4309 lines
146 KiB
C
4309 lines
146 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains routines used for analyzing expressions and
|
|
** for generating VDBE code that evaluates expressions in SQLite.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Return the 'affinity' of the expression pExpr if any.
|
|
**
|
|
** If pExpr is a column, a reference to a column via an 'AS' alias,
|
|
** or a sub-select with a column as the return value, then the
|
|
** affinity of that column is returned. Otherwise, 0x00 is returned,
|
|
** indicating no affinity for the expression.
|
|
**
|
|
** i.e. the WHERE clause expressions in the following statements all
|
|
** have an affinity:
|
|
**
|
|
** CREATE TABLE t1(a);
|
|
** SELECT * FROM t1 WHERE a;
|
|
** SELECT a AS b FROM t1 WHERE b;
|
|
** SELECT * FROM t1 WHERE (select a from t1);
|
|
*/
|
|
char sqlite3ExprAffinity(Expr *pExpr){
|
|
int op;
|
|
pExpr = sqlite3ExprSkipCollate(pExpr);
|
|
if( pExpr->flags & EP_Generic ) return 0;
|
|
op = pExpr->op;
|
|
if( op==TK_SELECT ){
|
|
assert( pExpr->flags&EP_xIsSelect );
|
|
return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
|
|
}
|
|
#ifndef SQLITE_OMIT_CAST
|
|
if( op==TK_CAST ){
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
return sqlite3AffinityType(pExpr->u.zToken, 0);
|
|
}
|
|
#endif
|
|
if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
|
|
&& pExpr->pTab!=0
|
|
){
|
|
/* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
|
|
** a TK_COLUMN but was previously evaluated and cached in a register */
|
|
int j = pExpr->iColumn;
|
|
if( j<0 ) return SQLITE_AFF_INTEGER;
|
|
assert( pExpr->pTab && j<pExpr->pTab->nCol );
|
|
return pExpr->pTab->aCol[j].affinity;
|
|
}
|
|
return pExpr->affinity;
|
|
}
|
|
|
|
/*
|
|
** Set the collating sequence for expression pExpr to be the collating
|
|
** sequence named by pToken. Return a pointer to a new Expr node that
|
|
** implements the COLLATE operator.
|
|
**
|
|
** If a memory allocation error occurs, that fact is recorded in pParse->db
|
|
** and the pExpr parameter is returned unchanged.
|
|
*/
|
|
Expr *sqlite3ExprAddCollateToken(
|
|
Parse *pParse, /* Parsing context */
|
|
Expr *pExpr, /* Add the "COLLATE" clause to this expression */
|
|
const Token *pCollName, /* Name of collating sequence */
|
|
int dequote /* True to dequote pCollName */
|
|
){
|
|
if( pCollName->n>0 ){
|
|
Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
|
|
if( pNew ){
|
|
pNew->pLeft = pExpr;
|
|
pNew->flags |= EP_Collate|EP_Skip;
|
|
pExpr = pNew;
|
|
}
|
|
}
|
|
return pExpr;
|
|
}
|
|
Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
|
|
Token s;
|
|
assert( zC!=0 );
|
|
sqlite3TokenInit(&s, (char*)zC);
|
|
return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
|
|
}
|
|
|
|
/*
|
|
** Skip over any TK_COLLATE operators and any unlikely()
|
|
** or likelihood() function at the root of an expression.
|
|
*/
|
|
Expr *sqlite3ExprSkipCollate(Expr *pExpr){
|
|
while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
|
|
if( ExprHasProperty(pExpr, EP_Unlikely) ){
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
assert( pExpr->x.pList->nExpr>0 );
|
|
assert( pExpr->op==TK_FUNCTION );
|
|
pExpr = pExpr->x.pList->a[0].pExpr;
|
|
}else{
|
|
assert( pExpr->op==TK_COLLATE );
|
|
pExpr = pExpr->pLeft;
|
|
}
|
|
}
|
|
return pExpr;
|
|
}
|
|
|
|
/*
|
|
** Return the collation sequence for the expression pExpr. If
|
|
** there is no defined collating sequence, return NULL.
|
|
**
|
|
** The collating sequence might be determined by a COLLATE operator
|
|
** or by the presence of a column with a defined collating sequence.
|
|
** COLLATE operators take first precedence. Left operands take
|
|
** precedence over right operands.
|
|
*/
|
|
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
|
sqlite3 *db = pParse->db;
|
|
CollSeq *pColl = 0;
|
|
Expr *p = pExpr;
|
|
while( p ){
|
|
int op = p->op;
|
|
if( p->flags & EP_Generic ) break;
|
|
if( op==TK_CAST || op==TK_UPLUS ){
|
|
p = p->pLeft;
|
|
continue;
|
|
}
|
|
if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
|
|
pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
|
|
break;
|
|
}
|
|
if( (op==TK_AGG_COLUMN || op==TK_COLUMN
|
|
|| op==TK_REGISTER || op==TK_TRIGGER)
|
|
&& p->pTab!=0
|
|
){
|
|
/* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
|
|
** a TK_COLUMN but was previously evaluated and cached in a register */
|
|
int j = p->iColumn;
|
|
if( j>=0 ){
|
|
const char *zColl = p->pTab->aCol[j].zColl;
|
|
pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
|
}
|
|
break;
|
|
}
|
|
if( p->flags & EP_Collate ){
|
|
if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
|
|
p = p->pLeft;
|
|
}else{
|
|
Expr *pNext = p->pRight;
|
|
/* The Expr.x union is never used at the same time as Expr.pRight */
|
|
assert( p->x.pList==0 || p->pRight==0 );
|
|
/* p->flags holds EP_Collate and p->pLeft->flags does not. And
|
|
** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at
|
|
** least one EP_Collate. Thus the following two ALWAYS. */
|
|
if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
|
|
int i;
|
|
for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
|
|
if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
|
|
pNext = p->x.pList->a[i].pExpr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
p = pNext;
|
|
}
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
if( sqlite3CheckCollSeq(pParse, pColl) ){
|
|
pColl = 0;
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** pExpr is an operand of a comparison operator. aff2 is the
|
|
** type affinity of the other operand. This routine returns the
|
|
** type affinity that should be used for the comparison operator.
|
|
*/
|
|
char sqlite3CompareAffinity(Expr *pExpr, char aff2){
|
|
char aff1 = sqlite3ExprAffinity(pExpr);
|
|
if( aff1 && aff2 ){
|
|
/* Both sides of the comparison are columns. If one has numeric
|
|
** affinity, use that. Otherwise use no affinity.
|
|
*/
|
|
if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
|
|
return SQLITE_AFF_NUMERIC;
|
|
}else{
|
|
return SQLITE_AFF_BLOB;
|
|
}
|
|
}else if( !aff1 && !aff2 ){
|
|
/* Neither side of the comparison is a column. Compare the
|
|
** results directly.
|
|
*/
|
|
return SQLITE_AFF_BLOB;
|
|
}else{
|
|
/* One side is a column, the other is not. Use the columns affinity. */
|
|
assert( aff1==0 || aff2==0 );
|
|
return (aff1 + aff2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** pExpr is a comparison operator. Return the type affinity that should
|
|
** be applied to both operands prior to doing the comparison.
|
|
*/
|
|
static char comparisonAffinity(Expr *pExpr){
|
|
char aff;
|
|
assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
|
|
pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
|
|
pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
|
|
assert( pExpr->pLeft );
|
|
aff = sqlite3ExprAffinity(pExpr->pLeft);
|
|
if( pExpr->pRight ){
|
|
aff = sqlite3CompareAffinity(pExpr->pRight, aff);
|
|
}else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
|
aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
|
|
}else if( !aff ){
|
|
aff = SQLITE_AFF_BLOB;
|
|
}
|
|
return aff;
|
|
}
|
|
|
|
/*
|
|
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
|
|
** idx_affinity is the affinity of an indexed column. Return true
|
|
** if the index with affinity idx_affinity may be used to implement
|
|
** the comparison in pExpr.
|
|
*/
|
|
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
|
|
char aff = comparisonAffinity(pExpr);
|
|
switch( aff ){
|
|
case SQLITE_AFF_BLOB:
|
|
return 1;
|
|
case SQLITE_AFF_TEXT:
|
|
return idx_affinity==SQLITE_AFF_TEXT;
|
|
default:
|
|
return sqlite3IsNumericAffinity(idx_affinity);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the P5 value that should be used for a binary comparison
|
|
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
|
|
*/
|
|
static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
|
|
u8 aff = (char)sqlite3ExprAffinity(pExpr2);
|
|
aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
|
|
return aff;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the collation sequence that should be used by
|
|
** a binary comparison operator comparing pLeft and pRight.
|
|
**
|
|
** If the left hand expression has a collating sequence type, then it is
|
|
** used. Otherwise the collation sequence for the right hand expression
|
|
** is used, or the default (BINARY) if neither expression has a collating
|
|
** type.
|
|
**
|
|
** Argument pRight (but not pLeft) may be a null pointer. In this case,
|
|
** it is not considered.
|
|
*/
|
|
CollSeq *sqlite3BinaryCompareCollSeq(
|
|
Parse *pParse,
|
|
Expr *pLeft,
|
|
Expr *pRight
|
|
){
|
|
CollSeq *pColl;
|
|
assert( pLeft );
|
|
if( pLeft->flags & EP_Collate ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
|
}else if( pRight && (pRight->flags & EP_Collate)!=0 ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pRight);
|
|
}else{
|
|
pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
|
if( !pColl ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pRight);
|
|
}
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a comparison operator.
|
|
*/
|
|
static int codeCompare(
|
|
Parse *pParse, /* The parsing (and code generating) context */
|
|
Expr *pLeft, /* The left operand */
|
|
Expr *pRight, /* The right operand */
|
|
int opcode, /* The comparison opcode */
|
|
int in1, int in2, /* Register holding operands */
|
|
int dest, /* Jump here if true. */
|
|
int jumpIfNull /* If true, jump if either operand is NULL */
|
|
){
|
|
int p5;
|
|
int addr;
|
|
CollSeq *p4;
|
|
|
|
p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
|
|
p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
|
|
addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
|
|
(void*)p4, P4_COLLSEQ);
|
|
sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
|
|
return addr;
|
|
}
|
|
|
|
#if SQLITE_MAX_EXPR_DEPTH>0
|
|
/*
|
|
** Check that argument nHeight is less than or equal to the maximum
|
|
** expression depth allowed. If it is not, leave an error message in
|
|
** pParse.
|
|
*/
|
|
int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
|
|
int rc = SQLITE_OK;
|
|
int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
|
|
if( nHeight>mxHeight ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"Expression tree is too large (maximum depth %d)", mxHeight
|
|
);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* The following three functions, heightOfExpr(), heightOfExprList()
|
|
** and heightOfSelect(), are used to determine the maximum height
|
|
** of any expression tree referenced by the structure passed as the
|
|
** first argument.
|
|
**
|
|
** If this maximum height is greater than the current value pointed
|
|
** to by pnHeight, the second parameter, then set *pnHeight to that
|
|
** value.
|
|
*/
|
|
static void heightOfExpr(Expr *p, int *pnHeight){
|
|
if( p ){
|
|
if( p->nHeight>*pnHeight ){
|
|
*pnHeight = p->nHeight;
|
|
}
|
|
}
|
|
}
|
|
static void heightOfExprList(ExprList *p, int *pnHeight){
|
|
if( p ){
|
|
int i;
|
|
for(i=0; i<p->nExpr; i++){
|
|
heightOfExpr(p->a[i].pExpr, pnHeight);
|
|
}
|
|
}
|
|
}
|
|
static void heightOfSelect(Select *p, int *pnHeight){
|
|
if( p ){
|
|
heightOfExpr(p->pWhere, pnHeight);
|
|
heightOfExpr(p->pHaving, pnHeight);
|
|
heightOfExpr(p->pLimit, pnHeight);
|
|
heightOfExpr(p->pOffset, pnHeight);
|
|
heightOfExprList(p->pEList, pnHeight);
|
|
heightOfExprList(p->pGroupBy, pnHeight);
|
|
heightOfExprList(p->pOrderBy, pnHeight);
|
|
heightOfSelect(p->pPrior, pnHeight);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Set the Expr.nHeight variable in the structure passed as an
|
|
** argument. An expression with no children, Expr.pList or
|
|
** Expr.pSelect member has a height of 1. Any other expression
|
|
** has a height equal to the maximum height of any other
|
|
** referenced Expr plus one.
|
|
**
|
|
** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
|
|
** if appropriate.
|
|
*/
|
|
static void exprSetHeight(Expr *p){
|
|
int nHeight = 0;
|
|
heightOfExpr(p->pLeft, &nHeight);
|
|
heightOfExpr(p->pRight, &nHeight);
|
|
if( ExprHasProperty(p, EP_xIsSelect) ){
|
|
heightOfSelect(p->x.pSelect, &nHeight);
|
|
}else if( p->x.pList ){
|
|
heightOfExprList(p->x.pList, &nHeight);
|
|
p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
|
|
}
|
|
p->nHeight = nHeight + 1;
|
|
}
|
|
|
|
/*
|
|
** Set the Expr.nHeight variable using the exprSetHeight() function. If
|
|
** the height is greater than the maximum allowed expression depth,
|
|
** leave an error in pParse.
|
|
**
|
|
** Also propagate all EP_Propagate flags from the Expr.x.pList into
|
|
** Expr.flags.
|
|
*/
|
|
void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
|
|
if( pParse->nErr ) return;
|
|
exprSetHeight(p);
|
|
sqlite3ExprCheckHeight(pParse, p->nHeight);
|
|
}
|
|
|
|
/*
|
|
** Return the maximum height of any expression tree referenced
|
|
** by the select statement passed as an argument.
|
|
*/
|
|
int sqlite3SelectExprHeight(Select *p){
|
|
int nHeight = 0;
|
|
heightOfSelect(p, &nHeight);
|
|
return nHeight;
|
|
}
|
|
#else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
|
|
/*
|
|
** Propagate all EP_Propagate flags from the Expr.x.pList into
|
|
** Expr.flags.
|
|
*/
|
|
void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
|
|
if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
|
|
p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
|
|
}
|
|
}
|
|
#define exprSetHeight(y)
|
|
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
|
|
|
|
/*
|
|
** This routine is the core allocator for Expr nodes.
|
|
**
|
|
** Construct a new expression node and return a pointer to it. Memory
|
|
** for this node and for the pToken argument is a single allocation
|
|
** obtained from sqlite3DbMalloc(). The calling function
|
|
** is responsible for making sure the node eventually gets freed.
|
|
**
|
|
** If dequote is true, then the token (if it exists) is dequoted.
|
|
** If dequote is false, no dequoting is performed. The deQuote
|
|
** parameter is ignored if pToken is NULL or if the token does not
|
|
** appear to be quoted. If the quotes were of the form "..." (double-quotes)
|
|
** then the EP_DblQuoted flag is set on the expression node.
|
|
**
|
|
** Special case: If op==TK_INTEGER and pToken points to a string that
|
|
** can be translated into a 32-bit integer, then the token is not
|
|
** stored in u.zToken. Instead, the integer values is written
|
|
** into u.iValue and the EP_IntValue flag is set. No extra storage
|
|
** is allocated to hold the integer text and the dequote flag is ignored.
|
|
*/
|
|
Expr *sqlite3ExprAlloc(
|
|
sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
|
int op, /* Expression opcode */
|
|
const Token *pToken, /* Token argument. Might be NULL */
|
|
int dequote /* True to dequote */
|
|
){
|
|
Expr *pNew;
|
|
int nExtra = 0;
|
|
int iValue = 0;
|
|
|
|
assert( db!=0 );
|
|
if( pToken ){
|
|
if( op!=TK_INTEGER || pToken->z==0
|
|
|| sqlite3GetInt32(pToken->z, &iValue)==0 ){
|
|
nExtra = pToken->n+1;
|
|
assert( iValue>=0 );
|
|
}
|
|
}
|
|
pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
|
|
if( pNew ){
|
|
memset(pNew, 0, sizeof(Expr));
|
|
pNew->op = (u8)op;
|
|
pNew->iAgg = -1;
|
|
if( pToken ){
|
|
if( nExtra==0 ){
|
|
pNew->flags |= EP_IntValue;
|
|
pNew->u.iValue = iValue;
|
|
}else{
|
|
int c;
|
|
pNew->u.zToken = (char*)&pNew[1];
|
|
assert( pToken->z!=0 || pToken->n==0 );
|
|
if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
|
|
pNew->u.zToken[pToken->n] = 0;
|
|
if( dequote && nExtra>=3
|
|
&& ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
|
|
sqlite3Dequote(pNew->u.zToken);
|
|
if( c=='"' ) pNew->flags |= EP_DblQuoted;
|
|
}
|
|
}
|
|
}
|
|
#if SQLITE_MAX_EXPR_DEPTH>0
|
|
pNew->nHeight = 1;
|
|
#endif
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Allocate a new expression node from a zero-terminated token that has
|
|
** already been dequoted.
|
|
*/
|
|
Expr *sqlite3Expr(
|
|
sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
|
int op, /* Expression opcode */
|
|
const char *zToken /* Token argument. Might be NULL */
|
|
){
|
|
Token x;
|
|
x.z = zToken;
|
|
x.n = zToken ? sqlite3Strlen30(zToken) : 0;
|
|
return sqlite3ExprAlloc(db, op, &x, 0);
|
|
}
|
|
|
|
/*
|
|
** Attach subtrees pLeft and pRight to the Expr node pRoot.
|
|
**
|
|
** If pRoot==NULL that means that a memory allocation error has occurred.
|
|
** In that case, delete the subtrees pLeft and pRight.
|
|
*/
|
|
void sqlite3ExprAttachSubtrees(
|
|
sqlite3 *db,
|
|
Expr *pRoot,
|
|
Expr *pLeft,
|
|
Expr *pRight
|
|
){
|
|
if( pRoot==0 ){
|
|
assert( db->mallocFailed );
|
|
sqlite3ExprDelete(db, pLeft);
|
|
sqlite3ExprDelete(db, pRight);
|
|
}else{
|
|
if( pRight ){
|
|
pRoot->pRight = pRight;
|
|
pRoot->flags |= EP_Propagate & pRight->flags;
|
|
}
|
|
if( pLeft ){
|
|
pRoot->pLeft = pLeft;
|
|
pRoot->flags |= EP_Propagate & pLeft->flags;
|
|
}
|
|
exprSetHeight(pRoot);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate an Expr node which joins as many as two subtrees.
|
|
**
|
|
** One or both of the subtrees can be NULL. Return a pointer to the new
|
|
** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
|
|
** free the subtrees and return NULL.
|
|
*/
|
|
Expr *sqlite3PExpr(
|
|
Parse *pParse, /* Parsing context */
|
|
int op, /* Expression opcode */
|
|
Expr *pLeft, /* Left operand */
|
|
Expr *pRight, /* Right operand */
|
|
const Token *pToken /* Argument token */
|
|
){
|
|
Expr *p;
|
|
if( op==TK_AND && pParse->nErr==0 ){
|
|
/* Take advantage of short-circuit false optimization for AND */
|
|
p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
|
|
}else{
|
|
p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
|
|
sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
|
}
|
|
if( p ) {
|
|
sqlite3ExprCheckHeight(pParse, p->nHeight);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** If the expression is always either TRUE or FALSE (respectively),
|
|
** then return 1. If one cannot determine the truth value of the
|
|
** expression at compile-time return 0.
|
|
**
|
|
** This is an optimization. If is OK to return 0 here even if
|
|
** the expression really is always false or false (a false negative).
|
|
** But it is a bug to return 1 if the expression might have different
|
|
** boolean values in different circumstances (a false positive.)
|
|
**
|
|
** Note that if the expression is part of conditional for a
|
|
** LEFT JOIN, then we cannot determine at compile-time whether or not
|
|
** is it true or false, so always return 0.
|
|
*/
|
|
static int exprAlwaysTrue(Expr *p){
|
|
int v = 0;
|
|
if( ExprHasProperty(p, EP_FromJoin) ) return 0;
|
|
if( !sqlite3ExprIsInteger(p, &v) ) return 0;
|
|
return v!=0;
|
|
}
|
|
static int exprAlwaysFalse(Expr *p){
|
|
int v = 0;
|
|
if( ExprHasProperty(p, EP_FromJoin) ) return 0;
|
|
if( !sqlite3ExprIsInteger(p, &v) ) return 0;
|
|
return v==0;
|
|
}
|
|
|
|
/*
|
|
** Join two expressions using an AND operator. If either expression is
|
|
** NULL, then just return the other expression.
|
|
**
|
|
** If one side or the other of the AND is known to be false, then instead
|
|
** of returning an AND expression, just return a constant expression with
|
|
** a value of false.
|
|
*/
|
|
Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
|
|
if( pLeft==0 ){
|
|
return pRight;
|
|
}else if( pRight==0 ){
|
|
return pLeft;
|
|
}else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
|
|
sqlite3ExprDelete(db, pLeft);
|
|
sqlite3ExprDelete(db, pRight);
|
|
return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
|
|
}else{
|
|
Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
|
|
sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
|
|
return pNew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Construct a new expression node for a function with multiple
|
|
** arguments.
|
|
*/
|
|
Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
|
|
Expr *pNew;
|
|
sqlite3 *db = pParse->db;
|
|
assert( pToken );
|
|
pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
|
|
if( pNew==0 ){
|
|
sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
|
|
return 0;
|
|
}
|
|
pNew->x.pList = pList;
|
|
assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
|
sqlite3ExprSetHeightAndFlags(pParse, pNew);
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Assign a variable number to an expression that encodes a wildcard
|
|
** in the original SQL statement.
|
|
**
|
|
** Wildcards consisting of a single "?" are assigned the next sequential
|
|
** variable number.
|
|
**
|
|
** Wildcards of the form "?nnn" are assigned the number "nnn". We make
|
|
** sure "nnn" is not too be to avoid a denial of service attack when
|
|
** the SQL statement comes from an external source.
|
|
**
|
|
** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
|
|
** as the previous instance of the same wildcard. Or if this is the first
|
|
** instance of the wildcard, the next sequential variable number is
|
|
** assigned.
|
|
*/
|
|
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
|
sqlite3 *db = pParse->db;
|
|
const char *z;
|
|
|
|
if( pExpr==0 ) return;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
|
|
z = pExpr->u.zToken;
|
|
assert( z!=0 );
|
|
assert( z[0]!=0 );
|
|
if( z[1]==0 ){
|
|
/* Wildcard of the form "?". Assign the next variable number */
|
|
assert( z[0]=='?' );
|
|
pExpr->iColumn = (ynVar)(++pParse->nVar);
|
|
}else{
|
|
ynVar x = 0;
|
|
u32 n = sqlite3Strlen30(z);
|
|
if( z[0]=='?' ){
|
|
/* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
|
** use it as the variable number */
|
|
i64 i;
|
|
int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
|
|
pExpr->iColumn = x = (ynVar)i;
|
|
testcase( i==0 );
|
|
testcase( i==1 );
|
|
testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
|
testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
|
if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
|
sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
|
db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
|
x = 0;
|
|
}
|
|
if( i>pParse->nVar ){
|
|
pParse->nVar = (int)i;
|
|
}
|
|
}else{
|
|
/* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
|
** number as the prior appearance of the same name, or if the name
|
|
** has never appeared before, reuse the same variable number
|
|
*/
|
|
ynVar i;
|
|
for(i=0; i<pParse->nzVar; i++){
|
|
if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
|
|
pExpr->iColumn = x = (ynVar)i+1;
|
|
break;
|
|
}
|
|
}
|
|
if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
|
|
}
|
|
if( x>0 ){
|
|
if( x>pParse->nzVar ){
|
|
char **a;
|
|
a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
|
|
if( a==0 ){
|
|
assert( db->mallocFailed ); /* Error reported through mallocFailed */
|
|
return;
|
|
}
|
|
pParse->azVar = a;
|
|
memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
|
|
pParse->nzVar = x;
|
|
}
|
|
if( z[0]!='?' || pParse->azVar[x-1]==0 ){
|
|
sqlite3DbFree(db, pParse->azVar[x-1]);
|
|
pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
|
|
}
|
|
}
|
|
}
|
|
if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
|
sqlite3ErrorMsg(pParse, "too many SQL variables");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Recursively delete an expression tree.
|
|
*/
|
|
void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
|
if( p==0 ) return;
|
|
/* Sanity check: Assert that the IntValue is non-negative if it exists */
|
|
assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
|
|
if( !ExprHasProperty(p, EP_TokenOnly) ){
|
|
/* The Expr.x union is never used at the same time as Expr.pRight */
|
|
assert( p->x.pList==0 || p->pRight==0 );
|
|
sqlite3ExprDelete(db, p->pLeft);
|
|
sqlite3ExprDelete(db, p->pRight);
|
|
if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
|
|
if( ExprHasProperty(p, EP_xIsSelect) ){
|
|
sqlite3SelectDelete(db, p->x.pSelect);
|
|
}else{
|
|
sqlite3ExprListDelete(db, p->x.pList);
|
|
}
|
|
}
|
|
if( !ExprHasProperty(p, EP_Static) ){
|
|
sqlite3DbFree(db, p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes allocated for the expression structure
|
|
** passed as the first argument. This is always one of EXPR_FULLSIZE,
|
|
** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
|
|
*/
|
|
static int exprStructSize(Expr *p){
|
|
if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
|
|
if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
|
|
return EXPR_FULLSIZE;
|
|
}
|
|
|
|
/*
|
|
** The dupedExpr*Size() routines each return the number of bytes required
|
|
** to store a copy of an expression or expression tree. They differ in
|
|
** how much of the tree is measured.
|
|
**
|
|
** dupedExprStructSize() Size of only the Expr structure
|
|
** dupedExprNodeSize() Size of Expr + space for token
|
|
** dupedExprSize() Expr + token + subtree components
|
|
**
|
|
***************************************************************************
|
|
**
|
|
** The dupedExprStructSize() function returns two values OR-ed together:
|
|
** (1) the space required for a copy of the Expr structure only and
|
|
** (2) the EP_xxx flags that indicate what the structure size should be.
|
|
** The return values is always one of:
|
|
**
|
|
** EXPR_FULLSIZE
|
|
** EXPR_REDUCEDSIZE | EP_Reduced
|
|
** EXPR_TOKENONLYSIZE | EP_TokenOnly
|
|
**
|
|
** The size of the structure can be found by masking the return value
|
|
** of this routine with 0xfff. The flags can be found by masking the
|
|
** return value with EP_Reduced|EP_TokenOnly.
|
|
**
|
|
** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
|
|
** (unreduced) Expr objects as they or originally constructed by the parser.
|
|
** During expression analysis, extra information is computed and moved into
|
|
** later parts of teh Expr object and that extra information might get chopped
|
|
** off if the expression is reduced. Note also that it does not work to
|
|
** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
|
|
** to reduce a pristine expression tree from the parser. The implementation
|
|
** of dupedExprStructSize() contain multiple assert() statements that attempt
|
|
** to enforce this constraint.
|
|
*/
|
|
static int dupedExprStructSize(Expr *p, int flags){
|
|
int nSize;
|
|
assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
|
|
assert( EXPR_FULLSIZE<=0xfff );
|
|
assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
|
|
if( 0==(flags&EXPRDUP_REDUCE) ){
|
|
nSize = EXPR_FULLSIZE;
|
|
}else{
|
|
assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
|
|
assert( !ExprHasProperty(p, EP_FromJoin) );
|
|
assert( !ExprHasProperty(p, EP_MemToken) );
|
|
assert( !ExprHasProperty(p, EP_NoReduce) );
|
|
if( p->pLeft || p->x.pList ){
|
|
nSize = EXPR_REDUCEDSIZE | EP_Reduced;
|
|
}else{
|
|
assert( p->pRight==0 );
|
|
nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
|
|
}
|
|
}
|
|
return nSize;
|
|
}
|
|
|
|
/*
|
|
** This function returns the space in bytes required to store the copy
|
|
** of the Expr structure and a copy of the Expr.u.zToken string (if that
|
|
** string is defined.)
|
|
*/
|
|
static int dupedExprNodeSize(Expr *p, int flags){
|
|
int nByte = dupedExprStructSize(p, flags) & 0xfff;
|
|
if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
|
nByte += sqlite3Strlen30(p->u.zToken)+1;
|
|
}
|
|
return ROUND8(nByte);
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes required to create a duplicate of the
|
|
** expression passed as the first argument. The second argument is a
|
|
** mask containing EXPRDUP_XXX flags.
|
|
**
|
|
** The value returned includes space to create a copy of the Expr struct
|
|
** itself and the buffer referred to by Expr.u.zToken, if any.
|
|
**
|
|
** If the EXPRDUP_REDUCE flag is set, then the return value includes
|
|
** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
|
|
** and Expr.pRight variables (but not for any structures pointed to or
|
|
** descended from the Expr.x.pList or Expr.x.pSelect variables).
|
|
*/
|
|
static int dupedExprSize(Expr *p, int flags){
|
|
int nByte = 0;
|
|
if( p ){
|
|
nByte = dupedExprNodeSize(p, flags);
|
|
if( flags&EXPRDUP_REDUCE ){
|
|
nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
|
|
}
|
|
}
|
|
return nByte;
|
|
}
|
|
|
|
/*
|
|
** This function is similar to sqlite3ExprDup(), except that if pzBuffer
|
|
** is not NULL then *pzBuffer is assumed to point to a buffer large enough
|
|
** to store the copy of expression p, the copies of p->u.zToken
|
|
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
|
|
** if any. Before returning, *pzBuffer is set to the first byte past the
|
|
** portion of the buffer copied into by this function.
|
|
*/
|
|
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
|
Expr *pNew = 0; /* Value to return */
|
|
assert( flags==0 || flags==EXPRDUP_REDUCE );
|
|
assert( db!=0 );
|
|
if( p ){
|
|
const int isReduced = (flags&EXPRDUP_REDUCE);
|
|
u8 *zAlloc;
|
|
u32 staticFlag = 0;
|
|
|
|
assert( pzBuffer==0 || isReduced );
|
|
|
|
/* Figure out where to write the new Expr structure. */
|
|
if( pzBuffer ){
|
|
zAlloc = *pzBuffer;
|
|
staticFlag = EP_Static;
|
|
}else{
|
|
zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, flags));
|
|
}
|
|
pNew = (Expr *)zAlloc;
|
|
|
|
if( pNew ){
|
|
/* Set nNewSize to the size allocated for the structure pointed to
|
|
** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
|
|
** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
|
|
** by the copy of the p->u.zToken string (if any).
|
|
*/
|
|
const unsigned nStructSize = dupedExprStructSize(p, flags);
|
|
const int nNewSize = nStructSize & 0xfff;
|
|
int nToken;
|
|
if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
|
nToken = sqlite3Strlen30(p->u.zToken) + 1;
|
|
}else{
|
|
nToken = 0;
|
|
}
|
|
if( isReduced ){
|
|
assert( ExprHasProperty(p, EP_Reduced)==0 );
|
|
memcpy(zAlloc, p, nNewSize);
|
|
}else{
|
|
u32 nSize = (u32)exprStructSize(p);
|
|
memcpy(zAlloc, p, nSize);
|
|
if( nSize<EXPR_FULLSIZE ){
|
|
memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
|
|
}
|
|
}
|
|
|
|
/* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
|
|
pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
|
|
pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
|
|
pNew->flags |= staticFlag;
|
|
|
|
/* Copy the p->u.zToken string, if any. */
|
|
if( nToken ){
|
|
char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
|
|
memcpy(zToken, p->u.zToken, nToken);
|
|
}
|
|
|
|
if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
|
|
/* Fill in the pNew->x.pSelect or pNew->x.pList member. */
|
|
if( ExprHasProperty(p, EP_xIsSelect) ){
|
|
pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
|
|
}else{
|
|
pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
|
|
}
|
|
}
|
|
|
|
/* Fill in pNew->pLeft and pNew->pRight. */
|
|
if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
|
|
zAlloc += dupedExprNodeSize(p, flags);
|
|
if( ExprHasProperty(pNew, EP_Reduced) ){
|
|
pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
|
|
pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
|
|
}
|
|
if( pzBuffer ){
|
|
*pzBuffer = zAlloc;
|
|
}
|
|
}else{
|
|
if( !ExprHasProperty(p, EP_TokenOnly) ){
|
|
pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
|
|
pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Create and return a deep copy of the object passed as the second
|
|
** argument. If an OOM condition is encountered, NULL is returned
|
|
** and the db->mallocFailed flag set.
|
|
*/
|
|
#ifndef SQLITE_OMIT_CTE
|
|
static With *withDup(sqlite3 *db, With *p){
|
|
With *pRet = 0;
|
|
if( p ){
|
|
int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
|
|
pRet = sqlite3DbMallocZero(db, nByte);
|
|
if( pRet ){
|
|
int i;
|
|
pRet->nCte = p->nCte;
|
|
for(i=0; i<p->nCte; i++){
|
|
pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
|
|
pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
|
|
pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
|
|
}
|
|
}
|
|
}
|
|
return pRet;
|
|
}
|
|
#else
|
|
# define withDup(x,y) 0
|
|
#endif
|
|
|
|
/*
|
|
** The following group of routines make deep copies of expressions,
|
|
** expression lists, ID lists, and select statements. The copies can
|
|
** be deleted (by being passed to their respective ...Delete() routines)
|
|
** without effecting the originals.
|
|
**
|
|
** The expression list, ID, and source lists return by sqlite3ExprListDup(),
|
|
** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
|
|
** by subsequent calls to sqlite*ListAppend() routines.
|
|
**
|
|
** Any tables that the SrcList might point to are not duplicated.
|
|
**
|
|
** The flags parameter contains a combination of the EXPRDUP_XXX flags.
|
|
** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
|
|
** truncated version of the usual Expr structure that will be stored as
|
|
** part of the in-memory representation of the database schema.
|
|
*/
|
|
Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
|
|
assert( flags==0 || flags==EXPRDUP_REDUCE );
|
|
return exprDup(db, p, flags, 0);
|
|
}
|
|
ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
|
|
ExprList *pNew;
|
|
struct ExprList_item *pItem, *pOldItem;
|
|
int i;
|
|
assert( db!=0 );
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nExpr = i = p->nExpr;
|
|
if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
|
|
pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) );
|
|
if( pItem==0 ){
|
|
sqlite3DbFree(db, pNew);
|
|
return 0;
|
|
}
|
|
pOldItem = p->a;
|
|
for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
|
|
Expr *pOldExpr = pOldItem->pExpr;
|
|
pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
|
|
pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
|
pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
|
|
pItem->sortOrder = pOldItem->sortOrder;
|
|
pItem->done = 0;
|
|
pItem->bSpanIsTab = pOldItem->bSpanIsTab;
|
|
pItem->u = pOldItem->u;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** If cursors, triggers, views and subqueries are all omitted from
|
|
** the build, then none of the following routines, except for
|
|
** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
|
|
** called with a NULL argument.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
|
|
|| !defined(SQLITE_OMIT_SUBQUERY)
|
|
SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
|
|
SrcList *pNew;
|
|
int i;
|
|
int nByte;
|
|
assert( db!=0 );
|
|
if( p==0 ) return 0;
|
|
nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
|
pNew = sqlite3DbMallocRawNN(db, nByte );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nSrc = pNew->nAlloc = p->nSrc;
|
|
for(i=0; i<p->nSrc; i++){
|
|
struct SrcList_item *pNewItem = &pNew->a[i];
|
|
struct SrcList_item *pOldItem = &p->a[i];
|
|
Table *pTab;
|
|
pNewItem->pSchema = pOldItem->pSchema;
|
|
pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
|
|
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
|
pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
|
|
pNewItem->fg = pOldItem->fg;
|
|
pNewItem->iCursor = pOldItem->iCursor;
|
|
pNewItem->addrFillSub = pOldItem->addrFillSub;
|
|
pNewItem->regReturn = pOldItem->regReturn;
|
|
if( pNewItem->fg.isIndexedBy ){
|
|
pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
|
|
}
|
|
pNewItem->pIBIndex = pOldItem->pIBIndex;
|
|
if( pNewItem->fg.isTabFunc ){
|
|
pNewItem->u1.pFuncArg =
|
|
sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
|
|
}
|
|
pTab = pNewItem->pTab = pOldItem->pTab;
|
|
if( pTab ){
|
|
pTab->nRef++;
|
|
}
|
|
pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
|
|
pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
|
|
pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
|
|
pNewItem->colUsed = pOldItem->colUsed;
|
|
}
|
|
return pNew;
|
|
}
|
|
IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
|
IdList *pNew;
|
|
int i;
|
|
assert( db!=0 );
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nId = p->nId;
|
|
pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
|
|
if( pNew->a==0 ){
|
|
sqlite3DbFree(db, pNew);
|
|
return 0;
|
|
}
|
|
/* Note that because the size of the allocation for p->a[] is not
|
|
** necessarily a power of two, sqlite3IdListAppend() may not be called
|
|
** on the duplicate created by this function. */
|
|
for(i=0; i<p->nId; i++){
|
|
struct IdList_item *pNewItem = &pNew->a[i];
|
|
struct IdList_item *pOldItem = &p->a[i];
|
|
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
|
pNewItem->idx = pOldItem->idx;
|
|
}
|
|
return pNew;
|
|
}
|
|
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
|
Select *pNew, *pPrior;
|
|
assert( db!=0 );
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
|
|
pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
|
|
pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
|
|
pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
|
|
pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
|
|
pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
|
|
pNew->op = p->op;
|
|
pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
|
|
if( pPrior ) pPrior->pNext = pNew;
|
|
pNew->pNext = 0;
|
|
pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
|
|
pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
|
|
pNew->iLimit = 0;
|
|
pNew->iOffset = 0;
|
|
pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
|
|
pNew->addrOpenEphm[0] = -1;
|
|
pNew->addrOpenEphm[1] = -1;
|
|
pNew->nSelectRow = p->nSelectRow;
|
|
pNew->pWith = withDup(db, p->pWith);
|
|
#ifdef MAXSCALE
|
|
pNew->pInto = sqlite3ExprListDup(db, p->pInto, flags);
|
|
#endif
|
|
sqlite3SelectSetName(pNew, p->zSelName);
|
|
return pNew;
|
|
}
|
|
#else
|
|
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
|
assert( p==0 );
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Add a new element to the end of an expression list. If pList is
|
|
** initially NULL, then create a new expression list.
|
|
**
|
|
** If a memory allocation error occurs, the entire list is freed and
|
|
** NULL is returned. If non-NULL is returned, then it is guaranteed
|
|
** that the new entry was successfully appended.
|
|
*/
|
|
ExprList *sqlite3ExprListAppend(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List to which to append. Might be NULL */
|
|
Expr *pExpr /* Expression to be appended. Might be NULL */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
assert( db!=0 );
|
|
if( pList==0 ){
|
|
pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
|
|
if( pList==0 ){
|
|
goto no_mem;
|
|
}
|
|
pList->nExpr = 0;
|
|
pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
|
|
if( pList->a==0 ) goto no_mem;
|
|
}else if( (pList->nExpr & (pList->nExpr-1))==0 ){
|
|
struct ExprList_item *a;
|
|
assert( pList->nExpr>0 );
|
|
a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
|
|
if( a==0 ){
|
|
goto no_mem;
|
|
}
|
|
pList->a = a;
|
|
}
|
|
assert( pList->a!=0 );
|
|
if( 1 ){
|
|
struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
|
memset(pItem, 0, sizeof(*pItem));
|
|
pItem->pExpr = pExpr;
|
|
}
|
|
return pList;
|
|
|
|
no_mem:
|
|
/* Avoid leaking memory if malloc has failed. */
|
|
sqlite3ExprDelete(db, pExpr);
|
|
sqlite3ExprListDelete(db, pList);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MAXSCALE
|
|
/*
|
|
** Add an expression list to the end of an expression list. If pList
|
|
** is initially NULL, then create a new expression list.
|
|
**
|
|
** If a memory allocation error occurs, the entire list is freed and
|
|
** NULL is returned. If non-NULL is returned, then it is guaranteed
|
|
** that the list was successfully appended.
|
|
*/
|
|
ExprList *sqlite3ExprListAppendList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List to which to append. Might be NULL */
|
|
ExprList *pAppend /* List to be appended. Might be NULL */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
int i;
|
|
assert( db!=0 );
|
|
if (!pAppend) {
|
|
return pList;
|
|
}
|
|
if (!pList) {
|
|
return pAppend;
|
|
}
|
|
|
|
for (i = 0; i < pAppend->nExpr; ++i) {
|
|
pList = sqlite3ExprListAppend(pParse, pList, pAppend->a[i].pExpr);
|
|
if (pList) {
|
|
pAppend->a[i].pExpr = NULL;
|
|
}
|
|
else {
|
|
goto no_mem;
|
|
}
|
|
}
|
|
sqlite3ExprListDelete(db, pAppend);
|
|
return pList;
|
|
|
|
no_mem:
|
|
sqlite3ExprListDelete(db, pList);
|
|
sqlite3ExprListDelete(db, pAppend);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
/*
|
|
** Set the sort order for the last element on the given ExprList.
|
|
*/
|
|
void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
|
|
if( p==0 ) return;
|
|
assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
|
|
assert( p->nExpr>0 );
|
|
if( iSortOrder<0 ){
|
|
assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
|
|
return;
|
|
}
|
|
p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
|
|
}
|
|
|
|
/*
|
|
** Set the ExprList.a[].zName element of the most recently added item
|
|
** on the expression list.
|
|
**
|
|
** pList might be NULL following an OOM error. But pName should never be
|
|
** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
|
** is set.
|
|
*/
|
|
void sqlite3ExprListSetName(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List to which to add the span. */
|
|
Token *pName, /* Name to be added */
|
|
int dequote /* True to cause the name to be dequoted */
|
|
){
|
|
assert( pList!=0 || pParse->db->mallocFailed!=0 );
|
|
if( pList ){
|
|
struct ExprList_item *pItem;
|
|
assert( pList->nExpr>0 );
|
|
pItem = &pList->a[pList->nExpr-1];
|
|
assert( pItem->zName==0 );
|
|
pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
|
|
if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Set the ExprList.a[].zSpan element of the most recently added item
|
|
** on the expression list.
|
|
**
|
|
** pList might be NULL following an OOM error. But pSpan should never be
|
|
** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
|
** is set.
|
|
*/
|
|
void sqlite3ExprListSetSpan(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List to which to add the span. */
|
|
ExprSpan *pSpan /* The span to be added */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
assert( pList!=0 || db->mallocFailed!=0 );
|
|
if( pList ){
|
|
struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
|
|
assert( pList->nExpr>0 );
|
|
assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
|
|
sqlite3DbFree(db, pItem->zSpan);
|
|
pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
|
|
(int)(pSpan->zEnd - pSpan->zStart));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If the expression list pEList contains more than iLimit elements,
|
|
** leave an error message in pParse.
|
|
*/
|
|
void sqlite3ExprListCheckLength(
|
|
Parse *pParse,
|
|
ExprList *pEList,
|
|
const char *zObject
|
|
){
|
|
int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
|
|
testcase( pEList && pEList->nExpr==mx );
|
|
testcase( pEList && pEList->nExpr==mx+1 );
|
|
if( pEList && pEList->nExpr>mx ){
|
|
sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete an entire expression list.
|
|
*/
|
|
void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
|
|
int i;
|
|
struct ExprList_item *pItem;
|
|
if( pList==0 ) return;
|
|
assert( pList->a!=0 || pList->nExpr==0 );
|
|
for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
|
sqlite3ExprDelete(db, pItem->pExpr);
|
|
sqlite3DbFree(db, pItem->zName);
|
|
sqlite3DbFree(db, pItem->zSpan);
|
|
}
|
|
sqlite3DbFree(db, pList->a);
|
|
sqlite3DbFree(db, pList);
|
|
}
|
|
|
|
/*
|
|
** Return the bitwise-OR of all Expr.flags fields in the given
|
|
** ExprList.
|
|
*/
|
|
u32 sqlite3ExprListFlags(const ExprList *pList){
|
|
int i;
|
|
u32 m = 0;
|
|
if( pList ){
|
|
for(i=0; i<pList->nExpr; i++){
|
|
Expr *pExpr = pList->a[i].pExpr;
|
|
if( ALWAYS(pExpr) ) m |= pExpr->flags;
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
** These routines are Walker callbacks used to check expressions to
|
|
** see if they are "constant" for some definition of constant. The
|
|
** Walker.eCode value determines the type of "constant" we are looking
|
|
** for.
|
|
**
|
|
** These callback routines are used to implement the following:
|
|
**
|
|
** sqlite3ExprIsConstant() pWalker->eCode==1
|
|
** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
|
|
** sqlite3ExprIsTableConstant() pWalker->eCode==3
|
|
** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
|
|
**
|
|
** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
|
|
** is found to not be a constant.
|
|
**
|
|
** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
|
|
** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing
|
|
** an existing schema and 4 when processing a new statement. A bound
|
|
** parameter raises an error for new statements, but is silently converted
|
|
** to NULL for existing schemas. This allows sqlite_master tables that
|
|
** contain a bound parameter because they were generated by older versions
|
|
** of SQLite to be parsed by newer versions of SQLite without raising a
|
|
** malformed schema error.
|
|
*/
|
|
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
|
|
|
|
/* If pWalker->eCode is 2 then any term of the expression that comes from
|
|
** the ON or USING clauses of a left join disqualifies the expression
|
|
** from being considered constant. */
|
|
if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
pWalker->eCode = 0;
|
|
return WRC_Abort;
|
|
}
|
|
|
|
switch( pExpr->op ){
|
|
/* Consider functions to be constant if all their arguments are constant
|
|
** and either pWalker->eCode==4 or 5 or the function has the
|
|
** SQLITE_FUNC_CONST flag. */
|
|
case TK_FUNCTION:
|
|
if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
|
|
return WRC_Continue;
|
|
}else{
|
|
pWalker->eCode = 0;
|
|
return WRC_Abort;
|
|
}
|
|
case TK_ID:
|
|
case TK_COLUMN:
|
|
case TK_AGG_FUNCTION:
|
|
case TK_AGG_COLUMN:
|
|
testcase( pExpr->op==TK_ID );
|
|
testcase( pExpr->op==TK_COLUMN );
|
|
testcase( pExpr->op==TK_AGG_FUNCTION );
|
|
testcase( pExpr->op==TK_AGG_COLUMN );
|
|
if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
|
|
return WRC_Continue;
|
|
}else{
|
|
pWalker->eCode = 0;
|
|
return WRC_Abort;
|
|
}
|
|
case TK_VARIABLE:
|
|
if( pWalker->eCode==5 ){
|
|
/* Silently convert bound parameters that appear inside of CREATE
|
|
** statements into a NULL when parsing the CREATE statement text out
|
|
** of the sqlite_master table */
|
|
pExpr->op = TK_NULL;
|
|
}else if( pWalker->eCode==4 ){
|
|
/* A bound parameter in a CREATE statement that originates from
|
|
** sqlite3_prepare() causes an error */
|
|
pWalker->eCode = 0;
|
|
return WRC_Abort;
|
|
}
|
|
/* Fall through */
|
|
default:
|
|
testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
|
|
testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
|
|
return WRC_Continue;
|
|
}
|
|
}
|
|
static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
|
|
UNUSED_PARAMETER(NotUsed);
|
|
pWalker->eCode = 0;
|
|
return WRC_Abort;
|
|
}
|
|
static int exprIsConst(Expr *p, int initFlag, int iCur){
|
|
Walker w;
|
|
memset(&w, 0, sizeof(w));
|
|
w.eCode = initFlag;
|
|
w.xExprCallback = exprNodeIsConstant;
|
|
w.xSelectCallback = selectNodeIsConstant;
|
|
w.u.iCur = iCur;
|
|
sqlite3WalkExpr(&w, p);
|
|
return w.eCode;
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return non-zero if the expression is constant
|
|
** and 0 if it involves variables or function calls.
|
|
**
|
|
** For the purposes of this function, a double-quoted string (ex: "abc")
|
|
** is considered a variable but a single-quoted string (ex: 'abc') is
|
|
** a constant.
|
|
*/
|
|
int sqlite3ExprIsConstant(Expr *p){
|
|
return exprIsConst(p, 1, 0);
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return non-zero if the expression is constant
|
|
** that does no originate from the ON or USING clauses of a join.
|
|
** Return 0 if it involves variables or function calls or terms from
|
|
** an ON or USING clause.
|
|
*/
|
|
int sqlite3ExprIsConstantNotJoin(Expr *p){
|
|
return exprIsConst(p, 2, 0);
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return non-zero if the expression is constant
|
|
** for any single row of the table with cursor iCur. In other words, the
|
|
** expression must not refer to any non-deterministic function nor any
|
|
** table other than iCur.
|
|
*/
|
|
int sqlite3ExprIsTableConstant(Expr *p, int iCur){
|
|
return exprIsConst(p, 3, iCur);
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return non-zero if the expression is constant
|
|
** or a function call with constant arguments. Return and 0 if there
|
|
** are any variables.
|
|
**
|
|
** For the purposes of this function, a double-quoted string (ex: "abc")
|
|
** is considered a variable but a single-quoted string (ex: 'abc') is
|
|
** a constant.
|
|
*/
|
|
int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
|
|
assert( isInit==0 || isInit==1 );
|
|
return exprIsConst(p, 4+isInit, 0);
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_CURSOR_HINTS
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression contains a
|
|
** subquery of some kind. Return 0 if there are no subqueries.
|
|
*/
|
|
int sqlite3ExprContainsSubquery(Expr *p){
|
|
Walker w;
|
|
memset(&w, 0, sizeof(w));
|
|
w.eCode = 1;
|
|
w.xExprCallback = sqlite3ExprWalkNoop;
|
|
w.xSelectCallback = selectNodeIsConstant;
|
|
sqlite3WalkExpr(&w, p);
|
|
return w.eCode==0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** If the expression p codes a constant integer that is small enough
|
|
** to fit in a 32-bit integer, return 1 and put the value of the integer
|
|
** in *pValue. If the expression is not an integer or if it is too big
|
|
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
|
*/
|
|
int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
|
int rc = 0;
|
|
|
|
/* If an expression is an integer literal that fits in a signed 32-bit
|
|
** integer, then the EP_IntValue flag will have already been set */
|
|
assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
|
|
|| sqlite3GetInt32(p->u.zToken, &rc)==0 );
|
|
|
|
if( p->flags & EP_IntValue ){
|
|
*pValue = p->u.iValue;
|
|
return 1;
|
|
}
|
|
switch( p->op ){
|
|
case TK_UPLUS: {
|
|
rc = sqlite3ExprIsInteger(p->pLeft, pValue);
|
|
break;
|
|
}
|
|
case TK_UMINUS: {
|
|
int v;
|
|
if( sqlite3ExprIsInteger(p->pLeft, &v) ){
|
|
assert( v!=(-2147483647-1) );
|
|
*pValue = -v;
|
|
rc = 1;
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return FALSE if there is no chance that the expression can be NULL.
|
|
**
|
|
** If the expression might be NULL or if the expression is too complex
|
|
** to tell return TRUE.
|
|
**
|
|
** This routine is used as an optimization, to skip OP_IsNull opcodes
|
|
** when we know that a value cannot be NULL. Hence, a false positive
|
|
** (returning TRUE when in fact the expression can never be NULL) might
|
|
** be a small performance hit but is otherwise harmless. On the other
|
|
** hand, a false negative (returning FALSE when the result could be NULL)
|
|
** will likely result in an incorrect answer. So when in doubt, return
|
|
** TRUE.
|
|
*/
|
|
int sqlite3ExprCanBeNull(const Expr *p){
|
|
u8 op;
|
|
while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
|
op = p->op;
|
|
if( op==TK_REGISTER ) op = p->op2;
|
|
switch( op ){
|
|
case TK_INTEGER:
|
|
case TK_STRING:
|
|
case TK_FLOAT:
|
|
case TK_BLOB:
|
|
return 0;
|
|
case TK_COLUMN:
|
|
assert( p->pTab!=0 );
|
|
return ExprHasProperty(p, EP_CanBeNull) ||
|
|
(p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given expression is a constant which would be
|
|
** unchanged by OP_Affinity with the affinity given in the second
|
|
** argument.
|
|
**
|
|
** This routine is used to determine if the OP_Affinity operation
|
|
** can be omitted. When in doubt return FALSE. A false negative
|
|
** is harmless. A false positive, however, can result in the wrong
|
|
** answer.
|
|
*/
|
|
int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
|
|
u8 op;
|
|
if( aff==SQLITE_AFF_BLOB ) return 1;
|
|
while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
|
op = p->op;
|
|
if( op==TK_REGISTER ) op = p->op2;
|
|
switch( op ){
|
|
case TK_INTEGER: {
|
|
return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
|
|
}
|
|
case TK_FLOAT: {
|
|
return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
|
|
}
|
|
case TK_STRING: {
|
|
return aff==SQLITE_AFF_TEXT;
|
|
}
|
|
case TK_BLOB: {
|
|
return 1;
|
|
}
|
|
case TK_COLUMN: {
|
|
assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
|
|
return p->iColumn<0
|
|
&& (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
|
|
}
|
|
default: {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given string is a row-id column name.
|
|
*/
|
|
int sqlite3IsRowid(const char *z){
|
|
if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
|
|
if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
|
|
if( sqlite3StrICmp(z, "OID")==0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return true if we are able to the IN operator optimization on a
|
|
** query of the form
|
|
**
|
|
** x IN (SELECT ...)
|
|
**
|
|
** Where the SELECT... clause is as specified by the parameter to this
|
|
** routine.
|
|
**
|
|
** The Select object passed in has already been preprocessed and no
|
|
** errors have been found.
|
|
*/
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
static int isCandidateForInOpt(Select *p){
|
|
SrcList *pSrc;
|
|
ExprList *pEList;
|
|
Table *pTab;
|
|
if( p==0 ) return 0; /* right-hand side of IN is SELECT */
|
|
if( p->pPrior ) return 0; /* Not a compound SELECT */
|
|
if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
|
|
testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
|
|
testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
|
|
return 0; /* No DISTINCT keyword and no aggregate functions */
|
|
}
|
|
assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
|
|
if( p->pLimit ) return 0; /* Has no LIMIT clause */
|
|
assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
|
|
if( p->pWhere ) return 0; /* Has no WHERE clause */
|
|
pSrc = p->pSrc;
|
|
assert( pSrc!=0 );
|
|
if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
|
|
if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
|
|
pTab = pSrc->a[0].pTab;
|
|
if( NEVER(pTab==0) ) return 0;
|
|
assert( pTab->pSelect==0 ); /* FROM clause is not a view */
|
|
if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
|
|
pEList = p->pEList;
|
|
if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
|
|
if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
|
/*
|
|
** Code an OP_Once instruction and allocate space for its flag. Return the
|
|
** address of the new instruction.
|
|
*/
|
|
int sqlite3CodeOnce(Parse *pParse){
|
|
Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
|
return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
|
|
}
|
|
|
|
/*
|
|
** Generate code that checks the left-most column of index table iCur to see if
|
|
** it contains any NULL entries. Cause the register at regHasNull to be set
|
|
** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
|
|
** to be set to NULL if iCur contains one or more NULL values.
|
|
*/
|
|
static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
|
|
int addr1;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
|
|
addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
|
|
VdbeComment((v, "first_entry_in(%d)", iCur));
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/*
|
|
** The argument is an IN operator with a list (not a subquery) on the
|
|
** right-hand side. Return TRUE if that list is constant.
|
|
*/
|
|
static int sqlite3InRhsIsConstant(Expr *pIn){
|
|
Expr *pLHS;
|
|
int res;
|
|
assert( !ExprHasProperty(pIn, EP_xIsSelect) );
|
|
pLHS = pIn->pLeft;
|
|
pIn->pLeft = 0;
|
|
res = sqlite3ExprIsConstant(pIn);
|
|
pIn->pLeft = pLHS;
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This function is used by the implementation of the IN (...) operator.
|
|
** The pX parameter is the expression on the RHS of the IN operator, which
|
|
** might be either a list of expressions or a subquery.
|
|
**
|
|
** The job of this routine is to find or create a b-tree object that can
|
|
** be used either to test for membership in the RHS set or to iterate through
|
|
** all members of the RHS set, skipping duplicates.
|
|
**
|
|
** A cursor is opened on the b-tree object that is the RHS of the IN operator
|
|
** and pX->iTable is set to the index of that cursor.
|
|
**
|
|
** The returned value of this function indicates the b-tree type, as follows:
|
|
**
|
|
** IN_INDEX_ROWID - The cursor was opened on a database table.
|
|
** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
|
|
** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
|
|
** IN_INDEX_EPH - The cursor was opened on a specially created and
|
|
** populated epheremal table.
|
|
** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
|
|
** implemented as a sequence of comparisons.
|
|
**
|
|
** An existing b-tree might be used if the RHS expression pX is a simple
|
|
** subquery such as:
|
|
**
|
|
** SELECT <column> FROM <table>
|
|
**
|
|
** If the RHS of the IN operator is a list or a more complex subquery, then
|
|
** an ephemeral table might need to be generated from the RHS and then
|
|
** pX->iTable made to point to the ephemeral table instead of an
|
|
** existing table.
|
|
**
|
|
** The inFlags parameter must contain exactly one of the bits
|
|
** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
|
|
** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
|
|
** fast membership test. When the IN_INDEX_LOOP bit is set, the
|
|
** IN index will be used to loop over all values of the RHS of the
|
|
** IN operator.
|
|
**
|
|
** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
|
|
** through the set members) then the b-tree must not contain duplicates.
|
|
** An epheremal table must be used unless the selected <column> is guaranteed
|
|
** to be unique - either because it is an INTEGER PRIMARY KEY or it
|
|
** has a UNIQUE constraint or UNIQUE index.
|
|
**
|
|
** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
|
|
** for fast set membership tests) then an epheremal table must
|
|
** be used unless <column> is an INTEGER PRIMARY KEY or an index can
|
|
** be found with <column> as its left-most column.
|
|
**
|
|
** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
|
|
** if the RHS of the IN operator is a list (not a subquery) then this
|
|
** routine might decide that creating an ephemeral b-tree for membership
|
|
** testing is too expensive and return IN_INDEX_NOOP. In that case, the
|
|
** calling routine should implement the IN operator using a sequence
|
|
** of Eq or Ne comparison operations.
|
|
**
|
|
** When the b-tree is being used for membership tests, the calling function
|
|
** might need to know whether or not the RHS side of the IN operator
|
|
** contains a NULL. If prRhsHasNull is not a NULL pointer and
|
|
** if there is any chance that the (...) might contain a NULL value at
|
|
** runtime, then a register is allocated and the register number written
|
|
** to *prRhsHasNull. If there is no chance that the (...) contains a
|
|
** NULL value, then *prRhsHasNull is left unchanged.
|
|
**
|
|
** If a register is allocated and its location stored in *prRhsHasNull, then
|
|
** the value in that register will be NULL if the b-tree contains one or more
|
|
** NULL values, and it will be some non-NULL value if the b-tree contains no
|
|
** NULL values.
|
|
*/
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
|
|
Select *p; /* SELECT to the right of IN operator */
|
|
int eType = 0; /* Type of RHS table. IN_INDEX_* */
|
|
int iTab = pParse->nTab++; /* Cursor of the RHS table */
|
|
int mustBeUnique; /* True if RHS must be unique */
|
|
Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
|
|
|
assert( pX->op==TK_IN );
|
|
mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
|
|
|
|
/* Check to see if an existing table or index can be used to
|
|
** satisfy the query. This is preferable to generating a new
|
|
** ephemeral table.
|
|
*/
|
|
p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
|
|
if( pParse->nErr==0 && isCandidateForInOpt(p) ){
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
Table *pTab; /* Table <table>. */
|
|
Expr *pExpr; /* Expression <column> */
|
|
i16 iCol; /* Index of column <column> */
|
|
i16 iDb; /* Database idx for pTab */
|
|
|
|
assert( p ); /* Because of isCandidateForInOpt(p) */
|
|
assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
|
|
assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
|
|
assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
|
|
pTab = p->pSrc->a[0].pTab;
|
|
pExpr = p->pEList->a[0].pExpr;
|
|
iCol = (i16)pExpr->iColumn;
|
|
|
|
/* Code an OP_Transaction and OP_TableLock for <table>. */
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
|
|
/* This function is only called from two places. In both cases the vdbe
|
|
** has already been allocated. So assume sqlite3GetVdbe() is always
|
|
** successful here.
|
|
*/
|
|
assert(v);
|
|
if( iCol<0 ){
|
|
int iAddr = sqlite3CodeOnce(pParse);
|
|
VdbeCoverage(v);
|
|
|
|
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
|
eType = IN_INDEX_ROWID;
|
|
|
|
sqlite3VdbeJumpHere(v, iAddr);
|
|
}else{
|
|
Index *pIdx; /* Iterator variable */
|
|
|
|
/* The collation sequence used by the comparison. If an index is to
|
|
** be used in place of a temp-table, it must be ordered according
|
|
** to this collation sequence. */
|
|
CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
|
|
|
|
/* Check that the affinity that will be used to perform the
|
|
** comparison is the same as the affinity of the column. If
|
|
** it is not, it is not possible to use any index.
|
|
*/
|
|
int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
|
|
|
|
for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
|
|
if( (pIdx->aiColumn[0]==iCol)
|
|
&& sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
|
|
&& (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
|
|
){
|
|
int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
|
|
eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
|
|
|
|
if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
|
|
*prRhsHasNull = ++pParse->nMem;
|
|
sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
|
|
}
|
|
sqlite3VdbeJumpHere(v, iAddr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If no preexisting index is available for the IN clause
|
|
** and IN_INDEX_NOOP is an allowed reply
|
|
** and the RHS of the IN operator is a list, not a subquery
|
|
** and the RHS is not contant or has two or fewer terms,
|
|
** then it is not worth creating an ephemeral table to evaluate
|
|
** the IN operator so return IN_INDEX_NOOP.
|
|
*/
|
|
if( eType==0
|
|
&& (inFlags & IN_INDEX_NOOP_OK)
|
|
&& !ExprHasProperty(pX, EP_xIsSelect)
|
|
&& (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
|
|
){
|
|
eType = IN_INDEX_NOOP;
|
|
}
|
|
|
|
|
|
if( eType==0 ){
|
|
/* Could not find an existing table or index to use as the RHS b-tree.
|
|
** We will have to generate an ephemeral table to do the job.
|
|
*/
|
|
u32 savedNQueryLoop = pParse->nQueryLoop;
|
|
int rMayHaveNull = 0;
|
|
eType = IN_INDEX_EPH;
|
|
if( inFlags & IN_INDEX_LOOP ){
|
|
pParse->nQueryLoop = 0;
|
|
if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
|
|
eType = IN_INDEX_ROWID;
|
|
}
|
|
}else if( prRhsHasNull ){
|
|
*prRhsHasNull = rMayHaveNull = ++pParse->nMem;
|
|
}
|
|
sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
|
|
pParse->nQueryLoop = savedNQueryLoop;
|
|
}else{
|
|
pX->iTable = iTab;
|
|
}
|
|
return eType;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Generate code for scalar subqueries used as a subquery expression, EXISTS,
|
|
** or IN operators. Examples:
|
|
**
|
|
** (SELECT a FROM b) -- subquery
|
|
** EXISTS (SELECT a FROM b) -- EXISTS subquery
|
|
** x IN (4,5,11) -- IN operator with list on right-hand side
|
|
** x IN (SELECT a FROM b) -- IN operator with subquery on the right
|
|
**
|
|
** The pExpr parameter describes the expression that contains the IN
|
|
** operator or subquery.
|
|
**
|
|
** If parameter isRowid is non-zero, then expression pExpr is guaranteed
|
|
** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
|
|
** to some integer key column of a table B-Tree. In this case, use an
|
|
** intkey B-Tree to store the set of IN(...) values instead of the usual
|
|
** (slower) variable length keys B-Tree.
|
|
**
|
|
** If rMayHaveNull is non-zero, that means that the operation is an IN
|
|
** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
|
|
** All this routine does is initialize the register given by rMayHaveNull
|
|
** to NULL. Calling routines will take care of changing this register
|
|
** value to non-NULL if the RHS is NULL-free.
|
|
**
|
|
** For a SELECT or EXISTS operator, return the register that holds the
|
|
** result. For IN operators or if an error occurs, the return value is 0.
|
|
*/
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
int sqlite3CodeSubselect(
|
|
Parse *pParse, /* Parsing context */
|
|
Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
|
|
int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
|
|
int isRowid /* If true, LHS of IN operator is a rowid */
|
|
){
|
|
int jmpIfDynamic = -1; /* One-time test address */
|
|
int rReg = 0; /* Register storing resulting */
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( NEVER(v==0) ) return 0;
|
|
sqlite3ExprCachePush(pParse);
|
|
|
|
/* This code must be run in its entirety every time it is encountered
|
|
** if any of the following is true:
|
|
**
|
|
** * The right-hand side is a correlated subquery
|
|
** * The right-hand side is an expression list containing variables
|
|
** * We are inside a trigger
|
|
**
|
|
** If all of the above are false, then we can run this code just once
|
|
** save the results, and reuse the same result on subsequent invocations.
|
|
*/
|
|
if( !ExprHasProperty(pExpr, EP_VarSelect) ){
|
|
jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( pParse->explain==2 ){
|
|
char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
|
|
jmpIfDynamic>=0?"":"CORRELATED ",
|
|
pExpr->op==TK_IN?"LIST":"SCALAR",
|
|
pParse->iNextSelectId
|
|
);
|
|
sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
|
}
|
|
#endif
|
|
|
|
switch( pExpr->op ){
|
|
case TK_IN: {
|
|
char affinity; /* Affinity of the LHS of the IN */
|
|
int addr; /* Address of OP_OpenEphemeral instruction */
|
|
Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
|
|
KeyInfo *pKeyInfo = 0; /* Key information */
|
|
|
|
affinity = sqlite3ExprAffinity(pLeft);
|
|
|
|
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
|
** expression it is handled the same way. An ephemeral table is
|
|
** filled with single-field index keys representing the results
|
|
** from the SELECT or the <exprlist>.
|
|
**
|
|
** If the 'x' expression is a column value, or the SELECT...
|
|
** statement returns a column value, then the affinity of that
|
|
** column is used to build the index keys. If both 'x' and the
|
|
** SELECT... statement are columns, then numeric affinity is used
|
|
** if either column has NUMERIC or INTEGER affinity. If neither
|
|
** 'x' nor the SELECT... statement are columns, then numeric affinity
|
|
** is used.
|
|
*/
|
|
pExpr->iTable = pParse->nTab++;
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
|
|
pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
|
|
|
|
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
|
/* Case 1: expr IN (SELECT ...)
|
|
**
|
|
** Generate code to write the results of the select into the temporary
|
|
** table allocated and opened above.
|
|
*/
|
|
Select *pSelect = pExpr->x.pSelect;
|
|
SelectDest dest;
|
|
ExprList *pEList;
|
|
|
|
assert( !isRowid );
|
|
sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
|
dest.affSdst = (u8)affinity;
|
|
assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
|
pSelect->iLimit = 0;
|
|
testcase( pSelect->selFlags & SF_Distinct );
|
|
testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
|
|
if( sqlite3Select(pParse, pSelect, &dest) ){
|
|
sqlite3KeyInfoUnref(pKeyInfo);
|
|
return 0;
|
|
}
|
|
pEList = pSelect->pEList;
|
|
assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
|
|
assert( pEList!=0 );
|
|
assert( pEList->nExpr>0 );
|
|
assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
|
|
pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
|
pEList->a[0].pExpr);
|
|
}else if( ALWAYS(pExpr->x.pList!=0) ){
|
|
/* Case 2: expr IN (exprlist)
|
|
**
|
|
** For each expression, build an index key from the evaluation and
|
|
** store it in the temporary table. If <expr> is a column, then use
|
|
** that columns affinity when building index keys. If <expr> is not
|
|
** a column, use numeric affinity.
|
|
*/
|
|
int i;
|
|
ExprList *pList = pExpr->x.pList;
|
|
struct ExprList_item *pItem;
|
|
int r1, r2, r3;
|
|
|
|
if( !affinity ){
|
|
affinity = SQLITE_AFF_BLOB;
|
|
}
|
|
if( pKeyInfo ){
|
|
assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
|
|
pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
|
}
|
|
|
|
/* Loop through each expression in <exprlist>. */
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
r2 = sqlite3GetTempReg(pParse);
|
|
if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
|
for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
|
Expr *pE2 = pItem->pExpr;
|
|
int iValToIns;
|
|
|
|
/* If the expression is not constant then we will need to
|
|
** disable the test that was generated above that makes sure
|
|
** this code only executes once. Because for a non-constant
|
|
** expression we need to rerun this code each time.
|
|
*/
|
|
if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
|
|
sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
|
|
jmpIfDynamic = -1;
|
|
}
|
|
|
|
/* Evaluate the expression and insert it into the temp table */
|
|
if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
|
|
sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
|
|
}else{
|
|
r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
|
|
if( isRowid ){
|
|
sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
|
|
sqlite3VdbeCurrentAddr(v)+2);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
|
}else{
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
|
sqlite3ExprCacheAffinityChange(pParse, r3, 1);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
|
}
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
sqlite3ReleaseTempReg(pParse, r2);
|
|
}
|
|
if( pKeyInfo ){
|
|
sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TK_EXISTS:
|
|
case TK_SELECT:
|
|
default: {
|
|
/* If this has to be a scalar SELECT. Generate code to put the
|
|
** value of this select in a memory cell and record the number
|
|
** of the memory cell in iColumn. If this is an EXISTS, write
|
|
** an integer 0 (not exists) or 1 (exists) into a memory cell
|
|
** and record that memory cell in iColumn.
|
|
*/
|
|
Select *pSel; /* SELECT statement to encode */
|
|
SelectDest dest; /* How to deal with SELECt result */
|
|
|
|
testcase( pExpr->op==TK_EXISTS );
|
|
testcase( pExpr->op==TK_SELECT );
|
|
assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
|
|
|
|
assert( ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
pSel = pExpr->x.pSelect;
|
|
sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
|
|
if( pExpr->op==TK_SELECT ){
|
|
dest.eDest = SRT_Mem;
|
|
dest.iSdst = dest.iSDParm;
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
|
|
VdbeComment((v, "Init subquery result"));
|
|
}else{
|
|
dest.eDest = SRT_Exists;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
|
|
VdbeComment((v, "Init EXISTS result"));
|
|
}
|
|
sqlite3ExprDelete(pParse->db, pSel->pLimit);
|
|
pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
|
|
&sqlite3IntTokens[1]);
|
|
pSel->iLimit = 0;
|
|
pSel->selFlags &= ~SF_MultiValue;
|
|
if( sqlite3Select(pParse, pSel, &dest) ){
|
|
return 0;
|
|
}
|
|
rReg = dest.iSDParm;
|
|
ExprSetVVAProperty(pExpr, EP_NoReduce);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( rHasNullFlag ){
|
|
sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
|
|
}
|
|
|
|
if( jmpIfDynamic>=0 ){
|
|
sqlite3VdbeJumpHere(v, jmpIfDynamic);
|
|
}
|
|
sqlite3ExprCachePop(pParse);
|
|
|
|
return rReg;
|
|
}
|
|
#endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/*
|
|
** Generate code for an IN expression.
|
|
**
|
|
** x IN (SELECT ...)
|
|
** x IN (value, value, ...)
|
|
**
|
|
** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
|
|
** is an array of zero or more values. The expression is true if the LHS is
|
|
** contained within the RHS. The value of the expression is unknown (NULL)
|
|
** if the LHS is NULL or if the LHS is not contained within the RHS and the
|
|
** RHS contains one or more NULL values.
|
|
**
|
|
** This routine generates code that jumps to destIfFalse if the LHS is not
|
|
** contained within the RHS. If due to NULLs we cannot determine if the LHS
|
|
** is contained in the RHS then jump to destIfNull. If the LHS is contained
|
|
** within the RHS then fall through.
|
|
*/
|
|
static void sqlite3ExprCodeIN(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Expr *pExpr, /* The IN expression */
|
|
int destIfFalse, /* Jump here if LHS is not contained in the RHS */
|
|
int destIfNull /* Jump here if the results are unknown due to NULLs */
|
|
){
|
|
int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
|
|
char affinity; /* Comparison affinity to use */
|
|
int eType; /* Type of the RHS */
|
|
int r1; /* Temporary use register */
|
|
Vdbe *v; /* Statement under construction */
|
|
|
|
/* Compute the RHS. After this step, the table with cursor
|
|
** pExpr->iTable will contains the values that make up the RHS.
|
|
*/
|
|
v = pParse->pVdbe;
|
|
assert( v!=0 ); /* OOM detected prior to this routine */
|
|
VdbeNoopComment((v, "begin IN expr"));
|
|
eType = sqlite3FindInIndex(pParse, pExpr,
|
|
IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
|
|
destIfFalse==destIfNull ? 0 : &rRhsHasNull);
|
|
|
|
/* Figure out the affinity to use to create a key from the results
|
|
** of the expression. affinityStr stores a static string suitable for
|
|
** P4 of OP_MakeRecord.
|
|
*/
|
|
affinity = comparisonAffinity(pExpr);
|
|
|
|
/* Code the LHS, the <expr> from "<expr> IN (...)".
|
|
*/
|
|
sqlite3ExprCachePush(pParse);
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3ExprCode(pParse, pExpr->pLeft, r1);
|
|
|
|
/* If sqlite3FindInIndex() did not find or create an index that is
|
|
** suitable for evaluating the IN operator, then evaluate using a
|
|
** sequence of comparisons.
|
|
*/
|
|
if( eType==IN_INDEX_NOOP ){
|
|
ExprList *pList = pExpr->x.pList;
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
|
int labelOk = sqlite3VdbeMakeLabel(v);
|
|
int r2, regToFree;
|
|
int regCkNull = 0;
|
|
int ii;
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
if( destIfNull!=destIfFalse ){
|
|
regCkNull = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
|
|
}
|
|
for(ii=0; ii<pList->nExpr; ii++){
|
|
r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree);
|
|
if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
|
|
sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
|
|
}
|
|
if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
|
|
sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
|
|
(void*)pColl, P4_COLLSEQ);
|
|
VdbeCoverageIf(v, ii<pList->nExpr-1);
|
|
VdbeCoverageIf(v, ii==pList->nExpr-1);
|
|
sqlite3VdbeChangeP5(v, affinity);
|
|
}else{
|
|
assert( destIfNull==destIfFalse );
|
|
sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
|
|
(void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
|
|
sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regToFree);
|
|
}
|
|
if( regCkNull ){
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, destIfFalse);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, labelOk);
|
|
sqlite3ReleaseTempReg(pParse, regCkNull);
|
|
}else{
|
|
|
|
/* If the LHS is NULL, then the result is either false or NULL depending
|
|
** on whether the RHS is empty or not, respectively.
|
|
*/
|
|
if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
|
|
if( destIfNull==destIfFalse ){
|
|
/* Shortcut for the common case where the false and NULL outcomes are
|
|
** the same. */
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
|
|
}else{
|
|
int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, destIfNull);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
}
|
|
|
|
if( eType==IN_INDEX_ROWID ){
|
|
/* In this case, the RHS is the ROWID of table b-tree
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
|
|
VdbeCoverage(v);
|
|
}else{
|
|
/* In this case, the RHS is an index b-tree.
|
|
*/
|
|
sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
|
|
|
|
/* If the set membership test fails, then the result of the
|
|
** "x IN (...)" expression must be either 0 or NULL. If the set
|
|
** contains no NULL values, then the result is 0. If the set
|
|
** contains one or more NULL values, then the result of the
|
|
** expression is also NULL.
|
|
*/
|
|
assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
|
|
if( rRhsHasNull==0 ){
|
|
/* This branch runs if it is known at compile time that the RHS
|
|
** cannot contain NULL values. This happens as the result
|
|
** of a "NOT NULL" constraint in the database schema.
|
|
**
|
|
** Also run this branch if NULL is equivalent to FALSE
|
|
** for this particular IN operator.
|
|
*/
|
|
sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
|
|
VdbeCoverage(v);
|
|
}else{
|
|
/* In this branch, the RHS of the IN might contain a NULL and
|
|
** the presence of a NULL on the RHS makes a difference in the
|
|
** outcome.
|
|
*/
|
|
int addr1;
|
|
|
|
/* First check to see if the LHS is contained in the RHS. If so,
|
|
** then the answer is TRUE the presence of NULLs in the RHS does
|
|
** not matter. If the LHS is not contained in the RHS, then the
|
|
** answer is NULL if the RHS contains NULLs and the answer is
|
|
** FALSE if the RHS is NULL-free.
|
|
*/
|
|
addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, destIfFalse);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
sqlite3ExprCachePop(pParse);
|
|
VdbeComment((v, "end IN expr"));
|
|
}
|
|
#endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/*
|
|
** Generate an instruction that will put the floating point
|
|
** value described by z[0..n-1] into register iMem.
|
|
**
|
|
** The z[] string will probably not be zero-terminated. But the
|
|
** z[n] character is guaranteed to be something that does not look
|
|
** like the continuation of the number.
|
|
*/
|
|
static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
|
|
if( ALWAYS(z!=0) ){
|
|
double value;
|
|
sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
|
assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
|
|
if( negateFlag ) value = -value;
|
|
sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Generate an instruction that will put the integer describe by
|
|
** text z[0..n-1] into register iMem.
|
|
**
|
|
** Expr.u.zToken is always UTF8 and zero-terminated.
|
|
*/
|
|
static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
|
|
Vdbe *v = pParse->pVdbe;
|
|
if( pExpr->flags & EP_IntValue ){
|
|
int i = pExpr->u.iValue;
|
|
assert( i>=0 );
|
|
if( negFlag ) i = -i;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
|
|
}else{
|
|
int c;
|
|
i64 value;
|
|
const char *z = pExpr->u.zToken;
|
|
assert( z!=0 );
|
|
c = sqlite3DecOrHexToI64(z, &value);
|
|
if( c==0 || (c==2 && negFlag) ){
|
|
if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
|
|
sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
|
|
}else{
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
|
|
#else
|
|
#ifndef SQLITE_OMIT_HEX_INTEGER
|
|
if( sqlite3_strnicmp(z,"0x",2)==0 ){
|
|
sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
|
|
}else
|
|
#endif
|
|
{
|
|
codeReal(v, z, negFlag, iMem);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clear a cache entry.
|
|
*/
|
|
static void cacheEntryClear(Parse *pParse, struct yColCache *p){
|
|
if( p->tempReg ){
|
|
if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
|
pParse->aTempReg[pParse->nTempReg++] = p->iReg;
|
|
}
|
|
p->tempReg = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Record in the column cache that a particular column from a
|
|
** particular table is stored in a particular register.
|
|
*/
|
|
void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
|
int i;
|
|
int minLru;
|
|
int idxLru;
|
|
struct yColCache *p;
|
|
|
|
/* Unless an error has occurred, register numbers are always positive. */
|
|
assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
|
|
assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
|
|
|
|
/* The SQLITE_ColumnCache flag disables the column cache. This is used
|
|
** for testing only - to verify that SQLite always gets the same answer
|
|
** with and without the column cache.
|
|
*/
|
|
if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
|
|
|
|
/* First replace any existing entry.
|
|
**
|
|
** Actually, the way the column cache is currently used, we are guaranteed
|
|
** that the object will never already be in cache. Verify this guarantee.
|
|
*/
|
|
#ifndef NDEBUG
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
|
|
}
|
|
#endif
|
|
|
|
/* Find an empty slot and replace it */
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->iReg==0 ){
|
|
p->iLevel = pParse->iCacheLevel;
|
|
p->iTable = iTab;
|
|
p->iColumn = iCol;
|
|
p->iReg = iReg;
|
|
p->tempReg = 0;
|
|
p->lru = pParse->iCacheCnt++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Replace the last recently used */
|
|
minLru = 0x7fffffff;
|
|
idxLru = -1;
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->lru<minLru ){
|
|
idxLru = i;
|
|
minLru = p->lru;
|
|
}
|
|
}
|
|
if( ALWAYS(idxLru>=0) ){
|
|
p = &pParse->aColCache[idxLru];
|
|
p->iLevel = pParse->iCacheLevel;
|
|
p->iTable = iTab;
|
|
p->iColumn = iCol;
|
|
p->iReg = iReg;
|
|
p->tempReg = 0;
|
|
p->lru = pParse->iCacheCnt++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
|
|
** Purge the range of registers from the column cache.
|
|
*/
|
|
void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
|
|
int i;
|
|
int iLast = iReg + nReg - 1;
|
|
struct yColCache *p;
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
int r = p->iReg;
|
|
if( r>=iReg && r<=iLast ){
|
|
cacheEntryClear(pParse, p);
|
|
p->iReg = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Remember the current column cache context. Any new entries added
|
|
** added to the column cache after this call are removed when the
|
|
** corresponding pop occurs.
|
|
*/
|
|
void sqlite3ExprCachePush(Parse *pParse){
|
|
pParse->iCacheLevel++;
|
|
#ifdef SQLITE_DEBUG
|
|
if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
|
printf("PUSH to %d\n", pParse->iCacheLevel);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Remove from the column cache any entries that were added since the
|
|
** the previous sqlite3ExprCachePush operation. In other words, restore
|
|
** the cache to the state it was in prior the most recent Push.
|
|
*/
|
|
void sqlite3ExprCachePop(Parse *pParse){
|
|
int i;
|
|
struct yColCache *p;
|
|
assert( pParse->iCacheLevel>=1 );
|
|
pParse->iCacheLevel--;
|
|
#ifdef SQLITE_DEBUG
|
|
if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
|
printf("POP to %d\n", pParse->iCacheLevel);
|
|
}
|
|
#endif
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->iReg && p->iLevel>pParse->iCacheLevel ){
|
|
cacheEntryClear(pParse, p);
|
|
p->iReg = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** When a cached column is reused, make sure that its register is
|
|
** no longer available as a temp register. ticket #3879: that same
|
|
** register might be in the cache in multiple places, so be sure to
|
|
** get them all.
|
|
*/
|
|
static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
|
int i;
|
|
struct yColCache *p;
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->iReg==iReg ){
|
|
p->tempReg = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate code that will load into register regOut a value that is
|
|
** appropriate for the iIdxCol-th column of index pIdx.
|
|
*/
|
|
void sqlite3ExprCodeLoadIndexColumn(
|
|
Parse *pParse, /* The parsing context */
|
|
Index *pIdx, /* The index whose column is to be loaded */
|
|
int iTabCur, /* Cursor pointing to a table row */
|
|
int iIdxCol, /* The column of the index to be loaded */
|
|
int regOut /* Store the index column value in this register */
|
|
){
|
|
i16 iTabCol = pIdx->aiColumn[iIdxCol];
|
|
if( iTabCol==XN_EXPR ){
|
|
assert( pIdx->aColExpr );
|
|
assert( pIdx->aColExpr->nExpr>iIdxCol );
|
|
pParse->iSelfTab = iTabCur;
|
|
sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
|
|
}else{
|
|
sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
|
|
iTabCol, regOut);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code to extract the value of the iCol-th column of a table.
|
|
*/
|
|
void sqlite3ExprCodeGetColumnOfTable(
|
|
Vdbe *v, /* The VDBE under construction */
|
|
Table *pTab, /* The table containing the value */
|
|
int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
|
|
int iCol, /* Index of the column to extract */
|
|
int regOut /* Extract the value into this register */
|
|
){
|
|
if( iCol<0 || iCol==pTab->iPKey ){
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
|
|
}else{
|
|
int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
|
int x = iCol;
|
|
if( !HasRowid(pTab) ){
|
|
x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
|
|
}
|
|
sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
|
|
}
|
|
if( iCol>=0 ){
|
|
sqlite3ColumnDefault(v, pTab, iCol, regOut);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will extract the iColumn-th column from
|
|
** table pTab and store the column value in a register.
|
|
**
|
|
** An effort is made to store the column value in register iReg. This
|
|
** is not garanteeed for GetColumn() - the result can be stored in
|
|
** any register. But the result is guaranteed to land in register iReg
|
|
** for GetColumnToReg().
|
|
**
|
|
** There must be an open cursor to pTab in iTable when this routine
|
|
** is called. If iColumn<0 then code is generated that extracts the rowid.
|
|
*/
|
|
int sqlite3ExprCodeGetColumn(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Table *pTab, /* Description of the table we are reading from */
|
|
int iColumn, /* Index of the table column */
|
|
int iTable, /* The cursor pointing to the table */
|
|
int iReg, /* Store results here */
|
|
u8 p5 /* P5 value for OP_Column + FLAGS */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
struct yColCache *p;
|
|
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
|
|
p->lru = pParse->iCacheCnt++;
|
|
sqlite3ExprCachePinRegister(pParse, p->iReg);
|
|
return p->iReg;
|
|
}
|
|
}
|
|
assert( v!=0 );
|
|
sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
|
|
if( p5 ){
|
|
sqlite3VdbeChangeP5(v, p5);
|
|
}else{
|
|
sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
|
}
|
|
return iReg;
|
|
}
|
|
void sqlite3ExprCodeGetColumnToReg(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Table *pTab, /* Description of the table we are reading from */
|
|
int iColumn, /* Index of the table column */
|
|
int iTable, /* The cursor pointing to the table */
|
|
int iReg /* Store results here */
|
|
){
|
|
int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
|
|
if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
|
|
}
|
|
|
|
|
|
/*
|
|
** Clear all column cache entries.
|
|
*/
|
|
void sqlite3ExprCacheClear(Parse *pParse){
|
|
int i;
|
|
struct yColCache *p;
|
|
|
|
#if SQLITE_DEBUG
|
|
if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
|
printf("CLEAR\n");
|
|
}
|
|
#endif
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->iReg ){
|
|
cacheEntryClear(pParse, p);
|
|
p->iReg = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Record the fact that an affinity change has occurred on iCount
|
|
** registers starting with iStart.
|
|
*/
|
|
void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
|
|
sqlite3ExprCacheRemove(pParse, iStart, iCount);
|
|
}
|
|
|
|
/*
|
|
** Generate code to move content from registers iFrom...iFrom+nReg-1
|
|
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
|
|
*/
|
|
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
|
|
assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
|
|
sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
|
|
sqlite3ExprCacheRemove(pParse, iFrom, nReg);
|
|
}
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
|
|
/*
|
|
** Return true if any register in the range iFrom..iTo (inclusive)
|
|
** is used as part of the column cache.
|
|
**
|
|
** This routine is used within assert() and testcase() macros only
|
|
** and does not appear in a normal build.
|
|
*/
|
|
static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
|
|
int i;
|
|
struct yColCache *p;
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
int r = p->iReg;
|
|
if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
|
|
|
|
/*
|
|
** Convert an expression node to a TK_REGISTER
|
|
*/
|
|
static void exprToRegister(Expr *p, int iReg){
|
|
p->op2 = p->op;
|
|
p->op = TK_REGISTER;
|
|
p->iTable = iReg;
|
|
ExprClearProperty(p, EP_Skip);
|
|
}
|
|
|
|
/*
|
|
** Generate code into the current Vdbe to evaluate the given
|
|
** expression. Attempt to store the results in register "target".
|
|
** Return the register where results are stored.
|
|
**
|
|
** With this routine, there is no guarantee that results will
|
|
** be stored in target. The result might be stored in some other
|
|
** register if it is convenient to do so. The calling function
|
|
** must check the return code and move the results to the desired
|
|
** register.
|
|
*/
|
|
int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
|
Vdbe *v = pParse->pVdbe; /* The VM under construction */
|
|
int op; /* The opcode being coded */
|
|
int inReg = target; /* Results stored in register inReg */
|
|
int regFree1 = 0; /* If non-zero free this temporary register */
|
|
int regFree2 = 0; /* If non-zero free this temporary register */
|
|
int r1, r2, r3, r4; /* Various register numbers */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
Expr tempX; /* Temporary expression node */
|
|
|
|
assert( target>0 && target<=pParse->nMem );
|
|
if( v==0 ){
|
|
assert( pParse->db->mallocFailed );
|
|
return 0;
|
|
}
|
|
|
|
if( pExpr==0 ){
|
|
op = TK_NULL;
|
|
}else{
|
|
op = pExpr->op;
|
|
}
|
|
switch( op ){
|
|
case TK_AGG_COLUMN: {
|
|
AggInfo *pAggInfo = pExpr->pAggInfo;
|
|
struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
|
|
if( !pAggInfo->directMode ){
|
|
assert( pCol->iMem>0 );
|
|
inReg = pCol->iMem;
|
|
break;
|
|
}else if( pAggInfo->useSortingIdx ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
|
|
pCol->iSorterColumn, target);
|
|
break;
|
|
}
|
|
/* Otherwise, fall thru into the TK_COLUMN case */
|
|
}
|
|
case TK_COLUMN: {
|
|
int iTab = pExpr->iTable;
|
|
if( iTab<0 ){
|
|
if( pParse->ckBase>0 ){
|
|
/* Generating CHECK constraints or inserting into partial index */
|
|
inReg = pExpr->iColumn + pParse->ckBase;
|
|
break;
|
|
}else{
|
|
/* Coding an expression that is part of an index where column names
|
|
** in the index refer to the table to which the index belongs */
|
|
iTab = pParse->iSelfTab;
|
|
}
|
|
}
|
|
inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
|
pExpr->iColumn, iTab, target,
|
|
pExpr->op2);
|
|
break;
|
|
}
|
|
case TK_INTEGER: {
|
|
codeInteger(pParse, pExpr, 0, target);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
case TK_FLOAT: {
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
codeReal(v, pExpr->u.zToken, 0, target);
|
|
break;
|
|
}
|
|
#endif
|
|
case TK_STRING: {
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
|
|
break;
|
|
}
|
|
case TK_NULL: {
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
case TK_BLOB: {
|
|
int n;
|
|
const char *z;
|
|
char *zBlob;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
|
|
assert( pExpr->u.zToken[1]=='\'' );
|
|
z = &pExpr->u.zToken[2];
|
|
n = sqlite3Strlen30(z) - 1;
|
|
assert( z[n]=='\'' );
|
|
zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
|
|
sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
|
|
break;
|
|
}
|
|
#endif
|
|
case TK_VARIABLE: {
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
assert( pExpr->u.zToken!=0 );
|
|
assert( pExpr->u.zToken[0]!=0 );
|
|
sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
|
|
if( pExpr->u.zToken[1]!=0 ){
|
|
assert( pExpr->u.zToken[0]=='?'
|
|
|| strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
|
|
sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
|
|
}
|
|
break;
|
|
}
|
|
case TK_REGISTER: {
|
|
inReg = pExpr->iTable;
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_CAST
|
|
case TK_CAST: {
|
|
/* Expressions of the form: CAST(pLeft AS token) */
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
|
if( inReg!=target ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
|
|
inReg = target;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Cast, target,
|
|
sqlite3AffinityType(pExpr->u.zToken, 0));
|
|
testcase( usedAsColumnCache(pParse, inReg, inReg) );
|
|
sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, inReg, SQLITE_STOREP2);
|
|
assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
|
assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
|
assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
|
assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
|
assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
|
assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_IS:
|
|
case TK_ISNOT: {
|
|
testcase( op==TK_IS );
|
|
testcase( op==TK_ISNOT );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
op = (op==TK_IS) ? TK_EQ : TK_NE;
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
|
|
VdbeCoverageIf(v, op==TK_EQ);
|
|
VdbeCoverageIf(v, op==TK_NE);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_PLUS:
|
|
case TK_STAR:
|
|
case TK_MINUS:
|
|
case TK_REM:
|
|
case TK_BITAND:
|
|
case TK_BITOR:
|
|
case TK_SLASH:
|
|
case TK_LSHIFT:
|
|
case TK_RSHIFT:
|
|
case TK_CONCAT: {
|
|
assert( TK_AND==OP_And ); testcase( op==TK_AND );
|
|
assert( TK_OR==OP_Or ); testcase( op==TK_OR );
|
|
assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
|
|
assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
|
|
assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
|
|
assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
|
|
assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
|
|
assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
|
|
assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
|
|
assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
|
|
assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
sqlite3VdbeAddOp3(v, op, r2, r1, target);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_UMINUS: {
|
|
Expr *pLeft = pExpr->pLeft;
|
|
assert( pLeft );
|
|
if( pLeft->op==TK_INTEGER ){
|
|
codeInteger(pParse, pLeft, 1, target);
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
}else if( pLeft->op==TK_FLOAT ){
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
codeReal(v, pLeft->u.zToken, 1, target);
|
|
#endif
|
|
}else{
|
|
tempX.op = TK_INTEGER;
|
|
tempX.flags = EP_IntValue|EP_TokenOnly;
|
|
tempX.u.iValue = 0;
|
|
r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
|
|
sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
|
|
testcase( regFree2==0 );
|
|
}
|
|
inReg = target;
|
|
break;
|
|
}
|
|
case TK_BITNOT:
|
|
case TK_NOT: {
|
|
assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
|
|
assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
testcase( regFree1==0 );
|
|
inReg = target;
|
|
sqlite3VdbeAddOp2(v, op, r1, inReg);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
int addr;
|
|
assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
|
|
assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
testcase( regFree1==0 );
|
|
addr = sqlite3VdbeAddOp1(v, op, r1);
|
|
VdbeCoverageIf(v, op==TK_ISNULL);
|
|
VdbeCoverageIf(v, op==TK_NOTNULL);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
AggInfo *pInfo = pExpr->pAggInfo;
|
|
if( pInfo==0 ){
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
|
|
}else{
|
|
inReg = pInfo->aFunc[pExpr->iAgg].iMem;
|
|
}
|
|
break;
|
|
}
|
|
case TK_FUNCTION: {
|
|
ExprList *pFarg; /* List of function arguments */
|
|
int nFarg; /* Number of function arguments */
|
|
FuncDef *pDef; /* The function definition object */
|
|
int nId; /* Length of the function name in bytes */
|
|
const char *zId; /* The function name */
|
|
u32 constMask = 0; /* Mask of function arguments that are constant */
|
|
int i; /* Loop counter */
|
|
u8 enc = ENC(db); /* The text encoding used by this database */
|
|
CollSeq *pColl = 0; /* A collating sequence */
|
|
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
if( ExprHasProperty(pExpr, EP_TokenOnly) ){
|
|
pFarg = 0;
|
|
}else{
|
|
pFarg = pExpr->x.pList;
|
|
}
|
|
nFarg = pFarg ? pFarg->nExpr : 0;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
zId = pExpr->u.zToken;
|
|
nId = sqlite3Strlen30(zId);
|
|
pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
|
|
if( pDef==0 || pDef->xFinalize!=0 ){
|
|
sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
|
|
break;
|
|
}
|
|
|
|
/* Attempt a direct implementation of the built-in COALESCE() and
|
|
** IFNULL() functions. This avoids unnecessary evaluation of
|
|
** arguments past the first non-NULL argument.
|
|
*/
|
|
if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
|
|
int endCoalesce = sqlite3VdbeMakeLabel(v);
|
|
assert( nFarg>=2 );
|
|
sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
|
for(i=1; i<nFarg; i++){
|
|
sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
|
|
VdbeCoverage(v);
|
|
sqlite3ExprCacheRemove(pParse, target, 1);
|
|
sqlite3ExprCachePush(pParse);
|
|
sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
|
|
sqlite3ExprCachePop(pParse);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, endCoalesce);
|
|
break;
|
|
}
|
|
|
|
/* The UNLIKELY() function is a no-op. The result is the value
|
|
** of the first argument.
|
|
*/
|
|
if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
|
|
assert( nFarg>=1 );
|
|
inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
|
|
break;
|
|
}
|
|
|
|
for(i=0; i<nFarg; i++){
|
|
if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
|
|
testcase( i==31 );
|
|
constMask |= MASKBIT32(i);
|
|
}
|
|
if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
|
|
}
|
|
}
|
|
if( pFarg ){
|
|
if( constMask ){
|
|
r1 = pParse->nMem+1;
|
|
pParse->nMem += nFarg;
|
|
}else{
|
|
r1 = sqlite3GetTempRange(pParse, nFarg);
|
|
}
|
|
|
|
/* For length() and typeof() functions with a column argument,
|
|
** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
|
|
** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
|
|
** loading.
|
|
*/
|
|
if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
|
|
u8 exprOp;
|
|
assert( nFarg==1 );
|
|
assert( pFarg->a[0].pExpr!=0 );
|
|
exprOp = pFarg->a[0].pExpr->op;
|
|
if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
|
|
assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
|
|
assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
|
|
testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
|
|
pFarg->a[0].pExpr->op2 =
|
|
pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
|
|
}
|
|
}
|
|
|
|
sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
|
|
sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
|
|
SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
|
|
sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
|
|
}else{
|
|
r1 = 0;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Possibly overload the function if the first argument is
|
|
** a virtual table column.
|
|
**
|
|
** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
|
|
** second argument, not the first, as the argument to test to
|
|
** see if it is a column in a virtual table. This is done because
|
|
** the left operand of infix functions (the operand we want to
|
|
** control overloading) ends up as the second argument to the
|
|
** function. The expression "A glob B" is equivalent to
|
|
** "glob(B,A). We want to use the A in "A glob B" to test
|
|
** for function overloading. But we use the B term in "glob(B,A)".
|
|
*/
|
|
if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
|
|
pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
|
|
}else if( nFarg>0 ){
|
|
pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
|
|
}
|
|
#endif
|
|
if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
|
|
if( !pColl ) pColl = db->pDfltColl;
|
|
sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
|
|
(char*)pDef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, (u8)nFarg);
|
|
if( nFarg && constMask==0 ){
|
|
sqlite3ReleaseTempRange(pParse, r1, nFarg);
|
|
}
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_EXISTS:
|
|
case TK_SELECT: {
|
|
testcase( op==TK_EXISTS );
|
|
testcase( op==TK_SELECT );
|
|
inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int destIfFalse = sqlite3VdbeMakeLabel(v);
|
|
int destIfNull = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
|
sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
|
sqlite3VdbeResolveLabel(v, destIfFalse);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
|
|
sqlite3VdbeResolveLabel(v, destIfNull);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
|
|
|
/*
|
|
** x BETWEEN y AND z
|
|
**
|
|
** This is equivalent to
|
|
**
|
|
** x>=y AND x<=z
|
|
**
|
|
** X is stored in pExpr->pLeft.
|
|
** Y is stored in pExpr->pList->a[0].pExpr.
|
|
** Z is stored in pExpr->pList->a[1].pExpr.
|
|
*/
|
|
case TK_BETWEEN: {
|
|
Expr *pLeft = pExpr->pLeft;
|
|
struct ExprList_item *pLItem = pExpr->x.pList->a;
|
|
Expr *pRight = pLItem->pExpr;
|
|
|
|
r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
r3 = sqlite3GetTempReg(pParse);
|
|
r4 = sqlite3GetTempReg(pParse);
|
|
codeCompare(pParse, pLeft, pRight, OP_Ge,
|
|
r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
|
|
pLItem++;
|
|
pRight = pLItem->pExpr;
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
|
testcase( regFree2==0 );
|
|
codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
|
|
sqlite3ReleaseTempReg(pParse, r3);
|
|
sqlite3ReleaseTempReg(pParse, r4);
|
|
break;
|
|
}
|
|
case TK_COLLATE:
|
|
case TK_UPLUS: {
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
|
break;
|
|
}
|
|
|
|
case TK_TRIGGER: {
|
|
/* If the opcode is TK_TRIGGER, then the expression is a reference
|
|
** to a column in the new.* or old.* pseudo-tables available to
|
|
** trigger programs. In this case Expr.iTable is set to 1 for the
|
|
** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
|
|
** is set to the column of the pseudo-table to read, or to -1 to
|
|
** read the rowid field.
|
|
**
|
|
** The expression is implemented using an OP_Param opcode. The p1
|
|
** parameter is set to 0 for an old.rowid reference, or to (i+1)
|
|
** to reference another column of the old.* pseudo-table, where
|
|
** i is the index of the column. For a new.rowid reference, p1 is
|
|
** set to (n+1), where n is the number of columns in each pseudo-table.
|
|
** For a reference to any other column in the new.* pseudo-table, p1
|
|
** is set to (n+2+i), where n and i are as defined previously. For
|
|
** example, if the table on which triggers are being fired is
|
|
** declared as:
|
|
**
|
|
** CREATE TABLE t1(a, b);
|
|
**
|
|
** Then p1 is interpreted as follows:
|
|
**
|
|
** p1==0 -> old.rowid p1==3 -> new.rowid
|
|
** p1==1 -> old.a p1==4 -> new.a
|
|
** p1==2 -> old.b p1==5 -> new.b
|
|
*/
|
|
Table *pTab = pExpr->pTab;
|
|
int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
|
|
|
|
assert( pExpr->iTable==0 || pExpr->iTable==1 );
|
|
assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
|
|
assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
|
|
assert( p1>=0 && p1<(pTab->nCol*2+2) );
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Param, p1, target);
|
|
VdbeComment((v, "%s.%s -> $%d",
|
|
(pExpr->iTable ? "new" : "old"),
|
|
(pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
|
|
target
|
|
));
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/* If the column has REAL affinity, it may currently be stored as an
|
|
** integer. Use OP_RealAffinity to make sure it is really real.
|
|
**
|
|
** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
|
|
** floating point when extracting it from the record. */
|
|
if( pExpr->iColumn>=0
|
|
&& pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
|
|
){
|
|
sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
|
|
/*
|
|
** Form A:
|
|
** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
|
**
|
|
** Form B:
|
|
** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
|
**
|
|
** Form A is can be transformed into the equivalent form B as follows:
|
|
** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
|
|
** WHEN x=eN THEN rN ELSE y END
|
|
**
|
|
** X (if it exists) is in pExpr->pLeft.
|
|
** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
|
|
** odd. The Y is also optional. If the number of elements in x.pList
|
|
** is even, then Y is omitted and the "otherwise" result is NULL.
|
|
** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
|
|
**
|
|
** The result of the expression is the Ri for the first matching Ei,
|
|
** or if there is no matching Ei, the ELSE term Y, or if there is
|
|
** no ELSE term, NULL.
|
|
*/
|
|
default: assert( op==TK_CASE ); {
|
|
int endLabel; /* GOTO label for end of CASE stmt */
|
|
int nextCase; /* GOTO label for next WHEN clause */
|
|
int nExpr; /* 2x number of WHEN terms */
|
|
int i; /* Loop counter */
|
|
ExprList *pEList; /* List of WHEN terms */
|
|
struct ExprList_item *aListelem; /* Array of WHEN terms */
|
|
Expr opCompare; /* The X==Ei expression */
|
|
Expr *pX; /* The X expression */
|
|
Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
|
|
VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
|
|
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
|
|
assert(pExpr->x.pList->nExpr > 0);
|
|
pEList = pExpr->x.pList;
|
|
aListelem = pEList->a;
|
|
nExpr = pEList->nExpr;
|
|
endLabel = sqlite3VdbeMakeLabel(v);
|
|
if( (pX = pExpr->pLeft)!=0 ){
|
|
tempX = *pX;
|
|
testcase( pX->op==TK_COLUMN );
|
|
exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1));
|
|
testcase( regFree1==0 );
|
|
opCompare.op = TK_EQ;
|
|
opCompare.pLeft = &tempX;
|
|
pTest = &opCompare;
|
|
/* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
|
|
** The value in regFree1 might get SCopy-ed into the file result.
|
|
** So make sure that the regFree1 register is not reused for other
|
|
** purposes and possibly overwritten. */
|
|
regFree1 = 0;
|
|
}
|
|
for(i=0; i<nExpr-1; i=i+2){
|
|
sqlite3ExprCachePush(pParse);
|
|
if( pX ){
|
|
assert( pTest!=0 );
|
|
opCompare.pRight = aListelem[i].pExpr;
|
|
}else{
|
|
pTest = aListelem[i].pExpr;
|
|
}
|
|
nextCase = sqlite3VdbeMakeLabel(v);
|
|
testcase( pTest->op==TK_COLUMN );
|
|
sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
|
|
testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
|
|
sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
|
|
sqlite3VdbeGoto(v, endLabel);
|
|
sqlite3ExprCachePop(pParse);
|
|
sqlite3VdbeResolveLabel(v, nextCase);
|
|
}
|
|
if( (nExpr&1)!=0 ){
|
|
sqlite3ExprCachePush(pParse);
|
|
sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
|
|
sqlite3ExprCachePop(pParse);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
|
}
|
|
assert( db->mallocFailed || pParse->nErr>0
|
|
|| pParse->iCacheLevel==iCacheLevel );
|
|
sqlite3VdbeResolveLabel(v, endLabel);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
case TK_RAISE: {
|
|
assert( pExpr->affinity==OE_Rollback
|
|
|| pExpr->affinity==OE_Abort
|
|
|| pExpr->affinity==OE_Fail
|
|
|| pExpr->affinity==OE_Ignore
|
|
);
|
|
if( !pParse->pTriggerTab ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"RAISE() may only be used within a trigger-program");
|
|
return 0;
|
|
}
|
|
if( pExpr->affinity==OE_Abort ){
|
|
sqlite3MayAbort(pParse);
|
|
}
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
if( pExpr->affinity==OE_Ignore ){
|
|
sqlite3VdbeAddOp4(
|
|
v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
|
|
VdbeCoverage(v);
|
|
}else{
|
|
sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
|
|
pExpr->affinity, pExpr->u.zToken, 0, 0);
|
|
}
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
return inReg;
|
|
}
|
|
|
|
/*
|
|
** Factor out the code of the given expression to initialization time.
|
|
*/
|
|
void sqlite3ExprCodeAtInit(
|
|
Parse *pParse, /* Parsing context */
|
|
Expr *pExpr, /* The expression to code when the VDBE initializes */
|
|
int regDest, /* Store the value in this register */
|
|
u8 reusable /* True if this expression is reusable */
|
|
){
|
|
ExprList *p;
|
|
assert( ConstFactorOk(pParse) );
|
|
p = pParse->pConstExpr;
|
|
pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
|
|
p = sqlite3ExprListAppend(pParse, p, pExpr);
|
|
if( p ){
|
|
struct ExprList_item *pItem = &p->a[p->nExpr-1];
|
|
pItem->u.iConstExprReg = regDest;
|
|
pItem->reusable = reusable;
|
|
}
|
|
pParse->pConstExpr = p;
|
|
}
|
|
|
|
/*
|
|
** Generate code to evaluate an expression and store the results
|
|
** into a register. Return the register number where the results
|
|
** are stored.
|
|
**
|
|
** If the register is a temporary register that can be deallocated,
|
|
** then write its number into *pReg. If the result register is not
|
|
** a temporary, then set *pReg to zero.
|
|
**
|
|
** If pExpr is a constant, then this routine might generate this
|
|
** code to fill the register in the initialization section of the
|
|
** VDBE program, in order to factor it out of the evaluation loop.
|
|
*/
|
|
int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
|
int r2;
|
|
pExpr = sqlite3ExprSkipCollate(pExpr);
|
|
if( ConstFactorOk(pParse)
|
|
&& pExpr->op!=TK_REGISTER
|
|
&& sqlite3ExprIsConstantNotJoin(pExpr)
|
|
){
|
|
ExprList *p = pParse->pConstExpr;
|
|
int i;
|
|
*pReg = 0;
|
|
if( p ){
|
|
struct ExprList_item *pItem;
|
|
for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
|
|
if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
|
|
return pItem->u.iConstExprReg;
|
|
}
|
|
}
|
|
}
|
|
r2 = ++pParse->nMem;
|
|
sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
|
|
}else{
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
|
if( r2==r1 ){
|
|
*pReg = r1;
|
|
}else{
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
*pReg = 0;
|
|
}
|
|
}
|
|
return r2;
|
|
}
|
|
|
|
/*
|
|
** Generate code that will evaluate expression pExpr and store the
|
|
** results in register target. The results are guaranteed to appear
|
|
** in register target.
|
|
*/
|
|
void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
|
int inReg;
|
|
|
|
assert( target>0 && target<=pParse->nMem );
|
|
if( pExpr && pExpr->op==TK_REGISTER ){
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
|
|
}else{
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
|
assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
|
|
if( inReg!=target && pParse->pVdbe ){
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make a transient copy of expression pExpr and then code it using
|
|
** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
|
|
** except that the input expression is guaranteed to be unchanged.
|
|
*/
|
|
void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
|
|
sqlite3 *db = pParse->db;
|
|
pExpr = sqlite3ExprDup(db, pExpr, 0);
|
|
if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
|
|
sqlite3ExprDelete(db, pExpr);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will evaluate expression pExpr and store the
|
|
** results in register target. The results are guaranteed to appear
|
|
** in register target. If the expression is constant, then this routine
|
|
** might choose to code the expression at initialization time.
|
|
*/
|
|
void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
|
|
if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
|
|
sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
|
|
}else{
|
|
sqlite3ExprCode(pParse, pExpr, target);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that evaluates the given expression and puts the result
|
|
** in register target.
|
|
**
|
|
** Also make a copy of the expression results into another "cache" register
|
|
** and modify the expression so that the next time it is evaluated,
|
|
** the result is a copy of the cache register.
|
|
**
|
|
** This routine is used for expressions that are used multiple
|
|
** times. They are evaluated once and the results of the expression
|
|
** are reused.
|
|
*/
|
|
void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int iMem;
|
|
|
|
assert( target>0 );
|
|
assert( pExpr->op!=TK_REGISTER );
|
|
sqlite3ExprCode(pParse, pExpr, target);
|
|
iMem = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
|
|
exprToRegister(pExpr, iMem);
|
|
}
|
|
|
|
/*
|
|
** Generate code that pushes the value of every element of the given
|
|
** expression list into a sequence of registers beginning at target.
|
|
**
|
|
** Return the number of elements evaluated.
|
|
**
|
|
** The SQLITE_ECEL_DUP flag prevents the arguments from being
|
|
** filled using OP_SCopy. OP_Copy must be used instead.
|
|
**
|
|
** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
|
|
** factored out into initialization code.
|
|
**
|
|
** The SQLITE_ECEL_REF flag means that expressions in the list with
|
|
** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
|
|
** in registers at srcReg, and so the value can be copied from there.
|
|
*/
|
|
int sqlite3ExprCodeExprList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* The expression list to be coded */
|
|
int target, /* Where to write results */
|
|
int srcReg, /* Source registers if SQLITE_ECEL_REF */
|
|
u8 flags /* SQLITE_ECEL_* flags */
|
|
){
|
|
struct ExprList_item *pItem;
|
|
int i, j, n;
|
|
u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
|
|
Vdbe *v = pParse->pVdbe;
|
|
assert( pList!=0 );
|
|
assert( target>0 );
|
|
assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
|
|
n = pList->nExpr;
|
|
if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
|
|
for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
|
Expr *pExpr = pItem->pExpr;
|
|
if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
|
|
sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
|
|
}else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
|
|
sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
|
|
}else{
|
|
int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
|
|
if( inReg!=target+i ){
|
|
VdbeOp *pOp;
|
|
if( copyOp==OP_Copy
|
|
&& (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
|
|
&& pOp->p1+pOp->p3+1==inReg
|
|
&& pOp->p2+pOp->p3+1==target+i
|
|
){
|
|
pOp->p3++;
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a BETWEEN operator.
|
|
**
|
|
** x BETWEEN y AND z
|
|
**
|
|
** The above is equivalent to
|
|
**
|
|
** x>=y AND x<=z
|
|
**
|
|
** Code it as such, taking care to do the common subexpression
|
|
** elimination of x.
|
|
*/
|
|
static void exprCodeBetween(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Expr *pExpr, /* The BETWEEN expression */
|
|
int dest, /* Jump here if the jump is taken */
|
|
int jumpIfTrue, /* Take the jump if the BETWEEN is true */
|
|
int jumpIfNull /* Take the jump if the BETWEEN is NULL */
|
|
){
|
|
Expr exprAnd; /* The AND operator in x>=y AND x<=z */
|
|
Expr compLeft; /* The x>=y term */
|
|
Expr compRight; /* The x<=z term */
|
|
Expr exprX; /* The x subexpression */
|
|
int regFree1 = 0; /* Temporary use register */
|
|
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
exprX = *pExpr->pLeft;
|
|
exprAnd.op = TK_AND;
|
|
exprAnd.pLeft = &compLeft;
|
|
exprAnd.pRight = &compRight;
|
|
compLeft.op = TK_GE;
|
|
compLeft.pLeft = &exprX;
|
|
compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
|
compRight.op = TK_LE;
|
|
compRight.pLeft = &exprX;
|
|
compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
|
exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1));
|
|
if( jumpIfTrue ){
|
|
sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
|
}else{
|
|
sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
|
|
/* Ensure adequate test coverage */
|
|
testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
|
|
testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
|
|
testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
|
|
testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
|
|
testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
|
|
testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
|
|
testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
|
|
testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is true but execution
|
|
** continues straight thru if the expression is false.
|
|
**
|
|
** If the expression evaluates to NULL (neither true nor false), then
|
|
** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
|
|
**
|
|
** This code depends on the fact that certain token values (ex: TK_EQ)
|
|
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
|
|
** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
|
|
** the make process cause these values to align. Assert()s in the code
|
|
** below verify that the numbers are aligned correctly.
|
|
*/
|
|
void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
int regFree1 = 0;
|
|
int regFree2 = 0;
|
|
int r1, r2;
|
|
|
|
assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
|
if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
|
|
if( NEVER(pExpr==0) ) return; /* No way this can happen */
|
|
op = pExpr->op;
|
|
switch( op ){
|
|
case TK_AND: {
|
|
int d2 = sqlite3VdbeMakeLabel(v);
|
|
testcase( jumpIfNull==0 );
|
|
sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
|
|
sqlite3ExprCachePush(pParse);
|
|
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqlite3VdbeResolveLabel(v, d2);
|
|
sqlite3ExprCachePop(pParse);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
testcase( jumpIfNull==0 );
|
|
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
sqlite3ExprCachePush(pParse);
|
|
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqlite3ExprCachePop(pParse);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
testcase( jumpIfNull==0 );
|
|
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
testcase( jumpIfNull==0 );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, dest, jumpIfNull);
|
|
assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
|
assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
|
assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
|
assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
|
assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
|
assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_IS:
|
|
case TK_ISNOT: {
|
|
testcase( op==TK_IS );
|
|
testcase( op==TK_ISNOT );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
op = (op==TK_IS) ? TK_EQ : TK_NE;
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, dest, SQLITE_NULLEQ);
|
|
VdbeCoverageIf(v, op==TK_EQ);
|
|
VdbeCoverageIf(v, op==TK_NE);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
|
|
assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
sqlite3VdbeAddOp2(v, op, r1, dest);
|
|
VdbeCoverageIf(v, op==TK_ISNULL);
|
|
VdbeCoverageIf(v, op==TK_NOTNULL);
|
|
testcase( regFree1==0 );
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
testcase( jumpIfNull==0 );
|
|
exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_IN: {
|
|
int destIfFalse = sqlite3VdbeMakeLabel(v);
|
|
int destIfNull = jumpIfNull ? dest : destIfFalse;
|
|
sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
|
sqlite3VdbeGoto(v, dest);
|
|
sqlite3VdbeResolveLabel(v, destIfFalse);
|
|
break;
|
|
}
|
|
#endif
|
|
default: {
|
|
if( exprAlwaysTrue(pExpr) ){
|
|
sqlite3VdbeGoto(v, dest);
|
|
}else if( exprAlwaysFalse(pExpr) ){
|
|
/* No-op */
|
|
}else{
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
|
sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
|
VdbeCoverage(v);
|
|
testcase( regFree1==0 );
|
|
testcase( jumpIfNull==0 );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is false but execution
|
|
** continues straight thru if the expression is true.
|
|
**
|
|
** If the expression evaluates to NULL (neither true nor false) then
|
|
** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
|
|
** is 0.
|
|
*/
|
|
void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
int regFree1 = 0;
|
|
int regFree2 = 0;
|
|
int r1, r2;
|
|
|
|
assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
|
if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
|
|
if( pExpr==0 ) return;
|
|
|
|
/* The value of pExpr->op and op are related as follows:
|
|
**
|
|
** pExpr->op op
|
|
** --------- ----------
|
|
** TK_ISNULL OP_NotNull
|
|
** TK_NOTNULL OP_IsNull
|
|
** TK_NE OP_Eq
|
|
** TK_EQ OP_Ne
|
|
** TK_GT OP_Le
|
|
** TK_LE OP_Gt
|
|
** TK_GE OP_Lt
|
|
** TK_LT OP_Ge
|
|
**
|
|
** For other values of pExpr->op, op is undefined and unused.
|
|
** The value of TK_ and OP_ constants are arranged such that we
|
|
** can compute the mapping above using the following expression.
|
|
** Assert()s verify that the computation is correct.
|
|
*/
|
|
op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
|
|
|
|
/* Verify correct alignment of TK_ and OP_ constants
|
|
*/
|
|
assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
|
|
assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
|
|
assert( pExpr->op!=TK_NE || op==OP_Eq );
|
|
assert( pExpr->op!=TK_EQ || op==OP_Ne );
|
|
assert( pExpr->op!=TK_LT || op==OP_Ge );
|
|
assert( pExpr->op!=TK_LE || op==OP_Gt );
|
|
assert( pExpr->op!=TK_GT || op==OP_Le );
|
|
assert( pExpr->op!=TK_GE || op==OP_Lt );
|
|
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
testcase( jumpIfNull==0 );
|
|
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
sqlite3ExprCachePush(pParse);
|
|
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqlite3ExprCachePop(pParse);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
int d2 = sqlite3VdbeMakeLabel(v);
|
|
testcase( jumpIfNull==0 );
|
|
sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
|
|
sqlite3ExprCachePush(pParse);
|
|
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqlite3VdbeResolveLabel(v, d2);
|
|
sqlite3ExprCachePop(pParse);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
testcase( jumpIfNull==0 );
|
|
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
testcase( jumpIfNull==0 );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, dest, jumpIfNull);
|
|
assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
|
assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
|
assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
|
assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
|
assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
|
assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_IS:
|
|
case TK_ISNOT: {
|
|
testcase( pExpr->op==TK_IS );
|
|
testcase( pExpr->op==TK_ISNOT );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, dest, SQLITE_NULLEQ);
|
|
VdbeCoverageIf(v, op==TK_EQ);
|
|
VdbeCoverageIf(v, op==TK_NE);
|
|
testcase( regFree1==0 );
|
|
testcase( regFree2==0 );
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
sqlite3VdbeAddOp2(v, op, r1, dest);
|
|
testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
|
|
testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
|
|
testcase( regFree1==0 );
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
testcase( jumpIfNull==0 );
|
|
exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_IN: {
|
|
if( jumpIfNull ){
|
|
sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
|
|
}else{
|
|
int destIfNull = sqlite3VdbeMakeLabel(v);
|
|
sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
|
|
sqlite3VdbeResolveLabel(v, destIfNull);
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
default: {
|
|
if( exprAlwaysFalse(pExpr) ){
|
|
sqlite3VdbeGoto(v, dest);
|
|
}else if( exprAlwaysTrue(pExpr) ){
|
|
/* no-op */
|
|
}else{
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
|
sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
|
VdbeCoverage(v);
|
|
testcase( regFree1==0 );
|
|
testcase( jumpIfNull==0 );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
}
|
|
|
|
/*
|
|
** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
|
|
** code generation, and that copy is deleted after code generation. This
|
|
** ensures that the original pExpr is unchanged.
|
|
*/
|
|
void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
|
|
sqlite3 *db = pParse->db;
|
|
Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
|
|
if( db->mallocFailed==0 ){
|
|
sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
|
|
}
|
|
sqlite3ExprDelete(db, pCopy);
|
|
}
|
|
|
|
|
|
/*
|
|
** Do a deep comparison of two expression trees. Return 0 if the two
|
|
** expressions are completely identical. Return 1 if they differ only
|
|
** by a COLLATE operator at the top level. Return 2 if there are differences
|
|
** other than the top-level COLLATE operator.
|
|
**
|
|
** If any subelement of pB has Expr.iTable==(-1) then it is allowed
|
|
** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
|
|
**
|
|
** The pA side might be using TK_REGISTER. If that is the case and pB is
|
|
** not using TK_REGISTER but is otherwise equivalent, then still return 0.
|
|
**
|
|
** Sometimes this routine will return 2 even if the two expressions
|
|
** really are equivalent. If we cannot prove that the expressions are
|
|
** identical, we return 2 just to be safe. So if this routine
|
|
** returns 2, then you do not really know for certain if the two
|
|
** expressions are the same. But if you get a 0 or 1 return, then you
|
|
** can be sure the expressions are the same. In the places where
|
|
** this routine is used, it does not hurt to get an extra 2 - that
|
|
** just might result in some slightly slower code. But returning
|
|
** an incorrect 0 or 1 could lead to a malfunction.
|
|
*/
|
|
int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
|
|
u32 combinedFlags;
|
|
if( pA==0 || pB==0 ){
|
|
return pB==pA ? 0 : 2;
|
|
}
|
|
combinedFlags = pA->flags | pB->flags;
|
|
if( combinedFlags & EP_IntValue ){
|
|
if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
|
|
return 0;
|
|
}
|
|
return 2;
|
|
}
|
|
if( pA->op!=pB->op ){
|
|
if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
|
|
return 1;
|
|
}
|
|
if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
|
|
return 1;
|
|
}
|
|
return 2;
|
|
}
|
|
if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
|
|
if( pA->op==TK_FUNCTION ){
|
|
if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
|
|
}else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
|
return pA->op==TK_COLLATE ? 1 : 2;
|
|
}
|
|
}
|
|
if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
|
|
if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
|
|
if( combinedFlags & EP_xIsSelect ) return 2;
|
|
if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
|
|
if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
|
|
if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
|
|
if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
|
|
if( pA->iColumn!=pB->iColumn ) return 2;
|
|
if( pA->iTable!=pB->iTable
|
|
&& (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Compare two ExprList objects. Return 0 if they are identical and
|
|
** non-zero if they differ in any way.
|
|
**
|
|
** If any subelement of pB has Expr.iTable==(-1) then it is allowed
|
|
** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
|
|
**
|
|
** This routine might return non-zero for equivalent ExprLists. The
|
|
** only consequence will be disabled optimizations. But this routine
|
|
** must never return 0 if the two ExprList objects are different, or
|
|
** a malfunction will result.
|
|
**
|
|
** Two NULL pointers are considered to be the same. But a NULL pointer
|
|
** always differs from a non-NULL pointer.
|
|
*/
|
|
int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
|
|
int i;
|
|
if( pA==0 && pB==0 ) return 0;
|
|
if( pA==0 || pB==0 ) return 1;
|
|
if( pA->nExpr!=pB->nExpr ) return 1;
|
|
for(i=0; i<pA->nExpr; i++){
|
|
Expr *pExprA = pA->a[i].pExpr;
|
|
Expr *pExprB = pB->a[i].pExpr;
|
|
if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
|
|
if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return true if we can prove the pE2 will always be true if pE1 is
|
|
** true. Return false if we cannot complete the proof or if pE2 might
|
|
** be false. Examples:
|
|
**
|
|
** pE1: x==5 pE2: x==5 Result: true
|
|
** pE1: x>0 pE2: x==5 Result: false
|
|
** pE1: x=21 pE2: x=21 OR y=43 Result: true
|
|
** pE1: x!=123 pE2: x IS NOT NULL Result: true
|
|
** pE1: x!=?1 pE2: x IS NOT NULL Result: true
|
|
** pE1: x IS NULL pE2: x IS NOT NULL Result: false
|
|
** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
|
|
**
|
|
** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
|
|
** Expr.iTable<0 then assume a table number given by iTab.
|
|
**
|
|
** When in doubt, return false. Returning true might give a performance
|
|
** improvement. Returning false might cause a performance reduction, but
|
|
** it will always give the correct answer and is hence always safe.
|
|
*/
|
|
int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
|
|
if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
|
|
return 1;
|
|
}
|
|
if( pE2->op==TK_OR
|
|
&& (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
|
|
|| sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
|
|
){
|
|
return 1;
|
|
}
|
|
if( pE2->op==TK_NOTNULL
|
|
&& sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
|
|
&& (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
|
|
){
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** An instance of the following structure is used by the tree walker
|
|
** to count references to table columns in the arguments of an
|
|
** aggregate function, in order to implement the
|
|
** sqlite3FunctionThisSrc() routine.
|
|
*/
|
|
struct SrcCount {
|
|
SrcList *pSrc; /* One particular FROM clause in a nested query */
|
|
int nThis; /* Number of references to columns in pSrcList */
|
|
int nOther; /* Number of references to columns in other FROM clauses */
|
|
};
|
|
|
|
/*
|
|
** Count the number of references to columns.
|
|
*/
|
|
static int exprSrcCount(Walker *pWalker, Expr *pExpr){
|
|
/* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
|
|
** is always called before sqlite3ExprAnalyzeAggregates() and so the
|
|
** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
|
|
** sqlite3FunctionUsesThisSrc() is used differently in the future, the
|
|
** NEVER() will need to be removed. */
|
|
if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
|
|
int i;
|
|
struct SrcCount *p = pWalker->u.pSrcCount;
|
|
SrcList *pSrc = p->pSrc;
|
|
int nSrc = pSrc ? pSrc->nSrc : 0;
|
|
for(i=0; i<nSrc; i++){
|
|
if( pExpr->iTable==pSrc->a[i].iCursor ) break;
|
|
}
|
|
if( i<nSrc ){
|
|
p->nThis++;
|
|
}else{
|
|
p->nOther++;
|
|
}
|
|
}
|
|
return WRC_Continue;
|
|
}
|
|
|
|
/*
|
|
** Determine if any of the arguments to the pExpr Function reference
|
|
** pSrcList. Return true if they do. Also return true if the function
|
|
** has no arguments or has only constant arguments. Return false if pExpr
|
|
** references columns but not columns of tables found in pSrcList.
|
|
*/
|
|
int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
|
|
Walker w;
|
|
struct SrcCount cnt;
|
|
assert( pExpr->op==TK_AGG_FUNCTION );
|
|
memset(&w, 0, sizeof(w));
|
|
w.xExprCallback = exprSrcCount;
|
|
w.u.pSrcCount = &cnt;
|
|
cnt.pSrc = pSrcList;
|
|
cnt.nThis = 0;
|
|
cnt.nOther = 0;
|
|
sqlite3WalkExprList(&w, pExpr->x.pList);
|
|
return cnt.nThis>0 || cnt.nOther==0;
|
|
}
|
|
|
|
/*
|
|
** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
|
** the new element. Return a negative number if malloc fails.
|
|
*/
|
|
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
|
|
int i;
|
|
pInfo->aCol = sqlite3ArrayAllocate(
|
|
db,
|
|
pInfo->aCol,
|
|
sizeof(pInfo->aCol[0]),
|
|
&pInfo->nColumn,
|
|
&i
|
|
);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** Add a new element to the pAggInfo->aFunc[] array. Return the index of
|
|
** the new element. Return a negative number if malloc fails.
|
|
*/
|
|
static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
|
|
int i;
|
|
pInfo->aFunc = sqlite3ArrayAllocate(
|
|
db,
|
|
pInfo->aFunc,
|
|
sizeof(pInfo->aFunc[0]),
|
|
&pInfo->nFunc,
|
|
&i
|
|
);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** This is the xExprCallback for a tree walker. It is used to
|
|
** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
|
|
** for additional information.
|
|
*/
|
|
static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
|
int i;
|
|
NameContext *pNC = pWalker->u.pNC;
|
|
Parse *pParse = pNC->pParse;
|
|
SrcList *pSrcList = pNC->pSrcList;
|
|
AggInfo *pAggInfo = pNC->pAggInfo;
|
|
|
|
switch( pExpr->op ){
|
|
case TK_AGG_COLUMN:
|
|
case TK_COLUMN: {
|
|
testcase( pExpr->op==TK_AGG_COLUMN );
|
|
testcase( pExpr->op==TK_COLUMN );
|
|
/* Check to see if the column is in one of the tables in the FROM
|
|
** clause of the aggregate query */
|
|
if( ALWAYS(pSrcList!=0) ){
|
|
struct SrcList_item *pItem = pSrcList->a;
|
|
for(i=0; i<pSrcList->nSrc; i++, pItem++){
|
|
struct AggInfo_col *pCol;
|
|
assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
|
if( pExpr->iTable==pItem->iCursor ){
|
|
/* If we reach this point, it means that pExpr refers to a table
|
|
** that is in the FROM clause of the aggregate query.
|
|
**
|
|
** Make an entry for the column in pAggInfo->aCol[] if there
|
|
** is not an entry there already.
|
|
*/
|
|
int k;
|
|
pCol = pAggInfo->aCol;
|
|
for(k=0; k<pAggInfo->nColumn; k++, pCol++){
|
|
if( pCol->iTable==pExpr->iTable &&
|
|
pCol->iColumn==pExpr->iColumn ){
|
|
break;
|
|
}
|
|
}
|
|
if( (k>=pAggInfo->nColumn)
|
|
&& (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
|
|
){
|
|
pCol = &pAggInfo->aCol[k];
|
|
pCol->pTab = pExpr->pTab;
|
|
pCol->iTable = pExpr->iTable;
|
|
pCol->iColumn = pExpr->iColumn;
|
|
pCol->iMem = ++pParse->nMem;
|
|
pCol->iSorterColumn = -1;
|
|
pCol->pExpr = pExpr;
|
|
if( pAggInfo->pGroupBy ){
|
|
int j, n;
|
|
ExprList *pGB = pAggInfo->pGroupBy;
|
|
struct ExprList_item *pTerm = pGB->a;
|
|
n = pGB->nExpr;
|
|
for(j=0; j<n; j++, pTerm++){
|
|
Expr *pE = pTerm->pExpr;
|
|
if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
|
|
pE->iColumn==pExpr->iColumn ){
|
|
pCol->iSorterColumn = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( pCol->iSorterColumn<0 ){
|
|
pCol->iSorterColumn = pAggInfo->nSortingColumn++;
|
|
}
|
|
}
|
|
/* There is now an entry for pExpr in pAggInfo->aCol[] (either
|
|
** because it was there before or because we just created it).
|
|
** Convert the pExpr to be a TK_AGG_COLUMN referring to that
|
|
** pAggInfo->aCol[] entry.
|
|
*/
|
|
ExprSetVVAProperty(pExpr, EP_NoReduce);
|
|
pExpr->pAggInfo = pAggInfo;
|
|
pExpr->op = TK_AGG_COLUMN;
|
|
pExpr->iAgg = (i16)k;
|
|
break;
|
|
} /* endif pExpr->iTable==pItem->iCursor */
|
|
} /* end loop over pSrcList */
|
|
}
|
|
return WRC_Prune;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
if( (pNC->ncFlags & NC_InAggFunc)==0
|
|
&& pWalker->walkerDepth==pExpr->op2
|
|
){
|
|
/* Check to see if pExpr is a duplicate of another aggregate
|
|
** function that is already in the pAggInfo structure
|
|
*/
|
|
struct AggInfo_func *pItem = pAggInfo->aFunc;
|
|
for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
|
if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pAggInfo->nFunc ){
|
|
/* pExpr is original. Make a new entry in pAggInfo->aFunc[]
|
|
*/
|
|
u8 enc = ENC(pParse->db);
|
|
i = addAggInfoFunc(pParse->db, pAggInfo);
|
|
if( i>=0 ){
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
pItem = &pAggInfo->aFunc[i];
|
|
pItem->pExpr = pExpr;
|
|
pItem->iMem = ++pParse->nMem;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
pItem->pFunc = sqlite3FindFunction(pParse->db,
|
|
pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
|
|
pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
|
|
if( pExpr->flags & EP_Distinct ){
|
|
pItem->iDistinct = pParse->nTab++;
|
|
}else{
|
|
pItem->iDistinct = -1;
|
|
}
|
|
}
|
|
}
|
|
/* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
|
|
*/
|
|
assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
|
ExprSetVVAProperty(pExpr, EP_NoReduce);
|
|
pExpr->iAgg = (i16)i;
|
|
pExpr->pAggInfo = pAggInfo;
|
|
return WRC_Prune;
|
|
}else{
|
|
return WRC_Continue;
|
|
}
|
|
}
|
|
}
|
|
return WRC_Continue;
|
|
}
|
|
static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
|
|
UNUSED_PARAMETER(pWalker);
|
|
UNUSED_PARAMETER(pSelect);
|
|
return WRC_Continue;
|
|
}
|
|
|
|
/*
|
|
** Analyze the pExpr expression looking for aggregate functions and
|
|
** for variables that need to be added to AggInfo object that pNC->pAggInfo
|
|
** points to. Additional entries are made on the AggInfo object as
|
|
** necessary.
|
|
**
|
|
** This routine should only be called after the expression has been
|
|
** analyzed by sqlite3ResolveExprNames().
|
|
*/
|
|
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
|
|
Walker w;
|
|
memset(&w, 0, sizeof(w));
|
|
w.xExprCallback = analyzeAggregate;
|
|
w.xSelectCallback = analyzeAggregatesInSelect;
|
|
w.u.pNC = pNC;
|
|
assert( pNC->pSrcList!=0 );
|
|
sqlite3WalkExpr(&w, pExpr);
|
|
}
|
|
|
|
/*
|
|
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
|
|
** expression list. Return the number of errors.
|
|
**
|
|
** If an error is found, the analysis is cut short.
|
|
*/
|
|
void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
|
|
struct ExprList_item *pItem;
|
|
int i;
|
|
if( pList ){
|
|
for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
|
sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate a single new register for use to hold some intermediate result.
|
|
*/
|
|
int sqlite3GetTempReg(Parse *pParse){
|
|
if( pParse->nTempReg==0 ){
|
|
return ++pParse->nMem;
|
|
}
|
|
return pParse->aTempReg[--pParse->nTempReg];
|
|
}
|
|
|
|
/*
|
|
** Deallocate a register, making available for reuse for some other
|
|
** purpose.
|
|
**
|
|
** If a register is currently being used by the column cache, then
|
|
** the deallocation is deferred until the column cache line that uses
|
|
** the register becomes stale.
|
|
*/
|
|
void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
|
|
if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
|
int i;
|
|
struct yColCache *p;
|
|
for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
|
if( p->iReg==iReg ){
|
|
p->tempReg = 1;
|
|
return;
|
|
}
|
|
}
|
|
pParse->aTempReg[pParse->nTempReg++] = iReg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate or deallocate a block of nReg consecutive registers
|
|
*/
|
|
int sqlite3GetTempRange(Parse *pParse, int nReg){
|
|
int i, n;
|
|
i = pParse->iRangeReg;
|
|
n = pParse->nRangeReg;
|
|
if( nReg<=n ){
|
|
assert( !usedAsColumnCache(pParse, i, i+n-1) );
|
|
pParse->iRangeReg += nReg;
|
|
pParse->nRangeReg -= nReg;
|
|
}else{
|
|
i = pParse->nMem+1;
|
|
pParse->nMem += nReg;
|
|
}
|
|
return i;
|
|
}
|
|
void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
|
sqlite3ExprCacheRemove(pParse, iReg, nReg);
|
|
if( nReg>pParse->nRangeReg ){
|
|
pParse->nRangeReg = nReg;
|
|
pParse->iRangeReg = iReg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Mark all temporary registers as being unavailable for reuse.
|
|
*/
|
|
void sqlite3ClearTempRegCache(Parse *pParse){
|
|
pParse->nTempReg = 0;
|
|
pParse->nRangeReg = 0;
|
|
}
|