az[i]);
 | |
|     sqlite3_free(az);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a list of column names for the table zDb.zTab.  Space to
 | |
| ** hold the list is obtained from sqlite3_malloc() and should released
 | |
| ** using namelistFree() when no longer needed.
 | |
| **
 | |
| ** Primary key columns are listed first, followed by data columns.
 | |
| ** The number of columns in the primary key is returned in *pnPkey.
 | |
| **
 | |
| ** Normally, the "primary key" in the previous sentence is the true
 | |
| ** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables
 | |
| ** or the declared PRIMARY KEY for WITHOUT ROWID tables.  However, if
 | |
| ** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is
 | |
| ** used in all cases.  In that case, entries that have NULL values in
 | |
| ** any of their primary key fields will be excluded from the analysis.
 | |
| **
 | |
| ** If the primary key for a table is the rowid but rowid is inaccessible,
 | |
| ** then this routine returns a NULL pointer.
 | |
| **
 | |
| ** Examples:
 | |
| **    CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c));
 | |
| **    *pnPKey = 1;
 | |
| **    az = { "rowid", "a", "b", "c", 0 }  // Normal case
 | |
| **    az = { "c", "a", "b", 0 }           // g.bSchemaPK==1
 | |
| **
 | |
| **    CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b));
 | |
| **    *pnPKey = 1;
 | |
| **    az = { "b", "a", "c", 0 }
 | |
| **
 | |
| **    CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z));
 | |
| **    *pnPKey = 1                         // Normal case
 | |
| **    az = { "rowid", "x", "y", "z", 0 }  // Normal case
 | |
| **    *pnPKey = 2                         // g.bSchemaPK==1
 | |
| **    az = { "y", "x", "z", 0 }           // g.bSchemaPK==1
 | |
| **
 | |
| **    CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID;
 | |
| **    *pnPKey = 2
 | |
| **    az = { "y", "z", "x", 0 }
 | |
| **
 | |
| **    CREATE TABLE t5(rowid,_rowid_,oid);
 | |
| **    az = 0     // The rowid is not accessible
 | |
| */
 | |
| static char **columnNames(
 | |
|   const char *zDb,                /* Database ("main" or "aux") to query */
 | |
|   const char *zTab,               /* Name of table to return details of */
 | |
|   int *pnPKey,                    /* OUT: Number of PK columns */
 | |
|   int *pbRowid                    /* OUT: True if PK is an implicit rowid */
 | |
| ){
 | |
|   char **az = 0;           /* List of column names to be returned */
 | |
|   int naz = 0;             /* Number of entries in az[] */
 | |
|   sqlite3_stmt *pStmt;     /* SQL statement being run */
 | |
|   char *zPkIdxName = 0;    /* Name of the PRIMARY KEY index */
 | |
|   int truePk = 0;          /* PRAGMA table_info indentifies the PK to use */
 | |
|   int nPK = 0;             /* Number of PRIMARY KEY columns */
 | |
|   int i, j;                /* Loop counters */
 | |
| 
 | |
|   if( g.bSchemaPK==0 ){
 | |
|     /* Normal case:  Figure out what the true primary key is for the table.
 | |
|     **   *  For WITHOUT ROWID tables, the true primary key is the same as
 | |
|     **      the schema PRIMARY KEY, which is guaranteed to be present.
 | |
|     **   *  For rowid tables with an INTEGER PRIMARY KEY, the true primary
 | |
|     **      key is the INTEGER PRIMARY KEY.
 | |
|     **   *  For all other rowid tables, the rowid is the true primary key.
 | |
|     */
 | |
|     pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab);
 | |
|     while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|       if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){
 | |
|         zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqlite3_finalize(pStmt);
 | |
|     if( zPkIdxName ){
 | |
|       int nKey = 0;
 | |
|       int nCol = 0;
 | |
|       truePk = 0;
 | |
|       pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName);
 | |
|       while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|         nCol++;
 | |
|         if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; }
 | |
|         if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1;
 | |
|       }
 | |
|       if( nCol==nKey ) truePk = 1;
 | |
|       if( truePk ){
 | |
|         nPK = nKey;
 | |
|       }else{
 | |
|         nPK = 1;
 | |
|       }
 | |
|       sqlite3_finalize(pStmt);
 | |
|       sqlite3_free(zPkIdxName);
 | |
|     }else{
 | |
|       truePk = 1;
 | |
|       nPK = 1;
 | |
|     }
 | |
|     pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
 | |
|   }else{
 | |
|     /* The g.bSchemaPK==1 case:  Use whatever primary key is declared
 | |
|     ** in the schema.  The "rowid" will still be used as the primary key
 | |
|     ** if the table definition does not contain a PRIMARY KEY.
 | |
|     */
 | |
|     nPK = 0;
 | |
|     pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
 | |
|     while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|       if( sqlite3_column_int(pStmt,5)>0 ) nPK++;
 | |
|     }
 | |
|     sqlite3_reset(pStmt);
 | |
|     if( nPK==0 ) nPK = 1;
 | |
|     truePk = 1;
 | |
|   }
 | |
|   *pnPKey = nPK;
 | |
|   naz = nPK;
 | |
|   az = sqlite3_malloc( sizeof(char*)*(nPK+1) );
 | |
|   if( az==0 ) runtimeError("out of memory");
 | |
|   memset(az, 0, sizeof(char*)*(nPK+1));
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     int iPKey;
 | |
|     if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){
 | |
|       az[iPKey-1] = safeId((char*)sqlite3_column_text(pStmt,1));
 | |
|     }else{
 | |
|       az = sqlite3_realloc(az, sizeof(char*)*(naz+2) );
 | |
|       if( az==0 ) runtimeError("out of memory");
 | |
|       az[naz++] = safeId((char*)sqlite3_column_text(pStmt,1));
 | |
|     }
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
|   if( az ) az[naz] = 0;
 | |
| 
 | |
|   /* If it is non-NULL, set *pbRowid to indicate whether or not the PK of 
 | |
|   ** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0).  */
 | |
|   if( pbRowid ) *pbRowid = (az[0]==0);
 | |
| 
 | |
|   /* If this table has an implicit rowid for a PK, figure out how to refer
 | |
|   ** to it. There are three options - "rowid", "_rowid_" and "oid". Any
 | |
|   ** of these will work, unless the table has an explicit column of the
 | |
|   ** same name.  */
 | |
|   if( az[0]==0 ){
 | |
|     const char *azRowid[] = { "rowid", "_rowid_", "oid" };
 | |
|     for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){
 | |
|       for(j=1; j<naz; j++){
 | |
|         if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break;
 | |
|       }
 | |
|       if( j>=naz ){
 | |
|         az[0] = sqlite3_mprintf("%s", azRowid[i]);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( az[0]==0 ){
 | |
|       for(i=1; i<naz; i++) sqlite3_free(az[i]);
 | |
|       sqlite3_free(az);
 | |
|       az = 0;
 | |
|     }
 | |
|   }
 | |
|   return az;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print the sqlite3_value X as an SQL literal.
 | |
| */
 | |
| static void printQuoted(FILE *out, sqlite3_value *X){
 | |
|   switch( sqlite3_value_type(X) ){
 | |
|     case SQLITE_FLOAT: {
 | |
|       double r1;
 | |
|       char zBuf[50];
 | |
|       r1 = sqlite3_value_double(X);
 | |
|       sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
 | |
|       fprintf(out, "%s", zBuf);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_INTEGER: {
 | |
|       fprintf(out, "%lld", sqlite3_value_int64(X));
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_BLOB: {
 | |
|       const unsigned char *zBlob = sqlite3_value_blob(X);
 | |
|       int nBlob = sqlite3_value_bytes(X);
 | |
|       if( zBlob ){
 | |
|         int i;
 | |
|         fprintf(out, "x'");
 | |
|         for(i=0; i<nBlob; i++){
 | |
|           fprintf(out, "%02x", zBlob[i]);
 | |
|         }
 | |
|         fprintf(out, "'");
 | |
|       }else{
 | |
|         fprintf(out, "NULL");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TEXT: {
 | |
|       const unsigned char *zArg = sqlite3_value_text(X);
 | |
|       int i, j;
 | |
| 
 | |
|       if( zArg==0 ){
 | |
|         fprintf(out, "NULL");
 | |
|       }else{
 | |
|         fprintf(out, "'");
 | |
|         for(i=j=0; zArg[i]; i++){
 | |
|           if( zArg[i]=='\'' ){
 | |
|             fprintf(out, "%.*s'", i-j+1, &zArg[j]);
 | |
|             j = i+1;
 | |
|           }
 | |
|         }
 | |
|         fprintf(out, "%s'", &zArg[j]);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_NULL: {
 | |
|       fprintf(out, "NULL");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Output SQL that will recreate the aux.zTab table.
 | |
| */
 | |
| static void dump_table(const char *zTab, FILE *out){
 | |
|   char *zId = safeId(zTab); /* Name of the table */
 | |
|   char **az = 0;            /* List of columns */
 | |
|   int nPk;                  /* Number of true primary key columns */
 | |
|   int nCol;                 /* Number of data columns */
 | |
|   int i;                    /* Loop counter */
 | |
|   sqlite3_stmt *pStmt;      /* SQL statement */
 | |
|   const char *zSep;         /* Separator string */
 | |
|   Str ins;                  /* Beginning of the INSERT statement */
 | |
| 
 | |
|   pStmt = db_prepare("SELECT sql FROM aux.sqlite_master WHERE name=%Q", zTab);
 | |
|   if( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
|   if( !g.bSchemaOnly ){
 | |
|     az = columnNames("aux", zTab, &nPk, 0);
 | |
|     strInit(&ins);
 | |
|     if( az==0 ){
 | |
|       pStmt = db_prepare("SELECT * FROM aux.%s", zId);
 | |
|       strPrintf(&ins,"INSERT INTO %s VALUES", zId);
 | |
|     }else{
 | |
|       Str sql;
 | |
|       strInit(&sql);
 | |
|       zSep =  "SELECT";
 | |
|       for(i=0; az[i]; i++){
 | |
|         strPrintf(&sql, "%s %s", zSep, az[i]);
 | |
|         zSep = ",";
 | |
|       }
 | |
|       strPrintf(&sql," FROM aux.%s", zId);
 | |
|       zSep = " ORDER BY";
 | |
|       for(i=1; i<=nPk; i++){
 | |
|         strPrintf(&sql, "%s %d", zSep, i);
 | |
|         zSep = ",";
 | |
|       }
 | |
|       pStmt = db_prepare("%s", sql.z);
 | |
|       strFree(&sql);
 | |
|       strPrintf(&ins, "INSERT INTO %s", zId);
 | |
|       zSep = "(";
 | |
|       for(i=0; az[i]; i++){
 | |
|         strPrintf(&ins, "%s%s", zSep, az[i]);
 | |
|         zSep = ",";
 | |
|       }
 | |
|       strPrintf(&ins,") VALUES");
 | |
|       namelistFree(az);
 | |
|     }
 | |
|     nCol = sqlite3_column_count(pStmt);
 | |
|     while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|       fprintf(out, "%s",ins.z);
 | |
|       zSep = "(";
 | |
|       for(i=0; i<nCol; i++){
 | |
|         fprintf(out, "%s",zSep);
 | |
|         printQuoted(out, sqlite3_column_value(pStmt,i));
 | |
|         zSep = ",";
 | |
|       }
 | |
|       fprintf(out, ");\n");
 | |
|     }
 | |
|     sqlite3_finalize(pStmt);
 | |
|     strFree(&ins);
 | |
|   } /* endif !g.bSchemaOnly */
 | |
|   pStmt = db_prepare("SELECT sql FROM aux.sqlite_master"
 | |
|                      " WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL",
 | |
|                      zTab);
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Compute all differences for a single table.
 | |
| */
 | |
| static void diff_one_table(const char *zTab, FILE *out){
 | |
|   char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
 | |
|   char **az = 0;            /* Columns in main */
 | |
|   char **az2 = 0;           /* Columns in aux */
 | |
|   int nPk;                  /* Primary key columns in main */
 | |
|   int nPk2;                 /* Primary key columns in aux */
 | |
|   int n = 0;                /* Number of columns in main */
 | |
|   int n2;                   /* Number of columns in aux */
 | |
|   int nQ;                   /* Number of output columns in the diff query */
 | |
|   int i;                    /* Loop counter */
 | |
|   const char *zSep;         /* Separator string */
 | |
|   Str sql;                  /* Comparison query */
 | |
|   sqlite3_stmt *pStmt;      /* Query statement to do the diff */
 | |
| 
 | |
|   strInit(&sql);
 | |
|   if( g.fDebug==DEBUG_COLUMN_NAMES ){
 | |
|     /* Simply run columnNames() on all tables of the origin
 | |
|     ** database and show the results.  This is used for testing
 | |
|     ** and debugging of the columnNames() function.
 | |
|     */
 | |
|     az = columnNames("aux",zTab, &nPk, 0);
 | |
|     if( az==0 ){
 | |
|       printf("Rowid not accessible for %s\n", zId);
 | |
|     }else{
 | |
|       printf("%s:", zId);
 | |
|       for(i=0; az[i]; i++){
 | |
|         printf(" %s", az[i]);
 | |
|         if( i+1==nPk ) printf(" *");
 | |
|       }
 | |
|       printf("\n");
 | |
|     }
 | |
|     goto end_diff_one_table;
 | |
|   }
 | |
|     
 | |
| 
 | |
|   if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
 | |
|     if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
 | |
|       /* Table missing from second database. */
 | |
|       fprintf(out, "DROP TABLE %s;\n", zId);
 | |
|     }
 | |
|     goto end_diff_one_table;
 | |
|   }
 | |
| 
 | |
|   if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
 | |
|     /* Table missing from source */
 | |
|     dump_table(zTab, out);
 | |
|     goto end_diff_one_table;
 | |
|   }
 | |
| 
 | |
|   az = columnNames("main", zTab, &nPk, 0);
 | |
|   az2 = columnNames("aux", zTab, &nPk2, 0);
 | |
|   if( az && az2 ){
 | |
|     for(n=0; az[n] && az2[n]; n++){
 | |
|       if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
 | |
|     }
 | |
|   }
 | |
|   if( az==0
 | |
|    || az2==0
 | |
|    || nPk!=nPk2
 | |
|    || az[n]
 | |
|   ){
 | |
|     /* Schema mismatch */
 | |
|     fprintf(out, "DROP TABLE %s; -- due to schema mismatch\n", zId);
 | |
|     dump_table(zTab, out);
 | |
|     goto end_diff_one_table;
 | |
|   }
 | |
| 
 | |
|   /* Build the comparison query */
 | |
|   for(n2=n; az2[n2]; n2++){
 | |
|     fprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, safeId(az2[n2]));
 | |
|   }
 | |
|   nQ = nPk2+1+2*(n2-nPk2);
 | |
|   if( n2>nPk2 ){
 | |
|     zSep = "SELECT ";
 | |
|     for(i=0; i<nPk; i++){
 | |
|       strPrintf(&sql, "%sB.%s", zSep, az[i]);
 | |
|       zSep = ", ";
 | |
|     }
 | |
|     strPrintf(&sql, ", 1%s -- changed row\n", nPk==n ? "" : ",");
 | |
|     while( az[i] ){
 | |
|       strPrintf(&sql, "       A.%s IS NOT B.%s, B.%s%s\n",
 | |
|                 az[i], az2[i], az2[i], az2[i+1]==0 ? "" : ",");
 | |
|       i++;
 | |
|     }
 | |
|     while( az2[i] ){
 | |
|       strPrintf(&sql, "       B.%s IS NOT NULL, B.%s%s\n",
 | |
|                 az2[i], az2[i], az2[i+1]==0 ? "" : ",");
 | |
|       i++;
 | |
|     }
 | |
|     strPrintf(&sql, "  FROM main.%s A, aux.%s B\n", zId, zId);
 | |
|     zSep = " WHERE";
 | |
|     for(i=0; i<nPk; i++){
 | |
|       strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
 | |
|       zSep = " AND";
 | |
|     }
 | |
|     zSep = "\n   AND (";
 | |
|     while( az[i] ){
 | |
|       strPrintf(&sql, "%sA.%s IS NOT B.%s%s\n",
 | |
|                 zSep, az[i], az2[i], az2[i+1]==0 ? ")" : "");
 | |
|       zSep = "        OR ";
 | |
|       i++;
 | |
|     }
 | |
|     while( az2[i] ){
 | |
|       strPrintf(&sql, "%sB.%s IS NOT NULL%s\n",
 | |
|                 zSep, az2[i], az2[i+1]==0 ? ")" : "");
 | |
|       zSep = "        OR ";
 | |
|       i++;
 | |
|     }
 | |
|     strPrintf(&sql, " UNION ALL\n");
 | |
|   }
 | |
|   zSep = "SELECT ";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%sA.%s", zSep, az[i]);
 | |
|     zSep = ", ";
 | |
|   }
 | |
|   strPrintf(&sql, ", 2%s -- deleted row\n", nPk==n ? "" : ",");
 | |
|   while( az2[i] ){
 | |
|     strPrintf(&sql, "       NULL, NULL%s\n", i==n2-1 ? "" : ",");
 | |
|     i++;
 | |
|   }
 | |
|   strPrintf(&sql, "  FROM main.%s A\n", zId);
 | |
|   strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
 | |
|   zSep =          "                   WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, ")\n");
 | |
|   zSep = " UNION ALL\nSELECT ";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%sB.%s", zSep, az[i]);
 | |
|     zSep = ", ";
 | |
|   }
 | |
|   strPrintf(&sql, ", 3%s -- inserted row\n", nPk==n ? "" : ",");
 | |
|   while( az2[i] ){
 | |
|     strPrintf(&sql, "       1, B.%s%s\n", az2[i], az2[i+1]==0 ? "" : ",");
 | |
|     i++;
 | |
|   }
 | |
|   strPrintf(&sql, "  FROM aux.%s B\n", zId);
 | |
|   strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
 | |
|   zSep =          "                   WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, ")\n ORDER BY");
 | |
|   zSep = " ";
 | |
|   for(i=1; i<=nPk; i++){
 | |
|     strPrintf(&sql, "%s%d", zSep, i);
 | |
|     zSep = ", ";
 | |
|   }
 | |
|   strPrintf(&sql, ";\n");
 | |
| 
 | |
|   if( g.fDebug & DEBUG_DIFF_SQL ){ 
 | |
|     printf("SQL for %s:\n%s\n", zId, sql.z);
 | |
|     goto end_diff_one_table;
 | |
|   }
 | |
| 
 | |
|   /* Drop indexes that are missing in the destination */
 | |
|   pStmt = db_prepare(
 | |
|     "SELECT name FROM main.sqlite_master"
 | |
|     " WHERE type='index' AND tbl_name=%Q"
 | |
|     "   AND sql IS NOT NULL"
 | |
|     "   AND sql NOT IN (SELECT sql FROM aux.sqlite_master"
 | |
|     "                    WHERE type='index' AND tbl_name=%Q"
 | |
|     "                      AND sql IS NOT NULL)",
 | |
|     zTab, zTab);
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     char *z = safeId((const char*)sqlite3_column_text(pStmt,0));
 | |
|     fprintf(out, "DROP INDEX %s;\n", z);
 | |
|     sqlite3_free(z);
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
| 
 | |
|   /* Run the query and output differences */
 | |
|   if( !g.bSchemaOnly ){
 | |
|     pStmt = db_prepare(sql.z);
 | |
|     while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|       int iType = sqlite3_column_int(pStmt, nPk);
 | |
|       if( iType==1 || iType==2 ){
 | |
|         if( iType==1 ){       /* Change the content of a row */
 | |
|           fprintf(out, "UPDATE %s", zId);
 | |
|           zSep = " SET";
 | |
|           for(i=nPk+1; i<nQ; i+=2){
 | |
|             if( sqlite3_column_int(pStmt,i)==0 ) continue;
 | |
|             fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]);
 | |
|             zSep = ",";
 | |
|             printQuoted(out, sqlite3_column_value(pStmt,i+1));
 | |
|           }
 | |
|         }else{                /* Delete a row */
 | |
|           fprintf(out, "DELETE FROM %s", zId);
 | |
|         }
 | |
|         zSep = " WHERE";
 | |
|         for(i=0; i<nPk; i++){
 | |
|           fprintf(out, "%s %s=", zSep, az2[i]);
 | |
|           printQuoted(out, sqlite3_column_value(pStmt,i));
 | |
|           zSep = " AND";
 | |
|         }
 | |
|         fprintf(out, ";\n");
 | |
|       }else{                  /* Insert a row */
 | |
|         fprintf(out, "INSERT INTO %s(%s", zId, az2[0]);
 | |
|         for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]);
 | |
|         fprintf(out, ") VALUES");
 | |
|         zSep = "(";
 | |
|         for(i=0; i<nPk2; i++){
 | |
|           fprintf(out, "%s", zSep);
 | |
|           zSep = ",";
 | |
|           printQuoted(out, sqlite3_column_value(pStmt,i));
 | |
|         }
 | |
|         for(i=nPk2+2; i<nQ; i+=2){
 | |
|           fprintf(out, ",");
 | |
|           printQuoted(out, sqlite3_column_value(pStmt,i));
 | |
|         }
 | |
|         fprintf(out, ");\n");
 | |
|       }
 | |
|     }
 | |
|     sqlite3_finalize(pStmt);
 | |
|   } /* endif !g.bSchemaOnly */
 | |
| 
 | |
|   /* Create indexes that are missing in the source */
 | |
|   pStmt = db_prepare(
 | |
|     "SELECT sql FROM aux.sqlite_master"
 | |
|     " WHERE type='index' AND tbl_name=%Q"
 | |
|     "   AND sql IS NOT NULL"
 | |
|     "   AND sql NOT IN (SELECT sql FROM main.sqlite_master"
 | |
|     "                    WHERE type='index' AND tbl_name=%Q"
 | |
|     "                      AND sql IS NOT NULL)",
 | |
|     zTab, zTab);
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
| 
 | |
| end_diff_one_table:
 | |
|   strFree(&sql);
 | |
|   sqlite3_free(zId);
 | |
|   namelistFree(az);
 | |
|   namelistFree(az2);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check that table zTab exists and has the same schema in both the "main"
 | |
| ** and "aux" databases currently opened by the global db handle. If they
 | |
| ** do not, output an error message on stderr and exit(1). Otherwise, if
 | |
| ** the schemas do match, return control to the caller.
 | |
| */
 | |
| static void checkSchemasMatch(const char *zTab){
 | |
|   sqlite3_stmt *pStmt = db_prepare(
 | |
|       "SELECT A.sql=B.sql FROM main.sqlite_master A, aux.sqlite_master B"
 | |
|       " WHERE A.name=%Q AND B.name=%Q", zTab, zTab
 | |
|   );
 | |
|   if( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     if( sqlite3_column_int(pStmt,0)==0 ){
 | |
|       runtimeError("schema changes for table %s", safeId(zTab));
 | |
|     }
 | |
|   }else{
 | |
|     runtimeError("table %s missing from one or both databases", safeId(zTab));
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| ** The following code is copied from fossil. It is used to generate the
 | |
| ** fossil delta blobs sometimes used in RBU update records.
 | |
| */
 | |
| 
 | |
| typedef unsigned short u16;
 | |
| typedef unsigned int u32;
 | |
| typedef unsigned char u8;
 | |
| 
 | |
| /*
 | |
| ** The width of a hash window in bytes.  The algorithm only works if this
 | |
| ** is a power of 2.
 | |
| */
 | |
| #define NHASH 16
 | |
| 
 | |
| /*
 | |
| ** The current state of the rolling hash.
 | |
| **
 | |
| ** z[] holds the values that have been hashed.  z[] is a circular buffer.
 | |
| ** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of
 | |
| ** the window.
 | |
| **
 | |
| ** Hash.a is the sum of all elements of hash.z[].  Hash.b is a weighted
 | |
| ** sum.  Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1.
 | |
| ** (Each index for z[] should be module NHASH, of course.  The %NHASH operator
 | |
| ** is omitted in the prior expression for brevity.)
 | |
| */
 | |
| typedef struct hash hash;
 | |
| struct hash {
 | |
|   u16 a, b;         /* Hash values */
 | |
|   u16 i;            /* Start of the hash window */
 | |
|   char z[NHASH];    /* The values that have been hashed */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Initialize the rolling hash using the first NHASH characters of z[]
 | |
| */
 | |
| static void hash_init(hash *pHash, const char *z){
 | |
|   u16 a, b, i;
 | |
|   a = b = 0;
 | |
|   for(i=0; i<NHASH; i++){
 | |
|     a += z[i];
 | |
|     b += (NHASH-i)*z[i];
 | |
|     pHash->z[i] = z[i];
 | |
|   }
 | |
|   pHash->a = a & 0xffff;
 | |
|   pHash->b = b & 0xffff;
 | |
|   pHash->i = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Advance the rolling hash by a single character "c"
 | |
| */
 | |
| static void hash_next(hash *pHash, int c){
 | |
|   u16 old = pHash->z[pHash->i];
 | |
|   pHash->z[pHash->i] = (char)c;
 | |
|   pHash->i = (pHash->i+1)&(NHASH-1);
 | |
|   pHash->a = pHash->a - old + (char)c;
 | |
|   pHash->b = pHash->b - NHASH*old + pHash->a;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a 32-bit hash value
 | |
| */
 | |
| static u32 hash_32bit(hash *pHash){
 | |
|   return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write an base-64 integer into the given buffer.
 | |
| */
 | |
| static void putInt(unsigned int v, char **pz){
 | |
|   static const char zDigits[] =
 | |
|     "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~";
 | |
|   /*  123456789 123456789 123456789 123456789 123456789 123456789 123 */
 | |
|   int i, j;
 | |
|   char zBuf[20];
 | |
|   if( v==0 ){
 | |
|     *(*pz)++ = '0';
 | |
|     return;
 | |
|   }
 | |
|   for(i=0; v>0; i++, v>>=6){
 | |
|     zBuf[i] = zDigits[v&0x3f];
 | |
|   }
 | |
|   for(j=i-1; j>=0; j--){
 | |
|     *(*pz)++ = zBuf[j];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number digits in the base-64 representation of a positive integer
 | |
| */
 | |
| static int digit_count(int v){
 | |
|   unsigned int i, x;
 | |
|   for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){}
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute a 32-bit checksum on the N-byte buffer.  Return the result.
 | |
| */
 | |
| static unsigned int checksum(const char *zIn, size_t N){
 | |
|   const unsigned char *z = (const unsigned char *)zIn;
 | |
|   unsigned sum0 = 0;
 | |
|   unsigned sum1 = 0;
 | |
|   unsigned sum2 = 0;
 | |
|   unsigned sum3 = 0;
 | |
|   while(N >= 16){
 | |
|     sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
 | |
|     sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
 | |
|     sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
 | |
|     sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
 | |
|     z += 16;
 | |
|     N -= 16;
 | |
|   }
 | |
|   while(N >= 4){
 | |
|     sum0 += z[0];
 | |
|     sum1 += z[1];
 | |
|     sum2 += z[2];
 | |
|     sum3 += z[3];
 | |
|     z += 4;
 | |
|     N -= 4;
 | |
|   }
 | |
|   sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
 | |
|   switch(N){
 | |
|     case 3:   sum3 += (z[2] << 8);
 | |
|     case 2:   sum3 += (z[1] << 16);
 | |
|     case 1:   sum3 += (z[0] << 24);
 | |
|     default:  ;
 | |
|   }
 | |
|   return sum3;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new delta.
 | |
| **
 | |
| ** The delta is written into a preallocated buffer, zDelta, which
 | |
| ** should be at least 60 bytes longer than the target file, zOut.
 | |
| ** The delta string will be NUL-terminated, but it might also contain
 | |
| ** embedded NUL characters if either the zSrc or zOut files are
 | |
| ** binary.  This function returns the length of the delta string
 | |
| ** in bytes, excluding the final NUL terminator character.
 | |
| **
 | |
| ** Output Format:
 | |
| **
 | |
| ** The delta begins with a base64 number followed by a newline.  This
 | |
| ** number is the number of bytes in the TARGET file.  Thus, given a
 | |
| ** delta file z, a program can compute the size of the output file
 | |
| ** simply by reading the first line and decoding the base-64 number
 | |
| ** found there.  The delta_output_size() routine does exactly this.
 | |
| **
 | |
| ** After the initial size number, the delta consists of a series of
 | |
| ** literal text segments and commands to copy from the SOURCE file.
 | |
| ** A copy command looks like this:
 | |
| **
 | |
| **     NNN@MMM,
 | |
| **
 | |
| ** where NNN is the number of bytes to be copied and MMM is the offset
 | |
| ** into the source file of the first byte (both base-64).   If NNN is 0
 | |
| ** it means copy the rest of the input file.  Literal text is like this:
 | |
| **
 | |
| **     NNN:TTTTT
 | |
| **
 | |
| ** where NNN is the number of bytes of text (base-64) and TTTTT is the text.
 | |
| **
 | |
| ** The last term is of the form
 | |
| **
 | |
| **     NNN;
 | |
| **
 | |
| ** In this case, NNN is a 32-bit bigendian checksum of the output file
 | |
| ** that can be used to verify that the delta applied correctly.  All
 | |
| ** numbers are in base-64.
 | |
| **
 | |
| ** Pure text files generate a pure text delta.  Binary files generate a
 | |
| ** delta that may contain some binary data.
 | |
| **
 | |
| ** Algorithm:
 | |
| **
 | |
| ** The encoder first builds a hash table to help it find matching
 | |
| ** patterns in the source file.  16-byte chunks of the source file
 | |
| ** sampled at evenly spaced intervals are used to populate the hash
 | |
| ** table.
 | |
| **
 | |
| ** Next we begin scanning the target file using a sliding 16-byte
 | |
| ** window.  The hash of the 16-byte window in the target is used to
 | |
| ** search for a matching section in the source file.  When a match
 | |
| ** is found, a copy command is added to the delta.  An effort is
 | |
| ** made to extend the matching section to regions that come before
 | |
| ** and after the 16-byte hash window.  A copy command is only issued
 | |
| ** if the result would use less space that just quoting the text
 | |
| ** literally. Literal text is added to the delta for sections that
 | |
| ** do not match or which can not be encoded efficiently using copy
 | |
| ** commands.
 | |
| */
 | |
| static int rbuDeltaCreate(
 | |
|   const char *zSrc,      /* The source or pattern file */
 | |
|   unsigned int lenSrc,   /* Length of the source file */
 | |
|   const char *zOut,      /* The target file */
 | |
|   unsigned int lenOut,   /* Length of the target file */
 | |
|   char *zDelta           /* Write the delta into this buffer */
 | |
| ){
 | |
|   unsigned int i, base;
 | |
|   char *zOrigDelta = zDelta;
 | |
|   hash h;
 | |
|   int nHash;                 /* Number of hash table entries */
 | |
|   int *landmark;             /* Primary hash table */
 | |
|   int *collide;              /* Collision chain */
 | |
|   int lastRead = -1;         /* Last byte of zSrc read by a COPY command */
 | |
| 
 | |
|   /* Add the target file size to the beginning of the delta
 | |
|   */
 | |
|   putInt(lenOut, &zDelta);
 | |
|   *(zDelta++) = '\n';
 | |
| 
 | |
|   /* If the source file is very small, it means that we have no
 | |
|   ** chance of ever doing a copy command.  Just output a single
 | |
|   ** literal segment for the entire target and exit.
 | |
|   */
 | |
|   if( lenSrc<=NHASH ){
 | |
|     putInt(lenOut, &zDelta);
 | |
|     *(zDelta++) = ':';
 | |
|     memcpy(zDelta, zOut, lenOut);
 | |
|     zDelta += lenOut;
 | |
|     putInt(checksum(zOut, lenOut), &zDelta);
 | |
|     *(zDelta++) = ';';
 | |
|     return (int)(zDelta - zOrigDelta);
 | |
|   }
 | |
| 
 | |
|   /* Compute the hash table used to locate matching sections in the
 | |
|   ** source file.
 | |
|   */
 | |
|   nHash = lenSrc/NHASH;
 | |
|   collide = sqlite3_malloc( nHash*2*sizeof(int) );
 | |
|   landmark = &collide[nHash];
 | |
|   memset(landmark, -1, nHash*sizeof(int));
 | |
|   memset(collide, -1, nHash*sizeof(int));
 | |
|   for(i=0; i<lenSrc-NHASH; i+=NHASH){
 | |
|     int hv;
 | |
|     hash_init(&h, &zSrc[i]);
 | |
|     hv = hash_32bit(&h) % nHash;
 | |
|     collide[i/NHASH] = landmark[hv];
 | |
|     landmark[hv] = i/NHASH;
 | |
|   }
 | |
| 
 | |
|   /* Begin scanning the target file and generating copy commands and
 | |
|   ** literal sections of the delta.
 | |
|   */
 | |
|   base = 0;    /* We have already generated everything before zOut[base] */
 | |
|   while( base+NHASH<lenOut ){
 | |
|     int iSrc, iBlock;
 | |
|     int bestCnt, bestOfst=0, bestLitsz=0;
 | |
|     hash_init(&h, &zOut[base]);
 | |
|     i = 0;     /* Trying to match a landmark against zOut[base+i] */
 | |
|     bestCnt = 0;
 | |
|     while( 1 ){
 | |
|       int hv;
 | |
|       int limit = 250;
 | |
| 
 | |
|       hv = hash_32bit(&h) % nHash;
 | |
|       iBlock = landmark[hv];
 | |
|       while( iBlock>=0 && (limit--)>0 ){
 | |
|         /*
 | |
|         ** The hash window has identified a potential match against
 | |
|         ** landmark block iBlock.  But we need to investigate further.
 | |
|         **
 | |
|         ** Look for a region in zOut that matches zSrc. Anchor the search
 | |
|         ** at zSrc[iSrc] and zOut[base+i].  Do not include anything prior to
 | |
|         ** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen].
 | |
|         **
 | |
|         ** Set cnt equal to the length of the match and set ofst so that
 | |
|         ** zSrc[ofst] is the first element of the match.  litsz is the number
 | |
|         ** of characters between zOut[base] and the beginning of the match.
 | |
|         ** sz will be the overhead (in bytes) needed to encode the copy
 | |
|         ** command.  Only generate copy command if the overhead of the
 | |
|         ** copy command is less than the amount of literal text to be copied.
 | |
|         */
 | |
|         int cnt, ofst, litsz;
 | |
|         int j, k, x, y;
 | |
|         int sz;
 | |
| 
 | |
|         /* Beginning at iSrc, match forwards as far as we can.  j counts
 | |
|         ** the number of characters that match */
 | |
|         iSrc = iBlock*NHASH;
 | |
|         for(
 | |
|           j=0, x=iSrc, y=base+i;
 | |
|           (unsigned int)x<lenSrc && (unsigned int)y<lenOut;
 | |
|           j++, x++, y++
 | |
|         ){
 | |
|           if( zSrc[x]!=zOut[y] ) break;
 | |
|         }
 | |
|         j--;
 | |
| 
 | |
|         /* Beginning at iSrc-1, match backwards as far as we can.  k counts
 | |
|         ** the number of characters that match */
 | |
|         for(k=1; k<iSrc && (unsigned int)k<=i; k++){
 | |
|           if( zSrc[iSrc-k]!=zOut[base+i-k] ) break;
 | |
|         }
 | |
|         k--;
 | |
| 
 | |
|         /* Compute the offset and size of the matching region */
 | |
|         ofst = iSrc-k;
 | |
|         cnt = j+k+1;
 | |
|         litsz = i-k;  /* Number of bytes of literal text before the copy */
 | |
|         /* sz will hold the number of bytes needed to encode the "insert"
 | |
|         ** command and the copy command, not counting the "insert" text */
 | |
|         sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3;
 | |
|         if( cnt>=sz && cnt>bestCnt ){
 | |
|           /* Remember this match only if it is the best so far and it
 | |
|           ** does not increase the file size */
 | |
|           bestCnt = cnt;
 | |
|           bestOfst = iSrc-k;
 | |
|           bestLitsz = litsz;
 | |
|         }
 | |
| 
 | |
|         /* Check the next matching block */
 | |
|         iBlock = collide[iBlock];
 | |
|       }
 | |
| 
 | |
|       /* We have a copy command that does not cause the delta to be larger
 | |
|       ** than a literal insert.  So add the copy command to the delta.
 | |
|       */
 | |
|       if( bestCnt>0 ){
 | |
|         if( bestLitsz>0 ){
 | |
|           /* Add an insert command before the copy */
 | |
|           putInt(bestLitsz,&zDelta);
 | |
|           *(zDelta++) = ':';
 | |
|           memcpy(zDelta, &zOut[base], bestLitsz);
 | |
|           zDelta += bestLitsz;
 | |
|           base += bestLitsz;
 | |
|         }
 | |
|         base += bestCnt;
 | |
|         putInt(bestCnt, &zDelta);
 | |
|         *(zDelta++) = '@';
 | |
|         putInt(bestOfst, &zDelta);
 | |
|         *(zDelta++) = ',';
 | |
|         if( bestOfst + bestCnt -1 > lastRead ){
 | |
|           lastRead = bestOfst + bestCnt - 1;
 | |
|         }
 | |
|         bestCnt = 0;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       /* If we reach this point, it means no match is found so far */
 | |
|       if( base+i+NHASH>=lenOut ){
 | |
|         /* We have reached the end of the file and have not found any
 | |
|         ** matches.  Do an "insert" for everything that does not match */
 | |
|         putInt(lenOut-base, &zDelta);
 | |
|         *(zDelta++) = ':';
 | |
|         memcpy(zDelta, &zOut[base], lenOut-base);
 | |
|         zDelta += lenOut-base;
 | |
|         base = lenOut;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       /* Advance the hash by one character.  Keep looking for a match */
 | |
|       hash_next(&h, zOut[base+i+NHASH]);
 | |
|       i++;
 | |
|     }
 | |
|   }
 | |
|   /* Output a final "insert" record to get all the text at the end of
 | |
|   ** the file that does not match anything in the source file.
 | |
|   */
 | |
|   if( base<lenOut ){
 | |
|     putInt(lenOut-base, &zDelta);
 | |
|     *(zDelta++) = ':';
 | |
|     memcpy(zDelta, &zOut[base], lenOut-base);
 | |
|     zDelta += lenOut-base;
 | |
|   }
 | |
|   /* Output the final checksum record. */
 | |
|   putInt(checksum(zOut, lenOut), &zDelta);
 | |
|   *(zDelta++) = ';';
 | |
|   sqlite3_free(collide);
 | |
|   return (int)(zDelta - zOrigDelta);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** End of code copied from fossil.
 | |
| **************************************************************************/
 | |
| 
 | |
| static void strPrintfArray(
 | |
|   Str *pStr,                      /* String object to append to */
 | |
|   const char *zSep,               /* Separator string */
 | |
|   const char *zFmt,               /* Format for each entry */
 | |
|   char **az, int n                /* Array of strings & its size (or -1) */
 | |
| ){
 | |
|   int i;
 | |
|   for(i=0; az[i] && (i<n || n<0); i++){
 | |
|     if( i!=0 ) strPrintf(pStr, "%s", zSep);
 | |
|     strPrintf(pStr, zFmt, az[i], az[i], az[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getRbudiffQuery(
 | |
|   const char *zTab,
 | |
|   char **azCol,
 | |
|   int nPK,
 | |
|   int bOtaRowid,
 | |
|   Str *pSql
 | |
| ){
 | |
|   int i;
 | |
| 
 | |
|   /* First the newly inserted rows: **/ 
 | |
|   strPrintf(pSql, "SELECT ");
 | |
|   strPrintfArray(pSql, ", ", "%s", azCol, -1);
 | |
|   strPrintf(pSql, ", 0, ");       /* Set ota_control to 0 for an insert */
 | |
|   strPrintfArray(pSql, ", ", "NULL", azCol, -1);
 | |
|   strPrintf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab);
 | |
|   strPrintf(pSql, "    SELECT 1 FROM ", zTab);
 | |
|   strPrintf(pSql, " main.%Q AS o WHERE ", zTab);
 | |
|   strPrintfArray(pSql, " AND ", "(n.%Q IS o.%Q)", azCol, nPK);
 | |
|   strPrintf(pSql, "\n)");
 | |
| 
 | |
|   /* Deleted rows: */
 | |
|   strPrintf(pSql, "\nUNION ALL\nSELECT ");
 | |
|   strPrintfArray(pSql, ", ", "%s", azCol, nPK);
 | |
|   if( azCol[nPK] ){
 | |
|     strPrintf(pSql, ", ");
 | |
|     strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1);
 | |
|   }
 | |
|   strPrintf(pSql, ", 1, ");       /* Set ota_control to 1 for a delete */
 | |
|   strPrintfArray(pSql, ", ", "NULL", azCol, -1);
 | |
|   strPrintf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab);
 | |
|   strPrintf(pSql, "    SELECT 1 FROM ", zTab);
 | |
|   strPrintf(pSql, " aux.%Q AS o WHERE ", zTab);
 | |
|   strPrintfArray(pSql, " AND ", "(n.%Q IS o.%Q)", azCol, nPK);
 | |
|   strPrintf(pSql, "\n) ");
 | |
| 
 | |
|   /* Updated rows. If all table columns are part of the primary key, there 
 | |
|   ** can be no updates. In this case this part of the compound SELECT can
 | |
|   ** be omitted altogether. */
 | |
|   if( azCol[nPK] ){
 | |
|     strPrintf(pSql, "\nUNION ALL\nSELECT ");
 | |
|     strPrintfArray(pSql, ", ", "n.%s", azCol, nPK);
 | |
|     strPrintf(pSql, ",\n");
 | |
|     strPrintfArray(pSql, " ,\n", 
 | |
|         "    CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1
 | |
|     );
 | |
| 
 | |
|     if( bOtaRowid==0 ){
 | |
|       strPrintf(pSql, ", '");
 | |
|       strPrintfArray(pSql, "", ".", azCol, nPK);
 | |
|       strPrintf(pSql, "' ||\n");
 | |
|     }else{
 | |
|       strPrintf(pSql, ",\n");
 | |
|     }
 | |
|     strPrintfArray(pSql, " ||\n", 
 | |
|         "    CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1
 | |
|     );
 | |
|     strPrintf(pSql, "\nAS ota_control, ");
 | |
|     strPrintfArray(pSql, ", ", "NULL", azCol, nPK);
 | |
|     strPrintf(pSql, ",\n");
 | |
|     strPrintfArray(pSql, " ,\n", 
 | |
|         "    CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1
 | |
|     );
 | |
| 
 | |
|     strPrintf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ", zTab, zTab);
 | |
|     strPrintfArray(pSql, " AND ", "(n.%Q IS o.%Q)", azCol, nPK);
 | |
|     strPrintf(pSql, " AND ota_control LIKE '%%x%%'");
 | |
|   }
 | |
| 
 | |
|   /* Now add an ORDER BY clause to sort everything by PK. */
 | |
|   strPrintf(pSql, "\nORDER BY ");
 | |
|   for(i=1; i<=nPK; i++) strPrintf(pSql, "%s%d", ((i>1)?", ":""), i);
 | |
| }
 | |
| 
 | |
| static void rbudiff_one_table(const char *zTab, FILE *out){
 | |
|   int bOtaRowid;                  /* True to use an ota_rowid column */
 | |
|   int nPK;                        /* Number of primary key columns in table */
 | |
|   char **azCol;                   /* NULL terminated array of col names */
 | |
|   int i;
 | |
|   int nCol;
 | |
|   Str ct = {0, 0, 0};             /* The "CREATE TABLE data_xxx" statement */
 | |
|   Str sql = {0, 0, 0};            /* Query to find differences */
 | |
|   Str insert = {0, 0, 0};         /* First part of output INSERT statement */
 | |
|   sqlite3_stmt *pStmt = 0;
 | |
| 
 | |
|   /* --rbu mode must use real primary keys. */
 | |
|   g.bSchemaPK = 1;
 | |
| 
 | |
|   /* Check that the schemas of the two tables match. Exit early otherwise. */
 | |
|   checkSchemasMatch(zTab);
 | |
| 
 | |
|   /* Grab the column names and PK details for the table(s). If no usable PK
 | |
|   ** columns are found, bail out early.  */
 | |
|   azCol = columnNames("main", zTab, &nPK, &bOtaRowid);
 | |
|   if( azCol==0 ){
 | |
|     runtimeError("table %s has no usable PK columns", zTab);
 | |
|   }
 | |
|   for(nCol=0; azCol[nCol]; nCol++);
 | |
| 
 | |
|   /* Build and output the CREATE TABLE statement for the data_xxx table */
 | |
|   strPrintf(&ct, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab);
 | |
|   if( bOtaRowid ) strPrintf(&ct, "rbu_rowid, ");
 | |
|   strPrintfArray(&ct, ", ", "%s", &azCol[bOtaRowid], -1);
 | |
|   strPrintf(&ct, ", rbu_control);");
 | |
| 
 | |
|   /* Get the SQL for the query to retrieve data from the two databases */
 | |
|   getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, &sql);
 | |
| 
 | |
|   /* Build the first part of the INSERT statement output for each row
 | |
|   ** in the data_xxx table. */
 | |
|   strPrintf(&insert, "INSERT INTO 'data_%q' (", zTab);
 | |
|   if( bOtaRowid ) strPrintf(&insert, "rbu_rowid, ");
 | |
|   strPrintfArray(&insert, ", ", "%s", &azCol[bOtaRowid], -1);
 | |
|   strPrintf(&insert, ", rbu_control) VALUES(");
 | |
| 
 | |
|   pStmt = db_prepare("%s", sql.z);
 | |
| 
 | |
|   while( sqlite3_step(pStmt)==SQLITE_ROW ){
 | |
|     
 | |
|     /* If this is the first row output, print out the CREATE TABLE 
 | |
|     ** statement first. And then set ct.z to NULL so that it is not 
 | |
|     ** printed again.  */
 | |
|     if( ct.z ){
 | |
|       fprintf(out, "%s\n", ct.z);
 | |
|       strFree(&ct);
 | |
|     }
 | |
| 
 | |
|     /* Output the first part of the INSERT statement */
 | |
|     fprintf(out, "%s", insert.z);
 | |
| 
 | |
|     if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){
 | |
|       for(i=0; i<=nCol; i++){
 | |
|         if( i>0 ) fprintf(out, ", ");
 | |
|         printQuoted(out, sqlite3_column_value(pStmt, i));
 | |
|       }
 | |
|     }else{
 | |
|       char *zOtaControl;
 | |
|       int nOtaControl = sqlite3_column_bytes(pStmt, nCol);
 | |
| 
 | |
|       zOtaControl = (char*)sqlite3_malloc(nOtaControl);
 | |
|       memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1);
 | |
| 
 | |
|       for(i=0; i<nCol; i++){
 | |
|         int bDone = 0;
 | |
|         if( i>=nPK 
 | |
|             && sqlite3_column_type(pStmt, i)==SQLITE_BLOB
 | |
|             && sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB
 | |
|         ){
 | |
|           const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i);
 | |
|           int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i);
 | |
|           const char *aFinal = sqlite3_column_blob(pStmt, i);
 | |
|           int nFinal = sqlite3_column_bytes(pStmt, i);
 | |
|           char *aDelta;
 | |
|           int nDelta;
 | |
| 
 | |
|           aDelta = sqlite3_malloc(nFinal + 60);
 | |
|           nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta);
 | |
|           if( nDelta<nFinal ){
 | |
|             int j;
 | |
|             fprintf(out, "x'");
 | |
|             for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]);
 | |
|             fprintf(out, "'");
 | |
|             zOtaControl[i-bOtaRowid] = 'f';
 | |
|             bDone = 1;
 | |
|           }
 | |
|           sqlite3_free(aDelta);
 | |
|         }
 | |
| 
 | |
|         if( bDone==0 ){
 | |
|           printQuoted(out, sqlite3_column_value(pStmt, i));
 | |
|         }
 | |
|         fprintf(out, ", ");
 | |
|       }
 | |
|       fprintf(out, "'%s'", zOtaControl);
 | |
|       sqlite3_free(zOtaControl);
 | |
|     }
 | |
| 
 | |
|     /* And the closing bracket of the insert statement */
 | |
|     fprintf(out, ");\n");
 | |
|   }
 | |
| 
 | |
|   sqlite3_finalize(pStmt);
 | |
| 
 | |
|   strFree(&ct);
 | |
|   strFree(&sql);
 | |
|   strFree(&insert);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Display a summary of differences between two versions of the same
 | |
| ** table table.
 | |
| **
 | |
| **   *  Number of rows changed
 | |
| **   *  Number of rows added
 | |
| **   *  Number of rows deleted
 | |
| **   *  Number of identical rows
 | |
| */
 | |
| static void summarize_one_table(const char *zTab, FILE *out){
 | |
|   char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
 | |
|   char **az = 0;            /* Columns in main */
 | |
|   char **az2 = 0;           /* Columns in aux */
 | |
|   int nPk;                  /* Primary key columns in main */
 | |
|   int nPk2;                 /* Primary key columns in aux */
 | |
|   int n = 0;                /* Number of columns in main */
 | |
|   int n2;                   /* Number of columns in aux */
 | |
|   int i;                    /* Loop counter */
 | |
|   const char *zSep;         /* Separator string */
 | |
|   Str sql;                  /* Comparison query */
 | |
|   sqlite3_stmt *pStmt;      /* Query statement to do the diff */
 | |
|   sqlite3_int64 nUpdate;    /* Number of updated rows */
 | |
|   sqlite3_int64 nUnchanged; /* Number of unmodified rows */
 | |
|   sqlite3_int64 nDelete;    /* Number of deleted rows */
 | |
|   sqlite3_int64 nInsert;    /* Number of inserted rows */
 | |
| 
 | |
|   strInit(&sql);
 | |
|   if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
 | |
|     if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
 | |
|       /* Table missing from second database. */
 | |
|       fprintf(out, "%s: missing from second database\n", zTab);
 | |
|     }
 | |
|     goto end_summarize_one_table;
 | |
|   }
 | |
| 
 | |
|   if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
 | |
|     /* Table missing from source */
 | |
|     fprintf(out, "%s: missing from first database\n", zTab);
 | |
|     goto end_summarize_one_table;
 | |
|   }
 | |
| 
 | |
|   az = columnNames("main", zTab, &nPk, 0);
 | |
|   az2 = columnNames("aux", zTab, &nPk2, 0);
 | |
|   if( az && az2 ){
 | |
|     for(n=0; az[n]; n++){
 | |
|       if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
 | |
|     }
 | |
|   }
 | |
|   if( az==0
 | |
|    || az2==0
 | |
|    || nPk!=nPk2
 | |
|    || az[n]
 | |
|   ){
 | |
|     /* Schema mismatch */
 | |
|     fprintf(out, "%s: incompatible schema\n", zTab);
 | |
|     goto end_summarize_one_table;
 | |
|   }
 | |
| 
 | |
|   /* Build the comparison query */
 | |
|   for(n2=n; az[n2]; n2++){}
 | |
|   strPrintf(&sql, "SELECT 1, count(*)");
 | |
|   if( n2==nPk2 ){
 | |
|     strPrintf(&sql, ", 0\n");
 | |
|   }else{
 | |
|     zSep = ", sum(";
 | |
|     for(i=nPk; az[i]; i++){
 | |
|       strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]);
 | |
|       zSep = " OR ";
 | |
|     }
 | |
|     strPrintf(&sql, ")\n");
 | |
|   }
 | |
|   strPrintf(&sql, "  FROM main.%s A, aux.%s B\n", zId, zId);
 | |
|   zSep = " WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, " UNION ALL\n");
 | |
|   strPrintf(&sql, "SELECT 2, count(*), 0\n");
 | |
|   strPrintf(&sql, "  FROM main.%s A\n", zId);
 | |
|   strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId);
 | |
|   zSep = "WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, ")\n");
 | |
|   strPrintf(&sql, " UNION ALL\n");
 | |
|   strPrintf(&sql, "SELECT 3, count(*), 0\n");
 | |
|   strPrintf(&sql, "  FROM aux.%s B\n", zId);
 | |
|   strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId);
 | |
|   zSep = "WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, ")\n ORDER BY 1;\n");
 | |
| 
 | |
|   if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){ 
 | |
|     printf("SQL for %s:\n%s\n", zId, sql.z);
 | |
|     goto end_summarize_one_table;
 | |
|   }
 | |
| 
 | |
|   /* Run the query and output difference summary */
 | |
|   pStmt = db_prepare(sql.z);
 | |
|   nUpdate = 0;
 | |
|   nInsert = 0;
 | |
|   nDelete = 0;
 | |
|   nUnchanged = 0;
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     switch( sqlite3_column_int(pStmt,0) ){
 | |
|       case 1:
 | |
|         nUpdate = sqlite3_column_int64(pStmt,2);
 | |
|         nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate;
 | |
|         break;
 | |
|       case 2:
 | |
|         nDelete = sqlite3_column_int64(pStmt,1);
 | |
|         break;
 | |
|       case 3:
 | |
|         nInsert = sqlite3_column_int64(pStmt,1);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
|   fprintf(out, "%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n",
 | |
|           zTab, nUpdate, nInsert, nDelete, nUnchanged);
 | |
| 
 | |
| end_summarize_one_table:
 | |
|   strFree(&sql);
 | |
|   sqlite3_free(zId);
 | |
|   namelistFree(az);
 | |
|   namelistFree(az2);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write a 64-bit signed integer as a varint onto out
 | |
| */
 | |
| static void putsVarint(FILE *out, sqlite3_uint64 v){
 | |
|   int i, n;
 | |
|   unsigned char p[12];
 | |
|   if( v & (((sqlite3_uint64)0xff000000)<<32) ){
 | |
|     p[8] = (unsigned char)v;
 | |
|     v >>= 8;
 | |
|     for(i=7; i>=0; i--){
 | |
|       p[i] = (unsigned char)((v & 0x7f) | 0x80);
 | |
|       v >>= 7;
 | |
|     }
 | |
|     fwrite(p, 8, 1, out);
 | |
|   }else{
 | |
|     n = 9;
 | |
|     do{
 | |
|       p[n--] = (unsigned char)((v & 0x7f) | 0x80);
 | |
|       v >>= 7;
 | |
|     }while( v!=0 );
 | |
|     p[9] &= 0x7f;
 | |
|     fwrite(p+n+1, 9-n, 1, out);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write an SQLite value onto out.
 | |
| */
 | |
| static void putValue(FILE *out, sqlite3_value *pVal){
 | |
|   int iDType = sqlite3_value_type(pVal);
 | |
|   sqlite3_int64 iX;
 | |
|   double rX;
 | |
|   sqlite3_uint64 uX;
 | |
|   int j;
 | |
| 
 | |
|   putc(iDType, out);
 | |
|   switch( iDType ){
 | |
|     case SQLITE_INTEGER:
 | |
|       iX = sqlite3_value_int64(pVal);
 | |
|       memcpy(&uX, &iX, 8);
 | |
|       for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
 | |
|       break;
 | |
|     case SQLITE_FLOAT:
 | |
|       rX = sqlite3_value_double(pVal);
 | |
|       memcpy(&uX, &rX, 8);
 | |
|       for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
 | |
|       break;
 | |
|     case SQLITE_TEXT:
 | |
|       iX = sqlite3_value_bytes(pVal);
 | |
|       putsVarint(out, (sqlite3_uint64)iX);
 | |
|       fwrite(sqlite3_value_text(pVal),1,(size_t)iX,out);
 | |
|       break;
 | |
|     case SQLITE_BLOB:
 | |
|       iX = sqlite3_value_bytes(pVal);
 | |
|       putsVarint(out, (sqlite3_uint64)iX);
 | |
|       fwrite(sqlite3_value_blob(pVal),1,(size_t)iX,out);
 | |
|       break;
 | |
|     case SQLITE_NULL:
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate a CHANGESET for all differences from main.zTab to aux.zTab.
 | |
| */
 | |
| static void changeset_one_table(const char *zTab, FILE *out){
 | |
|   sqlite3_stmt *pStmt;          /* SQL statment */
 | |
|   char *zId = safeId(zTab);     /* Escaped name of the table */
 | |
|   char **azCol = 0;             /* List of escaped column names */
 | |
|   int nCol = 0;                 /* Number of columns */
 | |
|   int *aiFlg = 0;               /* 0 if column is not part of PK */
 | |
|   int *aiPk = 0;                /* Column numbers for each PK column */
 | |
|   int nPk = 0;                  /* Number of PRIMARY KEY columns */
 | |
|   Str sql;                      /* SQL for the diff query */
 | |
|   int i, k;                     /* Loop counters */
 | |
|   const char *zSep;             /* List separator */
 | |
| 
 | |
|   /* Check that the schemas of the two tables match. Exit early otherwise. */
 | |
|   checkSchemasMatch(zTab);
 | |
| 
 | |
|   pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab);
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     nCol++;
 | |
|     azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol);
 | |
|     if( azCol==0 ) runtimeError("out of memory");
 | |
|     aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol);
 | |
|     if( aiFlg==0 ) runtimeError("out of memory");
 | |
|     azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1));
 | |
|     aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5);
 | |
|     if( i>0 ){
 | |
|       if( i>nPk ){
 | |
|         nPk = i;
 | |
|         aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk);
 | |
|         if( aiPk==0 ) runtimeError("out of memory");
 | |
|       }
 | |
|       aiPk[i-1] = nCol-1;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
|   if( nPk==0 ) goto end_changeset_one_table; 
 | |
|   strInit(&sql);
 | |
|   if( nCol>nPk ){
 | |
|     strPrintf(&sql, "SELECT %d", SQLITE_UPDATE);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       if( aiFlg[i] ){
 | |
|         strPrintf(&sql, ",\n       A.%s", azCol[i]);
 | |
|       }else{
 | |
|         strPrintf(&sql, ",\n       A.%s IS NOT B.%s, A.%s, B.%s",
 | |
|                   azCol[i], azCol[i], azCol[i], azCol[i]);
 | |
|       }
 | |
|     }
 | |
|     strPrintf(&sql,"\n  FROM main.%s A, aux.%s B\n", zId, zId);
 | |
|     zSep = " WHERE";
 | |
|     for(i=0; i<nPk; i++){
 | |
|       strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
 | |
|       zSep = " AND";
 | |
|     }
 | |
|     zSep = "\n   AND (";
 | |
|     for(i=0; i<nCol; i++){
 | |
|       if( aiFlg[i] ) continue;
 | |
|       strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]);
 | |
|       zSep = " OR\n        ";
 | |
|     }
 | |
|     strPrintf(&sql,")\n UNION ALL\n");
 | |
|   }
 | |
|   strPrintf(&sql, "SELECT %d", SQLITE_DELETE);
 | |
|   for(i=0; i<nCol; i++){
 | |
|     if( aiFlg[i] ){
 | |
|       strPrintf(&sql, ",\n       A.%s", azCol[i]);
 | |
|     }else{
 | |
|       strPrintf(&sql, ",\n       1, A.%s, NULL", azCol[i]);
 | |
|     }
 | |
|   }
 | |
|   strPrintf(&sql, "\n  FROM main.%s A\n", zId);
 | |
|   strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
 | |
|   zSep =          "                   WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, ")\n UNION ALL\n");
 | |
|   strPrintf(&sql, "SELECT %d", SQLITE_INSERT);
 | |
|   for(i=0; i<nCol; i++){
 | |
|     if( aiFlg[i] ){
 | |
|       strPrintf(&sql, ",\n       B.%s", azCol[i]);
 | |
|     }else{
 | |
|       strPrintf(&sql, ",\n       1, NULL, B.%s", azCol[i]);
 | |
|     }
 | |
|   }
 | |
|   strPrintf(&sql, "\n  FROM aux.%s B\n", zId);
 | |
|   strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
 | |
|   zSep =          "                   WHERE";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
 | |
|     zSep = " AND";
 | |
|   }
 | |
|   strPrintf(&sql, ")\n");
 | |
|   strPrintf(&sql, " ORDER BY");
 | |
|   zSep = " ";
 | |
|   for(i=0; i<nPk; i++){
 | |
|     strPrintf(&sql, "%s %d", zSep, aiPk[i]+2);
 | |
|     zSep = ",";
 | |
|   }
 | |
|   strPrintf(&sql, ";\n");
 | |
| 
 | |
|   if( g.fDebug & DEBUG_DIFF_SQL ){ 
 | |
|     printf("SQL for %s:\n%s\n", zId, sql.z);
 | |
|     goto end_changeset_one_table;
 | |
|   }
 | |
| 
 | |
|   putc('T', out);
 | |
|   putsVarint(out, (sqlite3_uint64)nCol);
 | |
|   for(i=0; i<nCol; i++) putc(aiFlg[i]!=0, out);
 | |
|   fwrite(zTab, 1, strlen(zTab), out);
 | |
|   putc(0, out);
 | |
| 
 | |
|   pStmt = db_prepare("%s", sql.z);
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     int iType = sqlite3_column_int(pStmt,0);
 | |
|     putc(iType, out);
 | |
|     putc(0, out);
 | |
|     switch( sqlite3_column_int(pStmt,0) ){
 | |
|       case SQLITE_UPDATE: {
 | |
|         for(k=1, i=0; i<nCol; i++){
 | |
|           if( aiFlg[i] ){
 | |
|             putValue(out, sqlite3_column_value(pStmt,k));
 | |
|             k++;
 | |
|           }else if( sqlite3_column_int(pStmt,k) ){
 | |
|             putValue(out, sqlite3_column_value(pStmt,k+1));
 | |
|             k += 3;
 | |
|           }else{
 | |
|             putc(0, out);
 | |
|             k += 3;
 | |
|           }
 | |
|         }
 | |
|         for(k=1, i=0; i<nCol; i++){
 | |
|           if( aiFlg[i] ){
 | |
|             putc(0, out);
 | |
|             k++;
 | |
|           }else if( sqlite3_column_int(pStmt,k) ){
 | |
|             putValue(out, sqlite3_column_value(pStmt,k+2));
 | |
|             k += 3;
 | |
|           }else{
 | |
|             putc(0, out);
 | |
|             k += 3;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case SQLITE_INSERT: {
 | |
|         for(k=1, i=0; i<nCol; i++){
 | |
|           if( aiFlg[i] ){
 | |
|             putValue(out, sqlite3_column_value(pStmt,k));
 | |
|             k++;
 | |
|           }else{
 | |
|             putValue(out, sqlite3_column_value(pStmt,k+2));
 | |
|             k += 3;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case SQLITE_DELETE: {
 | |
|         for(k=1, i=0; i<nCol; i++){
 | |
|           if( aiFlg[i] ){
 | |
|             putValue(out, sqlite3_column_value(pStmt,k));
 | |
|             k++;
 | |
|           }else{
 | |
|             putValue(out, sqlite3_column_value(pStmt,k+1));
 | |
|             k += 3;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3_finalize(pStmt);
 | |
|   
 | |
| end_changeset_one_table:
 | |
|   while( nCol>0 ) sqlite3_free(azCol[--nCol]);
 | |
|   sqlite3_free(azCol);
 | |
|   sqlite3_free(aiPk);
 | |
|   sqlite3_free(zId);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print sketchy documentation for this utility program
 | |
| */
 | |
| static void showHelp(void){
 | |
|   printf("Usage: %s [options] DB1 DB2\n", g.zArgv0);
 | |
|   printf(
 | |
| "Output SQL text that would transform DB1 into DB2.\n"
 | |
| "Options:\n"
 | |
| "  --changeset FILE      Write a CHANGESET into FILE\n"
 | |
| "  -L|--lib LIBRARY      Load an SQLite extension library\n"
 | |
| "  --primarykey          Use schema-defined PRIMARY KEYs\n"
 | |
| "  --rbu                 Output SQL to create/populate RBU table(s)\n"
 | |
| "  --schema              Show only differences in the schema\n"
 | |
| "  --summary             Show only a summary of the differences\n"
 | |
| "  --table TAB           Show only differences in table TAB\n"
 | |
| "  --transaction         Show SQL output inside a transaction\n"
 | |
|   );
 | |
| }
 | |
| 
 | |
| int main(int argc, char **argv){
 | |
|   const char *zDb1 = 0;
 | |
|   const char *zDb2 = 0;
 | |
|   int i;
 | |
|   int rc;
 | |
|   char *zErrMsg = 0;
 | |
|   char *zSql;
 | |
|   sqlite3_stmt *pStmt;
 | |
|   char *zTab = 0;
 | |
|   FILE *out = stdout;
 | |
|   void (*xDiff)(const char*,FILE*) = diff_one_table;
 | |
|   int nExt = 0;
 | |
|   char **azExt = 0;
 | |
|   int useTransaction = 0;
 | |
|   int neverUseTransaction = 0;
 | |
| 
 | |
|   g.zArgv0 = argv[0];
 | |
|   sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
 | |
|   for(i=1; i<argc; i++){
 | |
|     const char *z = argv[i];
 | |
|     if( z[0]=='-' ){
 | |
|       z++;
 | |
|       if( z[0]=='-' ) z++;
 | |
|       if( strcmp(z,"changeset")==0 ){
 | |
|         if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
 | |
|         out = fopen(argv[++i], "wb");
 | |
|         if( out==0 ) cmdlineError("cannot open: %s", argv[i]);
 | |
|         xDiff = changeset_one_table;
 | |
|         neverUseTransaction = 1;
 | |
|       }else
 | |
|       if( strcmp(z,"debug")==0 ){
 | |
|         if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
 | |
|         g.fDebug = strtol(argv[++i], 0, 0);
 | |
|       }else
 | |
|       if( strcmp(z,"help")==0 ){
 | |
|         showHelp();
 | |
|         return 0;
 | |
|       }else
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
|       if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){
 | |
|         if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
 | |
|         azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1));
 | |
|         if( azExt==0 ) cmdlineError("out of memory");
 | |
|         azExt[nExt++] = argv[++i];
 | |
|       }else
 | |
| #endif
 | |
|       if( strcmp(z,"primarykey")==0 ){
 | |
|         g.bSchemaPK = 1;
 | |
|       }else
 | |
|       if( strcmp(z,"rbu")==0 ){
 | |
|         xDiff = rbudiff_one_table;
 | |
|       }else
 | |
|       if( strcmp(z,"schema")==0 ){
 | |
|         g.bSchemaOnly = 1;
 | |
|       }else
 | |
|       if( strcmp(z,"summary")==0 ){
 | |
|         xDiff = summarize_one_table;
 | |
|       }else
 | |
|       if( strcmp(z,"table")==0 ){
 | |
|         if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
 | |
|         zTab = argv[++i];
 | |
|       }else
 | |
|       if( strcmp(z,"transaction")==0 ){
 | |
|         useTransaction = 1;
 | |
|       }else
 | |
|       {
 | |
|         cmdlineError("unknown option: %s", argv[i]);
 | |
|       }
 | |
|     }else if( zDb1==0 ){
 | |
|       zDb1 = argv[i];
 | |
|     }else if( zDb2==0 ){
 | |
|       zDb2 = argv[i];
 | |
|     }else{
 | |
|       cmdlineError("unknown argument: %s", argv[i]);
 | |
|     }
 | |
|   }
 | |
|   if( zDb2==0 ){
 | |
|     cmdlineError("two database arguments required");
 | |
|   }
 | |
|   rc = sqlite3_open(zDb1, &g.db);
 | |
|   if( rc ){
 | |
|     cmdlineError("cannot open database file \"%s\"", zDb1);
 | |
|   }
 | |
|   rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_master", 0, 0, &zErrMsg);
 | |
|   if( rc || zErrMsg ){
 | |
|     cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1);
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
|   sqlite3_enable_load_extension(g.db, 1);
 | |
|   for(i=0; i<nExt; i++){
 | |
|     rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg);
 | |
|     if( rc || zErrMsg ){
 | |
|       cmdlineError("error loading %s: %s", azExt[i], zErrMsg);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   free(azExt);
 | |
|   zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2);
 | |
|   rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg);
 | |
|   if( rc || zErrMsg ){
 | |
|     cmdlineError("cannot attach database \"%s\"", zDb2);
 | |
|   }
 | |
|   rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_master", 0, 0, &zErrMsg);
 | |
|   if( rc || zErrMsg ){
 | |
|     cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2);
 | |
|   }
 | |
| 
 | |
|   if( neverUseTransaction ) useTransaction = 0;
 | |
|   if( useTransaction ) printf("BEGIN TRANSACTION;\n");
 | |
|   if( zTab ){
 | |
|     xDiff(zTab, out);
 | |
|   }else{
 | |
|     /* Handle tables one by one */
 | |
|     pStmt = db_prepare(
 | |
|       "SELECT name FROM main.sqlite_master\n"
 | |
|       " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
 | |
|       " UNION\n"
 | |
|       "SELECT name FROM aux.sqlite_master\n"
 | |
|       " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
 | |
|       " ORDER BY name"
 | |
|     );
 | |
|     while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|       xDiff((const char*)sqlite3_column_text(pStmt,0), out);
 | |
|     }
 | |
|     sqlite3_finalize(pStmt);
 | |
|   }
 | |
|   if( useTransaction ) printf("COMMIT;\n");
 | |
| 
 | |
|   /* TBD: Handle trigger differences */
 | |
|   /* TBD: Handle view differences */
 | |
|   sqlite3_close(g.db);
 | |
|   return 0;
 | |
| }
 | 
