patch 4.0
This commit is contained in:
140
unittest/sql/optimizer/cost_model_utils/fit_miss.py
Executable file
140
unittest/sql/optimizer/cost_model_utils/fit_miss.py
Executable file
@ -0,0 +1,140 @@
|
||||
#!/bin/env python
|
||||
__author__ = 'dongyun.zdy'
|
||||
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
from scipy.optimize import leastsq
|
||||
from scipy.optimize import curve_fit
|
||||
import sys
|
||||
from lmfit import Model
|
||||
import getopt
|
||||
|
||||
|
||||
def get_row_size(col):
|
||||
size = 16
|
||||
size += col * (3 + 8 + 4 + 8 + 16 + 32 + 64 + 128)
|
||||
size += col
|
||||
return size
|
||||
|
||||
def round_wasted_spave(rsize, psize):
|
||||
nr = math.floor(float(psize / rsize))
|
||||
waste = psize - nr * rsize
|
||||
return rsize + waste / nr
|
||||
|
||||
|
||||
|
||||
def get_miss_prob(Nrow, Ncol, Turn):
|
||||
total_size = Nrow * get_row_size(Ncol)
|
||||
TLBcovered = Turn
|
||||
if TLBcovered >= 0.9 * total_size:
|
||||
hit = 0.9
|
||||
else:
|
||||
hit = TLBcovered / total_size
|
||||
return 1 - hit
|
||||
|
||||
def sort_model_form(args,
|
||||
Tmiss,
|
||||
Turn
|
||||
):
|
||||
(
|
||||
Nrow,
|
||||
Ncol,
|
||||
) = args
|
||||
|
||||
total_cost = 0
|
||||
|
||||
total_cost += Nrow * Tmiss * Ncol * get_miss_prob(Nrow, Ncol, Turn)
|
||||
|
||||
return total_cost
|
||||
|
||||
def sort_model_arr(arg_sets,
|
||||
Tmiss,
|
||||
Turn,
|
||||
):
|
||||
res = []
|
||||
for single_arg_set in arg_sets:
|
||||
res.append(sort_model_form(single_arg_set,
|
||||
Tmiss,
|
||||
Turn,
|
||||
))
|
||||
return np.array(res)
|
||||
|
||||
sort_model = Model(sort_model_arr)
|
||||
sort_model.set_param_hint("Tmiss", min=0.0)
|
||||
sort_model.set_param_hint("Turn", min=2097152.0, max=2097153.0)
|
||||
|
||||
# sort_model.set_param_hint("Tmiss_K2", min=0.0)
|
||||
|
||||
def extract_info_from_line(line):
|
||||
splited = line.split(",")
|
||||
line_info = []
|
||||
for item in splited:
|
||||
line_info.append(float(item))
|
||||
return line_info
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
file_name = "miss.prep.1"
|
||||
out_file_name = "miss.model"
|
||||
|
||||
# sys.argv.extend("-i sort.prep.bigint -o sort.model".split(" "))
|
||||
|
||||
output_fit_res = False
|
||||
wrong_arg = False
|
||||
opts,args = getopt.getopt(sys.argv[1:],"i:o:R:C:")
|
||||
for op, value in opts:
|
||||
if "-i" == op:
|
||||
file_name = value
|
||||
elif "-o" == op:
|
||||
output_fit_res = True
|
||||
out_file_name = value
|
||||
elif "-R" == op:
|
||||
MATERIAL_ROW_ONCE = float(value)
|
||||
elif "-C" == op:
|
||||
MATERIAL_ROW_COL = float(value)
|
||||
else:
|
||||
wrong_arg = True
|
||||
|
||||
if wrong_arg:
|
||||
print "wrong arg"
|
||||
sys.exit(1)
|
||||
|
||||
file = open(file_name, "r")
|
||||
arg_sets = []
|
||||
times = []
|
||||
case_params = []
|
||||
for line in file:
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
case_param = extract_info_from_line(line)
|
||||
case_params.append(case_param)
|
||||
arg_sets.append((case_param[0], case_param[1]))
|
||||
times.append(case_param[3])
|
||||
file.close()
|
||||
arg_sets_np = np.array(arg_sets)
|
||||
times_np = np.array(times)
|
||||
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
|
||||
result = sort_model.fit(times_np, arg_sets=arg_sets_np,
|
||||
Tmiss=1.0,
|
||||
Turn=2097152,
|
||||
)
|
||||
|
||||
Tmiss = result.best_values["Tmiss"]
|
||||
Turn = result.best_values["Turn"]
|
||||
res_line = str(Tmiss) + ","
|
||||
res_line += str(Turn)
|
||||
# res_line += str(result.best_values["Tmiss_K2"])
|
||||
|
||||
|
||||
print result.fit_report()
|
||||
|
||||
if output_fit_res:
|
||||
out_file = open(out_file_name, "w")
|
||||
out_file.write(res_line)
|
||||
out_file.close()
|
||||
|
||||
for i, args in enumerate(arg_sets):
|
||||
cost = sort_model_form(args, Tmiss, Turn)
|
||||
time = times[i]
|
||||
print "\t".join([str(args), str(time), str(cost)])
|
||||
Reference in New Issue
Block a user