patch 4.0
This commit is contained in:
147
unittest/sql/optimizer/cost_model_utils/fit_nl.py
Normal file
147
unittest/sql/optimizer/cost_model_utils/fit_nl.py
Normal file
@ -0,0 +1,147 @@
|
||||
#!/bin/env python
|
||||
__author__ = 'dongyun.zdy'
|
||||
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
from scipy.optimize import leastsq
|
||||
from scipy.optimize import curve_fit
|
||||
import sys
|
||||
from lmfit import Model
|
||||
import getopt
|
||||
|
||||
|
||||
|
||||
def nl_model_form(args,
|
||||
Tstartup,
|
||||
#Tqual,
|
||||
Tres,
|
||||
Tfail,
|
||||
Tleft_row,
|
||||
Tright_row
|
||||
):
|
||||
(
|
||||
Nrow_res,
|
||||
Nrow_left,
|
||||
Nrow_right,
|
||||
Nright_cache_in,
|
||||
Nright_cache_out,
|
||||
Nright_cache_clear,
|
||||
Nequal_cond
|
||||
) = args
|
||||
|
||||
total_cost = Tstartup
|
||||
total_cost += Nrow_res * Tres
|
||||
#total_cost += Nequal_cond * Tqual
|
||||
total_cost += (Nequal_cond - Nrow_res) * Tfail
|
||||
total_cost += Nrow_left * Tleft_row
|
||||
total_cost += Nrow_right * Tright_row
|
||||
|
||||
return total_cost
|
||||
|
||||
eval_count = 0
|
||||
|
||||
def nl_model_arr(arg_sets,
|
||||
Tstartup,
|
||||
#Tqual,
|
||||
Tres,
|
||||
Tfail,
|
||||
Tleft_row,
|
||||
Tright_row
|
||||
):
|
||||
res = [nl_model_form(single_arg_set,
|
||||
Tstartup,
|
||||
#Tqual,
|
||||
Tres,
|
||||
Tfail,
|
||||
Tleft_row,
|
||||
Tright_row
|
||||
) for single_arg_set in arg_sets]
|
||||
global eval_count
|
||||
eval_count += 1
|
||||
return np.array(res)
|
||||
|
||||
|
||||
nl_model = Model(nl_model_arr)
|
||||
nl_model.set_param_hint("Tstartup", min=0.0, max = 50)
|
||||
#nl_model.set_param_hint("Tqual", min=0.0)
|
||||
nl_model.set_param_hint("Tres", min=0.0)
|
||||
nl_model.set_param_hint("Tfail", min=0.0)
|
||||
nl_model.set_param_hint("Tleft_row", min=0.0)
|
||||
nl_model.set_param_hint("Tright_row", min=0.0)
|
||||
|
||||
|
||||
def extract_info_from_line(line):
|
||||
splited = line.split(",")
|
||||
line_info = []
|
||||
for item in splited:
|
||||
line_info.append(float(item))
|
||||
return line_info
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
file_name = "scan_model.res.formal.prep"
|
||||
out_file_name = "scan_model.fit"
|
||||
|
||||
sys.argv.extend("-i nl.prep -o nl.model".split(" "))
|
||||
|
||||
output_fit_res = False
|
||||
wrong_arg = False
|
||||
opts,args = getopt.getopt(sys.argv[1:],"i:o:")
|
||||
for op, value in opts:
|
||||
if "-i" == op:
|
||||
file_name = value
|
||||
elif "-o" == op:
|
||||
output_fit_res = True
|
||||
out_file_name = value
|
||||
else:
|
||||
wrong_arg = True
|
||||
|
||||
if wrong_arg:
|
||||
print "wrong arg"
|
||||
sys.exit(1)
|
||||
|
||||
file = open(file_name, "r")
|
||||
arg_sets = []
|
||||
times = []
|
||||
case_params = []
|
||||
for line in file:
|
||||
case_param = extract_info_from_line(line)
|
||||
case_params.append(case_param)
|
||||
arg_sets.append((case_param[6], #Nrow_res
|
||||
case_param[0], #Nrow_left
|
||||
case_param[1], #Nrow_right
|
||||
case_param[-3], #Nright_cache_in
|
||||
case_param[-2], #Nright_cache_out
|
||||
case_param[-1], #Nright_cache_clear
|
||||
case_param[8] #Nequal_cond
|
||||
))
|
||||
times.append(case_param[7])
|
||||
file.close()
|
||||
arg_sets_np = np.array(arg_sets)
|
||||
times_np = np.array(times)
|
||||
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
|
||||
result = nl_model.fit(times_np, arg_sets=arg_sets_np,
|
||||
Tstartup=50.0,
|
||||
#Tqual=0.1,
|
||||
Tres=0.3,
|
||||
Tfail=0.3,
|
||||
Tleft_row=0.3,
|
||||
Tright_row=0.3
|
||||
)
|
||||
|
||||
|
||||
res_line = str(result.best_values["Tstartup"]) + ","
|
||||
#res_line += str(result.best_values["Tqual"]) + ","
|
||||
res_line += str(result.best_values["Tres"]) + ","
|
||||
res_line += str(result.best_values["Tfail"]) + ","
|
||||
res_line += str(result.best_values["Tleft_row"]) + ","
|
||||
res_line += str(result.best_values["Tright_row"])
|
||||
|
||||
|
||||
print result.fit_report()
|
||||
|
||||
if output_fit_res:
|
||||
out_file = open(out_file_name, "w")
|
||||
out_file.write(res_line)
|
||||
out_file.close()
|
Reference in New Issue
Block a user