461 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			461 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| # 2009 December 03
 | |
| #
 | |
| #    May you do good and not evil.
 | |
| #    May you find forgiveness for yourself and forgive others.
 | |
| #    May you share freely, never taking more than you give.
 | |
| #
 | |
| #***********************************************************************
 | |
| #
 | |
| # Brute force (random data) tests for FTS3.
 | |
| #
 | |
| 
 | |
| #-------------------------------------------------------------------------
 | |
| #
 | |
| # The FTS3 tests implemented in this file focus on testing that FTS3
 | |
| # returns the correct set of documents for various types of full-text
 | |
| # query. This is done using pseudo-randomly generated data and queries.
 | |
| # The expected result of each query is calculated using Tcl code.
 | |
| #
 | |
| #   1. The database is initialized to contain a single table with three
 | |
| #      columns. 100 rows are inserted into the table. Each of the three
 | |
| #      values in each row is a document consisting of between 0 and 100
 | |
| #      terms. Terms are selected from a vocabulary of $G(nVocab) terms.
 | |
| #
 | |
| #   2. The following is performed 100 times:
 | |
| #
 | |
| #      a. A row is inserted into the database. The row contents are 
 | |
| #         generated as in step 1. The docid is a pseudo-randomly selected
 | |
| #         value between 0 and 1000000.
 | |
| # 
 | |
| #      b. A psuedo-randomly selected row is updated. One of its columns is
 | |
| #         set to contain a new document generated in the same way as the
 | |
| #         documents in step 1.
 | |
| # 
 | |
| #      c. A psuedo-randomly selected row is deleted.
 | |
| # 
 | |
| #      d. For each of several types of fts3 queries, 10 SELECT queries
 | |
| #         of the form:
 | |
| # 
 | |
| #           SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>'
 | |
| # 
 | |
| #         are evaluated. The results are compared to those calculated by
 | |
| #         Tcl code in this file. The patterns used for the different query
 | |
| #         types are:
 | |
| # 
 | |
| #           1.  query = <term>
 | |
| #           2.  query = <prefix>
 | |
| #           3.  query = "<term> <term>"
 | |
| #           4.  query = "<term> <term> <term>"
 | |
| #           5.  query = "<prefix> <prefix> <prefix>"
 | |
| #           6.  query = <term> NEAR <term>
 | |
| #           7.  query = <term> NEAR/11 <term> NEAR/11 <term>
 | |
| #           8.  query = <term> OR <term>
 | |
| #           9.  query = <term> NOT <term>
 | |
| #           10. query = <term> AND <term>
 | |
| #           11. query = <term> NEAR <term> OR <term> NEAR <term>
 | |
| #           12. query = <term> NEAR <term> NOT <term> NEAR <term>
 | |
| #           13. query = <term> NEAR <term> AND <term> NEAR <term>
 | |
| # 
 | |
| #         where <term> is a term psuedo-randomly selected from the vocabulary
 | |
| #         and prefix is the first 2 characters of such a term followed by
 | |
| #         a "*" character.
 | |
| #     
 | |
| #      Every second iteration, steps (a) through (d) above are performed
 | |
| #      within a single transaction. This forces the queries in (d) to
 | |
| #      read data from both the database and the in-memory hash table
 | |
| #      that caches the full-text index entries created by steps (a), (b)
 | |
| #      and (c) until the transaction is committed.
 | |
| #
 | |
| # The procedure above is run 5 times, using advisory fts3 node sizes of 50,
 | |
| # 500, 1000 and 2000 bytes.
 | |
| #
 | |
| # After the test using an advisory node-size of 50, an OOM test is run using
 | |
| # the database. This test is similar to step (d) above, except that it tests
 | |
| # the effects of transient and persistent OOM conditions encountered while
 | |
| # executing each query.
 | |
| #
 | |
| 
 | |
| set testdir [file dirname $argv0]
 | |
| source $testdir/tester.tcl
 | |
| 
 | |
| # If this build does not include FTS3, skip the tests in this file.
 | |
| #
 | |
| ifcapable !fts3 { finish_test ; return }
 | |
| source $testdir/fts3_common.tcl
 | |
| source $testdir/malloc_common.tcl
 | |
| 
 | |
| set G(nVocab) 100
 | |
| 
 | |
| set nVocab 100
 | |
| set lVocab [list]
 | |
| 
 | |
| expr srand(0)
 | |
| 
 | |
| # Generate a vocabulary of nVocab words. Each word is 3 characters long.
 | |
| #
 | |
| set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
 | |
| for {set i 0} {$i < $nVocab} {incr i} {
 | |
|   set len [expr int(rand()*3)+2]
 | |
|   set    word [lindex $lChar [expr int(rand()*26)]]
 | |
|   append word [lindex $lChar [expr int(rand()*26)]]
 | |
|   if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] }
 | |
|   if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] }
 | |
|   lappend lVocab $word
 | |
| }
 | |
| 
 | |
| proc random_term {} {
 | |
|   lindex $::lVocab [expr {int(rand()*$::nVocab)}]
 | |
| }
 | |
| 
 | |
| # Return a document consisting of $nWord arbitrarily selected terms
 | |
| # from the $::lVocab list.
 | |
| #
 | |
| proc generate_doc {nWord} {
 | |
|   set doc [list]
 | |
|   for {set i 0} {$i < $nWord} {incr i} {
 | |
|     lappend doc [random_term]
 | |
|   }
 | |
|   return $doc
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| # Primitives to update the table.
 | |
| #
 | |
| unset -nocomplain t1
 | |
| proc insert_row {rowid} {
 | |
|   set a [generate_doc [expr int((rand()*100))]]
 | |
|   set b [generate_doc [expr int((rand()*100))]]
 | |
|   set c [generate_doc [expr int((rand()*100))]]
 | |
|   execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) }
 | |
|   set ::t1($rowid) [list $a $b $c]
 | |
| }
 | |
| proc delete_row {rowid} {
 | |
|   execsql { DELETE FROM t1 WHERE rowid = $rowid }
 | |
|   catch {unset ::t1($rowid)}
 | |
| }
 | |
| proc update_row {rowid} {
 | |
|   set cols {a b c}
 | |
|   set iCol [expr int(rand()*3)]
 | |
|   set doc  [generate_doc [expr int((rand()*100))]]
 | |
|   lset ::t1($rowid) $iCol $doc
 | |
|   execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
 | |
| }
 | |
| 
 | |
| proc simple_phrase {zPrefix} {
 | |
|   set ret [list]
 | |
| 
 | |
|   set reg [string map {* {[^ ]*}} $zPrefix]
 | |
|   set reg " $reg "
 | |
| 
 | |
|   foreach key [lsort -integer [array names ::t1]] {
 | |
|     set value $::t1($key)
 | |
|     set cnt [list]
 | |
|     foreach col $value {
 | |
|       if {[regexp $reg " $col "]} { lappend ret $key ; break }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #lsort -uniq -integer $ret
 | |
|   set ret
 | |
| }
 | |
| 
 | |
| # This [proc] is used to test the FTS3 matchinfo() function.
 | |
| # 
 | |
| proc simple_token_matchinfo {zToken bDesc} {
 | |
| 
 | |
|   set nDoc(0) 0
 | |
|   set nDoc(1) 0
 | |
|   set nDoc(2) 0
 | |
|   set nHit(0) 0
 | |
|   set nHit(1) 0
 | |
|   set nHit(2) 0
 | |
| 
 | |
|   set dir -inc
 | |
|   if {$bDesc} { set dir -dec }
 | |
| 
 | |
|   foreach key [array names ::t1] {
 | |
|     set value $::t1($key)
 | |
|     set a($key) [list]
 | |
|     foreach i {0 1 2} col $value {
 | |
|       set hit [llength [lsearch -all $col $zToken]]
 | |
|       lappend a($key) $hit
 | |
|       incr nHit($i) $hit
 | |
|       if {$hit>0} { incr nDoc($i) }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   set ret [list]
 | |
|   foreach docid [lsort -integer $dir [array names a]] {
 | |
|     if { [lindex [lsort -integer $a($docid)] end] } {
 | |
|       set matchinfo [list 1 3]
 | |
|       foreach i {0 1 2} hit $a($docid) {
 | |
|         lappend matchinfo $hit $nHit($i) $nDoc($i)
 | |
|       }
 | |
|       lappend ret $docid $matchinfo
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   set ret
 | |
| } 
 | |
| 
 | |
| proc simple_near {termlist nNear} {
 | |
|   set ret [list]
 | |
| 
 | |
|   foreach {key value} [array get ::t1] {
 | |
|     foreach v $value {
 | |
| 
 | |
|       set l [lsearch -exact -all $v [lindex $termlist 0]]
 | |
|       foreach T [lrange $termlist 1 end] {
 | |
|         set l2 [list]
 | |
|         foreach i $l {
 | |
|           set iStart [expr $i - $nNear - 1]
 | |
|           set iEnd [expr $i + $nNear + 1]
 | |
|           if {$iStart < 0} {set iStart 0}
 | |
|           foreach i2 [lsearch -exact -all [lrange $v $iStart $iEnd] $T] {
 | |
|             incr i2 $iStart
 | |
|             if {$i2 != $i} { lappend l2 $i2 } 
 | |
|           }
 | |
|         }
 | |
|         set l [lsort -uniq -integer $l2]
 | |
|       }
 | |
| 
 | |
|       if {[llength $l]} {
 | |
| #puts "MATCH($key): $v"
 | |
|         lappend ret $key
 | |
|       } 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   lsort -unique -integer $ret
 | |
| }
 | |
| 
 | |
| # The following three procs:
 | |
| # 
 | |
| #   setup_not A B
 | |
| #   setup_or  A B
 | |
| #   setup_and A B
 | |
| #
 | |
| # each take two arguments. Both arguments must be lists of integer values
 | |
| # sorted by value. The return value is the list produced by evaluating
 | |
| # the equivalent of "A op B", where op is the FTS3 operator NOT, OR or
 | |
| # AND.
 | |
| #
 | |
| proc setop_not {A B} {
 | |
|   foreach b $B { set n($b) {} }
 | |
|   set ret [list]
 | |
|   foreach a $A { if {![info exists n($a)]} {lappend ret $a} }
 | |
|   return $ret
 | |
| }
 | |
| proc setop_or {A B} {
 | |
|   lsort -integer -uniq [concat $A $B]
 | |
| }
 | |
| proc setop_and {A B} {
 | |
|   foreach b $B { set n($b) {} }
 | |
|   set ret [list]
 | |
|   foreach a $A { if {[info exists n($a)]} {lappend ret $a} }
 | |
|   return $ret
 | |
| }
 | |
| 
 | |
| proc mit {blob} {
 | |
|   set scan(littleEndian) i*
 | |
|   set scan(bigEndian) I*
 | |
|   binary scan $blob $scan($::tcl_platform(byteOrder)) r
 | |
|   return $r
 | |
| }
 | |
| db func mit mit
 | |
| set sqlite_fts3_enable_parentheses 1
 | |
| 
 | |
| proc do_orderbydocid_test {tn sql res} {
 | |
|   uplevel [list do_select_test $tn.asc "$sql ORDER BY docid ASC" $res]
 | |
|   uplevel [list do_select_test $tn.desc "$sql ORDER BY docid DESC" \
 | |
|     [lsort -int -dec $res]
 | |
|   ]
 | |
| }
 | |
| 
 | |
| set NUM_TRIALS 100
 | |
| 
 | |
| foreach {nodesize order} {
 | |
|   50    DESC
 | |
|   50    ASC
 | |
|   500   ASC
 | |
|   1000  DESC
 | |
|   2000  ASC
 | |
| } {
 | |
|   catch { array unset ::t1 }
 | |
|   set testname "$nodesize/$order"
 | |
| 
 | |
|   # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
 | |
|   #
 | |
|   db transaction {
 | |
|     catchsql { DROP TABLE t1 }
 | |
|     execsql "CREATE VIRTUAL TABLE t1 USING fts4(a, b, c, order=$order)"
 | |
|     execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
 | |
|     for {set i 0} {$i < 100} {incr i} { insert_row $i }
 | |
|   }
 | |
|   
 | |
|   for {set iTest 1} {$iTest <= $NUM_TRIALS} {incr iTest} {
 | |
|     catchsql COMMIT
 | |
| 
 | |
|     set DO_MALLOC_TEST 0
 | |
|     set nRep 10
 | |
|     if {$iTest==100 && $nodesize==50} { 
 | |
|       set DO_MALLOC_TEST 1 
 | |
|       set nRep 2
 | |
|     }
 | |
| 
 | |
|     set ::testprefix fts3rnd-1.$testname.$iTest
 | |
|   
 | |
|     # Delete one row, update one row and insert one row.
 | |
|     #
 | |
|     set rows [array names ::t1]
 | |
|     set nRow [llength $rows]
 | |
|     set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
 | |
|     set iDelete $iUpdate
 | |
|     while {$iDelete == $iUpdate} {
 | |
|       set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
 | |
|     }
 | |
|     set iInsert $iUpdate
 | |
|     while {[info exists ::t1($iInsert)]} {
 | |
|       set iInsert [expr {int(rand()*1000000)}]
 | |
|     }
 | |
|     execsql BEGIN
 | |
|       insert_row $iInsert
 | |
|       update_row $iUpdate
 | |
|       delete_row $iDelete
 | |
|     if {0==($iTest%2)} { execsql COMMIT }
 | |
| 
 | |
|     if {0==($iTest%2)} { 
 | |
|       #do_test 0 { fts3_integrity_check t1 } ok 
 | |
|     }
 | |
| 
 | |
|     # Pick 10 terms from the vocabulary. Check that the results of querying
 | |
|     # the database for the set of documents containing each of these terms
 | |
|     # is the same as the result obtained by scanning the contents of the Tcl 
 | |
|     # array for each term.
 | |
|     #
 | |
|     for {set i 0} {$i < 10} {incr i} {
 | |
|       set term [random_term]
 | |
|       do_select_test 1.$i.asc {
 | |
|         SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
 | |
|         ORDER BY docid ASC
 | |
|       } [simple_token_matchinfo $term 0]
 | |
|       do_select_test 1.$i.desc {
 | |
|         SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
 | |
|         ORDER BY docid DESC
 | |
|       } [simple_token_matchinfo $term 1]
 | |
|     }
 | |
| 
 | |
|     # This time, use the first two characters of each term as a term prefix
 | |
|     # to query for. Test that querying the Tcl array produces the same results
 | |
|     # as querying the FTS3 table for the prefix.
 | |
|     #
 | |
|     for {set i 0} {$i < $nRep} {incr i} {
 | |
|       set prefix [string range [random_term] 0 end-1]
 | |
|       set match "${prefix}*"
 | |
|       do_orderbydocid_test 2.$i {
 | |
|         SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|       } [simple_phrase $match]
 | |
|     }
 | |
| 
 | |
|     # Similar to the above, except for phrase queries.
 | |
|     #
 | |
|     for {set i 0} {$i < $nRep} {incr i} {
 | |
|       set term [list [random_term] [random_term]]
 | |
|       set match "\"$term\""
 | |
|       do_orderbydocid_test 3.$i {
 | |
|         SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|       } [simple_phrase $term]
 | |
|     }
 | |
| 
 | |
|     # Three word phrases.
 | |
|     #
 | |
|     for {set i 0} {$i < $nRep} {incr i} {
 | |
|       set term [list [random_term] [random_term] [random_term]]
 | |
|       set match "\"$term\""
 | |
|       do_orderbydocid_test 4.$i {
 | |
|         SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|       } [simple_phrase $term]
 | |
|     }
 | |
| 
 | |
|     # Three word phrases made up of term-prefixes.
 | |
|     #
 | |
|     for {set i 0} {$i < $nRep} {incr i} {
 | |
|       set    query "[string range [random_term] 0 end-1]* "
 | |
|       append query "[string range [random_term] 0 end-1]* "
 | |
|       append query "[string range [random_term] 0 end-1]*"
 | |
| 
 | |
|       set match "\"$query\""
 | |
|       do_orderbydocid_test 5.$i {
 | |
|         SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|       } [simple_phrase $query]
 | |
|     }
 | |
| 
 | |
|     # A NEAR query with terms as the arguments:
 | |
|     #
 | |
|     #     ... MATCH '$term1 NEAR $term2' ...
 | |
|     #
 | |
|     for {set i 0} {$i < $nRep} {incr i} {
 | |
|       set terms [list [random_term] [random_term]]
 | |
|       set match [join $terms " NEAR "]
 | |
|       do_orderbydocid_test 6.$i {
 | |
|         SELECT docid FROM t1 WHERE t1 MATCH $match 
 | |
|       } [simple_near $terms 10]
 | |
|     }
 | |
| 
 | |
|     # A 3-way NEAR query with terms as the arguments.
 | |
|     #
 | |
|     for {set i 0} {$i < $nRep} {incr i} {
 | |
|       set terms [list [random_term] [random_term] [random_term]]
 | |
|       set nNear 11
 | |
|       set match [join $terms " NEAR/$nNear "]
 | |
|       do_orderbydocid_test 7.$i {
 | |
|         SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|       } [simple_near $terms $nNear]
 | |
|     }
 | |
|     
 | |
|     # Set operations on simple term queries.
 | |
|     #
 | |
|     foreach {tn op proc} {
 | |
|       8  OR  setop_or
 | |
|       9  NOT setop_not
 | |
|       10 AND setop_and
 | |
|     } {
 | |
|       for {set i 0} {$i < $nRep} {incr i} {
 | |
|         set term1 [random_term]
 | |
|         set term2 [random_term]
 | |
|         set match "$term1 $op $term2"
 | |
|         do_orderbydocid_test $tn.$i {
 | |
|           SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|         } [$proc [simple_phrase $term1] [simple_phrase $term2]]
 | |
|       }
 | |
|     }
 | |
|  
 | |
|     # Set operations on NEAR queries.
 | |
|     #
 | |
|     foreach {tn op proc} {
 | |
|       11 OR  setop_or
 | |
|       12 NOT setop_not
 | |
|       13 AND setop_and
 | |
|     } {
 | |
|       for {set i 0} {$i < $nRep} {incr i} {
 | |
|         set term1 [random_term]
 | |
|         set term2 [random_term]
 | |
|         set term3 [random_term]
 | |
|         set term4 [random_term]
 | |
|         set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
 | |
|         do_orderbydocid_test $tn.$i {
 | |
|           SELECT docid FROM t1 WHERE t1 MATCH $match
 | |
|         } [$proc                                  \
 | |
|             [simple_near [list $term1 $term2] 10] \
 | |
|             [simple_near [list $term3 $term4] 10]
 | |
|           ]
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     catchsql COMMIT
 | |
|   }
 | |
| }
 | |
| 
 | |
| finish_test
 | 
