Merge branch 'column_store'

Co-authored-by: wangt1xiuyi <13547954130@163.com>
Co-authored-by: yangqise7en <877793735@qq.com>
Co-authored-by: Zach41 <zach_41@163.com>
This commit is contained in:
chaser-ch
2023-10-31 15:39:20 +00:00
committed by ob-robot
parent 4057fbc4ae
commit 566e920620
1375 changed files with 239147 additions and 56014 deletions

View File

@ -13,7 +13,10 @@
#define USING_LOG_PREFIX STORAGE
#include <gtest/gtest.h>
#include <chrono>
#define private public
#define OK(ass) ASSERT_EQ(OB_SUCCESS, (ass))
#include "common/ob_target_specific.h"
#include "lib/container/ob_bitmap.h"
namespace oceanbase
@ -22,45 +25,48 @@ using namespace common;
namespace unittest
{
class TestObBitmap: public ::testing::Test
{
public:
static constexpr uint64_t bits_per_memblock()
{
return ObBitmap::BITS_PER_BLOCK * ObBitmap::BLOCKS_PER_MEM_BLOCK;
}
TestObBitmap() {};
virtual ~TestObBitmap() {};
virtual void SetUp() {}
virtual void TearDown() {}
static void SetUpTestCase() {}
static void SetUpTestCase()
{
LOG_INFO("Supported cpu instructions",
K(common::is_arch_supported(ObTargetArch::Default)),
K(common::is_arch_supported(ObTargetArch::SSE42)),
K(common::is_arch_supported(ObTargetArch::AVX)),
K(common::is_arch_supported(ObTargetArch::AVX2)),
K(common::is_arch_supported(ObTargetArch::AVX512)));
}
static void TearDownTestCase() {}
protected:
ModulePageAllocator allocator_;
private:
DISALLOW_COPY_AND_ASSIGN(TestObBitmap);
inline bool test(const int64_t idx) const
{
return data_[idx / 64] & (1LU << (idx % 64));
}
inline void set(const int64_t idx)
{
data_[idx / 64] |= 1LU << (idx % 64);
}
uint64_t *data_;
};
TEST_F(TestObBitmap, basic_funcs)
{
const uint64_t bitmap_size = 1666;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(128));
EXPECT_EQ(128, bitmap.valid_bits_);
EXPECT_EQ(bits_per_memblock(), bitmap.capacity());
EXPECT_EQ(0, bitmap.block_index(10));
EXPECT_EQ(10, bitmap.bit_index(10));
EXPECT_EQ(1, bitmap.block_index(70));
EXPECT_EQ(6, bitmap.bit_index(70));
EXPECT_EQ(0, bitmap.block_index(63));
EXPECT_EQ(1, bitmap.block_index(64));
EXPECT_EQ(static_cast<ObBitmap::size_type>(1), bitmap.bit_mask(0));
EXPECT_EQ(static_cast<ObBitmap::size_type>(2), bitmap.bit_mask(1));
EXPECT_EQ(static_cast<ObBitmap::size_type>(4), bitmap.bit_mask(2));
EXPECT_EQ(static_cast<ObBitmap::size_type>(8), bitmap.bit_mask(3));
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
EXPECT_EQ(bitmap_size, bitmap.valid_bytes_);
EXPECT_EQ(2048, bitmap.capacity());
EXPECT_TRUE(bitmap.is_all_false());
EXPECT_FALSE(bitmap.is_all_true());
EXPECT_EQ(OB_SUCCESS, bitmap.set(0, true));
@ -74,83 +80,306 @@ TEST_F(TestObBitmap, basic_funcs)
bitmap.reuse();
}
TEST_F(TestObBitmap, and_or_not)
{
ObBitmap left(allocator_);
EXPECT_EQ(OB_SUCCESS, left.init(512));
ObBitmap right(allocator_);
EXPECT_EQ(OB_SUCCESS, right.init(512));
for (int64_t i = 10; i < 20; ++i) {
EXPECT_EQ(OB_SUCCESS, left.set(i, true));
EXPECT_EQ(OB_SUCCESS, right.set(i+5, true));
}
EXPECT_EQ(10, left.popcnt());
EXPECT_EQ(OB_SUCCESS, left.bit_and(right));
EXPECT_EQ(5, left.popcnt());
left.reuse();
right.reuse();
left.expand_size(bits_per_memblock() + 1);
right.expand_size(bits_per_memblock() + 1);
EXPECT_EQ(left.capacity(), bits_per_memblock() * 2);
EXPECT_EQ(right.capacity(), bits_per_memblock() * 2);
EXPECT_TRUE(left.is_all_false());
EXPECT_TRUE(right.is_all_false());
left.expand_size(bits_per_memblock() + 1024);
right.expand_size(bits_per_memblock() + 1024);
EXPECT_EQ(left.capacity(), bits_per_memblock() * 2);
EXPECT_EQ(right.capacity(), bits_per_memblock() * 2);
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_EQ(OB_SUCCESS, left.set(i, true));
EXPECT_EQ(OB_SUCCESS, right.set(i+5, true));
}
EXPECT_EQ(OB_SUCCESS, left.bit_not());
EXPECT_EQ(bits_per_memblock() + 1024 - 10, left.popcnt());
ObBitmap::MemBlock *walk = left.header_;
ObBitmap::size_type popcnt = 0;
int64_t counted_bits = 0;
while (NULL != walk && counted_bits < left.valid_bits_) {
for (ObBitmap::size_type i = 0; i < ObBitmap::BLOCKS_PER_MEM_BLOCK; ++i) {
popcnt += __builtin_popcountl(walk->bits_[i]);
counted_bits += ObBitmap::BITS_PER_BLOCK;
}
walk = walk->next_;
}
EXPECT_EQ(popcnt, left.popcnt());
EXPECT_EQ(OB_SUCCESS, left.bit_not());
EXPECT_EQ(10, left.popcnt());
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_TRUE(left.test(i));
}
EXPECT_FALSE(left.test(4089));
EXPECT_FALSE(left.test(4101));
EXPECT_EQ(OB_SUCCESS, left.bit_and(right));
EXPECT_EQ(5, left.popcnt());
EXPECT_EQ(OB_SUCCESS, left.bit_or(right));
EXPECT_EQ(10, left.popcnt());
}
TEST_F(TestObBitmap, load_from_array)
{
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(512));
EXPECT_EQ(512, bitmap.size());
ObBitmap::size_type data[] = {7, 7, 7, 7, 7};
ObBitmap::size_type data[] = {0, 0, 0, 0, 10};
EXPECT_EQ(OB_SUCCESS, bitmap.load_blocks_from_array(data, 64 * 5));
EXPECT_EQ(64 * 5, bitmap.size());
EXPECT_EQ(3 * 5, bitmap.popcnt());
EXPECT_EQ(2, bitmap.popcnt());
EXPECT_TRUE(bitmap.test(4 * 64 + 1));
EXPECT_TRUE(bitmap.test(4 * 64 + 3));
}
bitmap.expand_size(4096);
ObBitmap::size_type data2[64];
for (int64_t i = 0; i < 64; i++) {
data2[i] = 7;
TEST_F(TestObBitmap, find_first_last_true_pos)
{
const uint64_t bitmap_size = 8193;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_EQ(OB_SUCCESS, bitmap.set(i, true));
}
EXPECT_EQ(OB_SUCCESS, bitmap.load_blocks_from_array(data2, 64 * 64));
EXPECT_EQ(64 * 64, bitmap.size());
EXPECT_EQ(3 * 64, bitmap.popcnt());
int64_t true_pos;
EXPECT_EQ(OB_SUCCESS, bitmap.next_valid_idx(0, 8193, false, true_pos));
EXPECT_EQ(4090, true_pos);
EXPECT_EQ(OB_SUCCESS, bitmap.next_valid_idx(0, 8193, true, true_pos));
EXPECT_EQ(4099, true_pos);
bitmap.set(1, true);
bitmap.set(8192, true);
EXPECT_EQ(OB_SUCCESS, bitmap.next_valid_idx(0, 8193, false, true_pos));
EXPECT_EQ(1, true_pos);
EXPECT_EQ(OB_SUCCESS, bitmap.next_valid_idx(0, 8193, true, true_pos));
EXPECT_EQ(8192, true_pos);
}
TEST_F(TestObBitmap, is_all_false_in_range)
{
const uint64_t bitmap_size = 8193;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_EQ(OB_SUCCESS, bitmap.set(i, true));
}
EXPECT_EQ(OB_SUCCESS, bitmap.bit_not());
EXPECT_TRUE(bitmap.is_all_false(4090, 4099));
for (int64_t i = 1; i < 4090; ++i) {
EXPECT_EQ(OB_SUCCESS, bitmap.set(i, false));
}
EXPECT_TRUE(bitmap.is_all_false(1, 4099));
EXPECT_EQ(OB_SUCCESS, bitmap.set(4093, true));
EXPECT_FALSE(bitmap.is_all_false(4090, 4099));
}
TEST_F(TestObBitmap, is_all_true_in_range)
{
const uint64_t bitmap_size = 8193;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_EQ(OB_SUCCESS, bitmap.set(i, true));
}
EXPECT_TRUE(bitmap.is_all_true(4090, 4099));
}
TEST_F(TestObBitmap, append_bit_map)
{
const uint64_t bitmap_size = 8193;
const uint64_t append_bitmap_size = 998;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_EQ(OB_SUCCESS, bitmap.set(i, true));
}
EXPECT_EQ(OB_SUCCESS, bitmap.bit_not());
EXPECT_FALSE(bitmap.is_all_false(3007, 3997));
EXPECT_FALSE(bitmap.is_all_false(4007, 4997));
EXPECT_EQ(OB_SUCCESS, bitmap.bit_not());
ObBitmap append_bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, append_bitmap.init(append_bitmap_size));
for (int64_t i = 7; i < 998; ++i) {
EXPECT_EQ(OB_SUCCESS, append_bitmap.set(i, true));
}
EXPECT_EQ(OB_SUCCESS, bitmap.append_bitmap(append_bitmap, 3000, false));
EXPECT_EQ(OB_SUCCESS, bitmap.bit_not());
EXPECT_TRUE(bitmap.is_all_false(3007, 3997));
EXPECT_EQ(OB_SUCCESS, bitmap.bit_not());
EXPECT_EQ(OB_SUCCESS, bitmap.append_bitmap(append_bitmap, 4000, true));
EXPECT_EQ(OB_SUCCESS, bitmap.bit_not());
EXPECT_TRUE(bitmap.is_all_false(3195, 4185));
}
TEST_F(TestObBitmap, get_row_ids)
{
const uint64_t bitmap_size = 8193;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
EXPECT_EQ(OB_SUCCESS, bitmap.set(3000, true));
EXPECT_EQ(OB_SUCCESS, bitmap.set(4000, true));
for (int64_t i = 4090; i < 4100; ++i) {
EXPECT_EQ(OB_SUCCESS, bitmap.set(i, true));
}
int64_t *row_ids = reinterpret_cast<int64_t *>(allocator_.alloc(800));
int64_t row_count = 0;
int64_t from = 0;
EXPECT_EQ(OB_SUCCESS, bitmap.get_row_ids(row_ids, row_count, from, 3000, INT64_MAX));
EXPECT_EQ(0, row_count);
EXPECT_EQ(3000, from);
from = 0;
EXPECT_EQ(OB_SUCCESS, bitmap.get_row_ids(row_ids, row_count, from, 4001, INT64_MAX));
EXPECT_EQ(2, row_count);
EXPECT_EQ(4001, from);
EXPECT_EQ(3000, row_ids[0]);
EXPECT_EQ(4000, row_ids[1]);
from = 0;
EXPECT_EQ(OB_SUCCESS, bitmap.get_row_ids(row_ids, row_count, from, 8193, INT64_MAX));
EXPECT_EQ(12, row_count);
EXPECT_EQ(8193, from);
EXPECT_EQ(3000, row_ids[0]);
EXPECT_EQ(4000, row_ids[1]);
for (int64_t i = 2; i < 12; ++i) {
EXPECT_EQ(4090 + i - 2, row_ids[i]);
}
from = 0;
EXPECT_EQ(OB_SUCCESS, bitmap.get_row_ids(row_ids, row_count, from, 8193, 10));
EXPECT_EQ(10, row_count);
EXPECT_EQ(4098, from);
EXPECT_EQ(3000, row_ids[0]);
EXPECT_EQ(4000, row_ids[1]);
for (int64_t i = 2; i < 10; ++i) {
EXPECT_EQ(4090 + i - 2, row_ids[i]);
}
from = 3500;
EXPECT_EQ(OB_SUCCESS, bitmap.get_row_ids(row_ids, row_count, from, 8193, INT64_MAX));
EXPECT_EQ(11, row_count);
EXPECT_EQ(8193, from);
EXPECT_EQ(4000, row_ids[0]);
for (int64_t i = 1; i < 11; ++i) {
EXPECT_EQ(4090 + i - 1, row_ids[i]);
}
from = 3500;
EXPECT_EQ(OB_SUCCESS, bitmap.get_row_ids(row_ids, row_count, from, 8193, 7));
EXPECT_EQ(7, row_count);
EXPECT_EQ(4096, from);
EXPECT_EQ(4000, row_ids[0]);
for (int64_t i = 1; i < 7; ++i) {
EXPECT_EQ(4090 + i - 1, row_ids[i]);
}
}
TEST_F(TestObBitmap, from_bits_mask)
{
const uint64_t bitmap_size = 8193;
const uint64_t mem_size = 2000;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
data_ = static_cast<uint64_t *>(allocator_.alloc(mem_size));
MEMSET(static_cast<void *>(data_), 0, mem_size);
const uint64_t test_size = 32 * 5 + 31;
for (int i = 0; i < test_size; ++i) {
if ((i % 2) == 1) {
set(i);
}
}
set(4);
set(166);
set(190);
int64_t offset = 123;
OK(bitmap.from_bits_mask(offset, offset + test_size, reinterpret_cast<uint8_t *>(data_)));
for (int i = offset; i < (test_size + offset); ++i) {
const int64_t index = i - offset;
if ((index % 2) == 1 || index == 4 || index == 166 || index == 190) {
ASSERT_TRUE(bitmap.test(i));
} else {
ASSERT_FALSE(bitmap.test(i));
}
}
offset = 0;
bitmap.reuse();
OK(bitmap.from_bits_mask(offset, offset + test_size, reinterpret_cast<uint8_t *>(data_)));
for (int i = offset; i < (test_size + offset); ++i) {
const int64_t index = i - offset;
if ((index % 2) == 1 || index == 4 || index == 166 || index == 190) {
ASSERT_TRUE(bitmap.test(i));
} else {
ASSERT_FALSE(bitmap.test(i));
}
}
}
TEST_F(TestObBitmap, to_bits_mask)
{
const uint64_t bitmap_size = 8193;
const uint64_t mem_size = 2000;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
data_ = static_cast<uint64_t *>(allocator_.alloc(mem_size));
MEMSET(static_cast<void *>(data_), 0, mem_size);
for (int i = 0; i < 8000; ++i) {
if ((i % 2) == 1) {
bitmap.set(i);
}
}
bitmap.set(2);
bitmap.set(4);
bitmap.set(6);
OK(bitmap.to_bits_mask(6, 8000, false, reinterpret_cast<uint8_t *>(data_)));
for (int64_t i = 0; i < 7994; ++i) {
const uint64_t idx = i + 6;
if ((idx % 2) == 1 || idx == 2 || idx == 4 || idx == 6) {
ASSERT_TRUE(test(i));
} else {
ASSERT_FALSE(test(i));
}
}
MEMSET(static_cast<void *>(data_), 0, mem_size);
bitmap.to_bits_mask(6, 8000, true, reinterpret_cast<uint8_t *>(data_));
for (int64_t i = 0; i < 7994; ++i) {
const uint64_t idx = i + 6;
if ((idx % 2) == 1 || idx == 2 || idx == 4 || idx == 6) {
ASSERT_FALSE(test(i));
} else {
ASSERT_TRUE(test(i));
}
}
}
// For 8192 rows:
// AVX512: the time cost decreased from ~10000ns -> ~300ns
// BMI2: the time cost decreased from ~10000ns -> ~700ns
TEST_F(TestObBitmap, benchmark_from_bits_mask)
{
const uint64_t bitmap_size = 8192;
const uint64_t mem_size = 1024;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
data_ = static_cast<uint64_t *>(allocator_.alloc(mem_size));
MEMSET(static_cast<void *>(data_), 0, mem_size);
for (int i = 0; i < 8192; ++i) {
if ((i % 2) == 1) {
set(i);
}
}
auto start = std::chrono::high_resolution_clock::now();
bitmap.from_bits_mask(0, 8192, reinterpret_cast<uint8_t *>(data_));
auto end = std::chrono::high_resolution_clock::now();
LOG_INFO("benchmark_from_bits_mask costs ns",
K(std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count()));
auto start2 = std::chrono::high_resolution_clock::now();
for (int i = 0; i < 8192; ++i) {
if (test(i)) {
bitmap.set(i);
}
}
auto end2 = std::chrono::high_resolution_clock::now();
LOG_INFO("benchmark_from_bits_mask control group costs ns",
K(std::chrono::duration_cast<std::chrono::nanoseconds>(end2 - start2).count()));
}
// For 8192 rows:
// AVX512: the time cost decreased from ~9000ns -> ~200ns
// BMI2: the time cost decreased from ~9000ns -> ~400ns
TEST_F(TestObBitmap, benchmark_to_bits_mask)
{
const uint64_t bitmap_size = 8192;
const uint64_t mem_size = 1024;
ObBitmap bitmap(allocator_);
EXPECT_EQ(OB_SUCCESS, bitmap.init(bitmap_size));
data_ = static_cast<uint64_t *>(allocator_.alloc(mem_size));
MEMSET(static_cast<void *>(data_), 0, mem_size);
for (int i = 0; i < 8192; ++i) {
if ((i % 2) == 1) {
bitmap.set(i);
}
}
auto start = std::chrono::high_resolution_clock::now();
bitmap.to_bits_mask(0, 8192, false, reinterpret_cast<uint8_t *>(data_));
auto end = std::chrono::high_resolution_clock::now();
LOG_INFO("benchmark_to_bits_mask costs ns",
K(std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count()));
auto start2 = std::chrono::high_resolution_clock::now();
for (int i = 0; i < 8192; ++i) {
if (bitmap.test(i)) {
set(i);
}
}
auto end2 = std::chrono::high_resolution_clock::now();
LOG_INFO("benchmark_to_bits_mask control group costs ns",
K(std::chrono::duration_cast<std::chrono::nanoseconds>(end2 - start2).count()));
}
} // end of namespace unittest
@ -159,6 +388,8 @@ TEST_F(TestObBitmap, load_from_array)
int main(int argc, char **argv)
{
oceanbase::common::ObLogger::get_logger().set_log_level("INFO");
system("rm -f test_bitmap.log*");
OB_LOGGER.set_file_name("test_bitmap.log", true, false);
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}