patch 4.0

This commit is contained in:
wangzelin.wzl
2022-10-24 10:34:53 +08:00
parent 4ad6e00ec3
commit 93a1074b0c
10533 changed files with 2588271 additions and 2299373 deletions

View File

@ -12,206 +12,224 @@
#include "share/ob_define.h"
#include "lib/utility/ob_print_utils.h"
#include "sql/ob_sql_temp_table.h"
#ifndef _OB_OPTIMIZER_H
#define _OB_OPTIMIZER_H 1
namespace oceanbase {
namespace sql {
class ObDMLStmt;
class ObLogPlan;
class ObOptimizerContext;
class ObRawExpr;
class ObLogicalOperator;
class ObColumnRefRawExpr;
/**
* @enum TraverseOp
* @brief Plan tree traversal operations
*/
enum TraverseOp {
namespace oceanbase
{
namespace sql
{
class ObDMLStmt;
class ObSelectStmt;
class ObLogPlan;
class ObOptimizerContext;
class ObRawExpr;
class ObLogicalOperator;
class ObColumnRefRawExpr;
/**
* The output expression allocation is a top-down and bottom-up process.
* During the top-down process, at each operator, we put the expressions
* needed by the operator into a request list and pass it down to its
* children.
*
* Once we reach leaf operator, which is usually a table scan, we produce all
* column items and check if we can satisfy any required expression. From
* that point on, the process has become a bottom-up one, where each operator
* will check if they can produce any not-yet-produced expression.
*
* And last, at the root operator, we check if all requested expressions has
* been produced.
* @enum TraverseOp
* @brief Plan tree traversal operations
*/
ALLOC_EXPR = 0,
/**
* In some cases, the operator may not need to produce any columns to the
* parent operator, such as table scan in a cartesian join or if the join
* condition has been placed in the filter expressions. However, in order to
* execute the operator iterator-model, we still need to produce at least
* one expr. Currently, we just copy all access exprs to the output. The
* exact reason is explained inline.
*/
ALLOC_DUMMY_OUTPUT,
/**
* We may have unnecessary exprs produced during the expr allocation since
* we basically produce all column items but some are implicitly resolved
* and are not needed during execution, such as columns involved in partition
* expression. We perform project pruning to remove them.
*/
PROJECT_PRUNING,
/**
* Exchange allocation is also known as parallel optimzation. Though there
* are multiple possible optimization that can happen in this step, at the
* moment we just perform simple check on table location and insert pairs of
* exchange nodes at places where data exchange needs to happen(local
* execution is not enough to satisfy the semantics. )
*/
ALLOC_EXCH,
OPERATOR_NUMBERING, // numbering operators
EXCHANGE_NUMBERING, // numbering exchange out for px
GEN_SIGNATURE, // generating plan signature
GEN_LOCATION_CONSTRAINT, // generate plan location constraint, used from plan cache
EXPLAIN_COLLECT_WIDTH, // explain calculate column width
EXPLAIN_WRITE_BUFFER, // explain write plan table
EXPLAIN_WRITE_BUFFER_OUTPUT, // explain write output and filters
EXPLAIN_WRITE_BUFFER_OUTLINE, // explain write outline
EXPLAIN_INDEX_SELECTION_INFO, // explain index selection info
ADJUST_SORT_OPERATOR, // remove useless operator, set merge sort, task order, prefix sort
RE_CALC_OP_COST,
/**
* alloc granule iterator after all other operation
* */
ALLOC_GI,
/**
* Add block operator (material) to make sure DFO can be scheduled in
* consumer/producer threads model.
*/
PX_PIPE_BLOCKING,
/**
* when exchange op is on the right branch of a subplan filter,
* it must support rescan
*/
PX_RESCAN,
ALLOC_MONITORING_DUMP,
PX_ESTIMATE_SIZE,
REORDER_PROJECT_COLUMNS,
enum TraverseOp
{
/**
* The output expression allocation is a top-down and bottom-up process.
* During the top-down process, at each operator, we put the expressions
* needed by the operator into a request list and pass it down to its
* children.
*
* Once we reach leaf operator, which is usually a table scan, we produce all
* column items and check if we can satisfy any required expression. From
* that point on, the process has become a bottom-up one, where each operator
* will check if they can produce any not-yet-produced expression.
*
* And last, at the root operator, we check if all requested expressions has
* been produced.
*/
ALLOC_EXPR = 0,
/**
* We may have unnecessary exprs produced during the expr allocation since
* we basically produce all column items but some are implicitly resolved
* and are not needed during execution, such as columns involved in partition
* expression. We perform project pruning to remove them.
*/
PROJECT_PRUNING,
/**
* Exchange allocation is also known as parallel optimzation. Though there
* are multiple possible optimization that can happen in this step, at the
* moment we just perform simple check on table location and insert pairs of
* exchange nodes at places where data exchange needs to happen(local
* execution is not enough to satisfy the semantics. )
*/
OPERATOR_NUMBERING, // numbering operators
EXCHANGE_NUMBERING, // numbering exchange out for px
GEN_SIGNATURE, // generating plan signature
GEN_LOCATION_CONSTRAINT, //generate plan location constraint, used from plan cache
EXPLAIN_COLLECT_WIDTH, // explain calculate column width
EXPLAIN_WRITE_BUFFER, // explain write plan table
EXPLAIN_WRITE_BUFFER_OUTPUT, // explain write output and filters
EXPLAIN_WRITE_BUFFER_OUTLINE, // explain write outline
EXPLAIN_INDEX_SELECTION_INFO, // explain index selection info
EXTRACT_PARAMS_FOR_SUBPLAN, // extract params for subplan
/**
* alloc granule iterator after all other operation
* */
ALLOC_GI,
/**
* Add block operator (material) to make sure DFO can be scheduled in
* consumer/producer threads model.
*/
PX_PIPE_BLOCKING,
/**
* when exchange op is on the right branch of a subplan filter,
* it must support rescan
*/
PX_RESCAN,
ALLOC_MONITORING_DUMP,
PX_ESTIMATE_SIZE,
BLOOM_FILTER,
/**
* Add remove_const() expr above const expr of operator output, to make sure const expr
* not overwritten in static typing engine. (only overwrite the added remove_const() expr).
*/
CG_PREPARE,
// dblink
ALLOC_LINK,
GEN_LINK_STMT,
ALLOC_STARTUP_EXPR,
TRAVERSE_OP_END
};
#define CtxcatNeedTraverseOp(op) (OPERATOR_NUMBERING <= (op) || ALLOC_DUMMY_OUTPUT == (op))
struct NumberingCtx {
NumberingCtx() : num_(0), num_include_monitoring_dump_(0), branch_id_(0), op_id_(0), plan_depth_(0), going_up_(false)
{}
uint64_t num_;
uint64_t num_include_monitoring_dump_;
uint64_t branch_id_;
uint64_t op_id_;
int64_t plan_depth_;
bool going_up_;
};
struct NumberingExchangeCtx {
private:
struct IdStruct {
IdStruct() : current_px_id_(common::OB_INVALID_ID), next_dfo_id_(common::OB_INVALID_ID)
{}
IdStruct(int64_t px_id, int64_t dfo_id) : current_px_id_(px_id), next_dfo_id_(dfo_id)
{}
int64_t current_px_id_;
int64_t next_dfo_id_;
TO_STRING_KV(K_(current_px_id), K_(next_dfo_id));
// dblink
ALLOC_LINK,
GEN_LINK_STMT,
ALLOC_STARTUP_EXPR,
COPY_PART_EXPR,
TRAVERSE_OP_END
};
public:
NumberingExchangeCtx() : next_px_id_(common::OB_INVALID_ID), ids_()
{}
int64_t next_px()
struct CopyPartExprCtx {
common::ObSEArray<ObRawExpr*, 4> used_part_exprs_;
common::ObSEArray<ObRawExpr*, 4> cache_lookup_calc_part_id_exprs_;
common::ObSEArray<ObRawExpr*, 4> new_lookup_calc_part_id_exprs_;
};
struct NumberingCtx
{
next_px_id_ = (next_px_id_ <= 0) ? 1 : next_px_id_ + 1;
return next_px_id_;
}
int next_dfo(int64_t& px_id, int64_t& dfo_id)
NumberingCtx () :
num_(0), num_include_monitoring_dump_(0), branch_id_(0), op_id_(0), plan_depth_(0), going_up_(false) {}
uint64_t num_;
uint64_t num_include_monitoring_dump_;
uint64_t branch_id_;
uint64_t op_id_;
int64_t plan_depth_; // 算子在计划树的缩进层次,顶层算子从0算起
bool going_up_;
};
struct NumberingExchangeCtx
{
int ret = common::OB_SUCCESS;
int64_t cnt = ids_.count();
if (cnt <= 0) {
ret = common::OB_ERR_UNEXPECTED;
} else {
IdStruct& top = ids_.at(cnt - 1);
px_id = top.current_px_id_;
dfo_id = top.next_dfo_id_++;
private:
struct IdStruct {
IdStruct() : current_px_id_(common::OB_INVALID_ID), next_dfo_id_(common::OB_INVALID_ID) {}
IdStruct(int64_t px_id, int64_t dfo_id) : current_px_id_(px_id), next_dfo_id_(dfo_id) {}
int64_t current_px_id_;
int64_t next_dfo_id_;
TO_STRING_KV(K_(current_px_id), K_(next_dfo_id));
};
public:
NumberingExchangeCtx () : next_px_id_(common::OB_INVALID_ID), ids_()
{}
int64_t next_px()
{
next_px_id_ = (next_px_id_ <= 0) ? 1 : next_px_id_ + 1;
return next_px_id_;
}
return ret;
}
int push_px(int64_t px_id)
// 栈顶 item 作为当前 px 的 dfo 计数器
int next_dfo(int64_t &px_id, int64_t &dfo_id)
{
int ret = common::OB_SUCCESS;
int64_t cnt = ids_.count();
if (cnt <= 0) {
ret = common::OB_ERR_UNEXPECTED;
} else {
IdStruct &top = ids_.at(cnt - 1);
px_id = top.current_px_id_;
dfo_id = top.next_dfo_id_++;
}
return ret;
}
int push_px(int64_t px_id)
{
return ids_.push_back(IdStruct(px_id, 0));
}
int pop_px()
{
IdStruct dummy;
return ids_.pop_back(dummy);
}
private:
int64_t next_px_id_;
common::ObSEArray<IdStruct, 4> ids_;
};
enum ObOptFlagBit
{
return ids_.push_back(IdStruct(px_id, 0));
}
int pop_px()
OPT_NO_NL_JOIN_FLAG = 0,
};
struct ObExprSelPair
{
IdStruct dummy;
return ids_.pop_back(dummy);
}
ObExprSelPair(): expr_(NULL), sel_(0), represent_range_exprs_(false)
{}
ObExprSelPair(const ObRawExpr *expr, double sel, const bool represent_range_exprs = false)
: expr_(expr), sel_(sel), represent_range_exprs_(represent_range_exprs)
{ }
~ObExprSelPair()
{ }
bool operator==(const ObExprSelPair &rhs) const
{ return expr_ == rhs.expr_ && represent_range_exprs_ == rhs.represent_range_exprs_; }
TO_STRING_KV(K(expr_), K(sel_));
const ObRawExpr *expr_;
double sel_;//selectivity of expr
bool represent_range_exprs_;
};
private:
int64_t next_px_id_;
common::ObSEArray<IdStruct, 4> ids_;
};
enum ObOptFlagBit {
OPT_NO_NL_JOIN_FLAG = 0,
};
struct ObExprSelPair {
ObExprSelPair() : expr_(NULL), sel_(0)
{}
ObExprSelPair(const ObRawExpr* expr, double sel) : expr_(expr), sel_(sel)
{}
~ObExprSelPair()
{}
bool operator==(const ObExprSelPair& rhs) const
class ObOptimizer
{
return expr_ == rhs.expr_;
}
TO_STRING_KV(K(expr_), K(sel_));
const ObRawExpr* expr_;
double sel_; // selectiviy of expr
};
class ObOptimizer {
public:
ObOptimizer(ObOptimizerContext& ctx) : ctx_(ctx)
{}
virtual ~ObOptimizer()
{}
virtual int optimize(ObDMLStmt& stmt, ObLogPlan*& plan);
virtual int get_optimization_cost(ObDMLStmt& stmt, double& cost);
private:
int generate_plan_for_temp_table(ObDMLStmt& stmt);
int init_env_info(ObDMLStmt& stmt);
int get_stmt_max_table_dop(ObDMLStmt& stmt, int64_t& max_dop);
int get_session_parallel_info(
ObDMLStmt& stmt, bool use_pdml, bool& session_px_enable_parallel, uint64_t& session_force_parallel_dop);
int check_pdml_enabled(const ObDMLStmt& stmt, const ObSQLSessionInfo& session, bool& is_use_pdml);
int check_pdml_supported_feature(const ObDMLStmt& stmt, const ObSQLSessionInfo& session, bool& is_use_pdml);
int check_unique_index(const common::ObIArray<ObColumnRefRawExpr*>& column_exprs, bool& has_unique_index) const;
private:
ObOptimizerContext& ctx_;
DISALLOW_COPY_AND_ASSIGN(ObOptimizer);
};
} // namespace sql
} // namespace oceanbase
public:
ObOptimizer(ObOptimizerContext &ctx)
: ctx_(ctx)
{}
virtual ~ObOptimizer() {}
virtual int optimize(ObDMLStmt &stmt, ObLogPlan *&plan);
virtual int get_optimization_cost(ObDMLStmt &stmt,
ObLogPlan *&plan,
double &cost);
int update_column_usage_infos();
private:
int generate_plan_for_temp_table(ObDMLStmt &stmt);
int collect_temp_tables(ObIAllocator &allocator,
ObDMLStmt &stmt,
common::ObIArray<ObSqlTempTableInfo*> &temp_table_infos);
bool exists_temp_table(const ObIArray<ObSqlTempTableInfo*> &temp_table_infos,
const ObSelectStmt *table_query) const;
int init_env_info(ObDMLStmt &stmt);
int get_stmt_max_table_dop(ObDMLStmt &stmt,
int64_t &max_dop);
int get_stmt_max_table_parallel_hint(ObDMLStmt &stmt,
int64_t &max_table_parallel);
int get_session_parallel_info(ObDMLStmt &stmt,
bool use_pdml,
bool &session_px_enable_parallel,
uint64_t &session_force_parallel_dop);
int check_pdml_enabled(const ObDMLStmt &stmt,
const ObSQLSessionInfo &session,
bool &is_use_pdml);
int check_pdml_supported_feature(const ObDMLStmt &stmt,
const ObSQLSessionInfo &session,
bool &is_use_pdml);
int check_is_heap_table(const ObDMLStmt &stmt);
int check_unique_index(const common::ObIArray<ObColumnRefRawExpr*> &column_exprs,
bool &has_unique_index) const;
int extract_column_usage_info(const ObDMLStmt &stmt);
int analyze_one_expr(const ObDMLStmt &stmt, const ObRawExpr *expr);
int add_column_usage_arg(const ObDMLStmt &stmt,
const ObColumnRefRawExpr &column_expr,
int64_t flag);
int check_whether_contain_nested_sql(const ObDMLStmt &stmt);
private:
ObOptimizerContext &ctx_;
DISALLOW_COPY_AND_ASSIGN(ObOptimizer);
};
}
}
#endif