patch 4.0
This commit is contained in:
137
unittest/sql/optimizer/storage_perf/fit_get.py
Executable file
137
unittest/sql/optimizer/storage_perf/fit_get.py
Executable file
@ -0,0 +1,137 @@
|
||||
#!/bin/env python
|
||||
__author__ = 'dongyun.zdy'
|
||||
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
from scipy.optimize import leastsq
|
||||
from scipy.optimize import curve_fit
|
||||
import sys
|
||||
from lmfit import Model
|
||||
import getopt
|
||||
|
||||
STARTUP = 0.0
|
||||
|
||||
def get_model_form(args,
|
||||
# Tstartup,
|
||||
Tper_row,
|
||||
Tper_col,
|
||||
Tcorrection1,
|
||||
Tcorrection2,
|
||||
# Tlog3
|
||||
):
|
||||
(
|
||||
Nrow,
|
||||
Ncol,
|
||||
) = args
|
||||
|
||||
global STARTUP
|
||||
total_cost = STARTUP#Tstartup
|
||||
total_cost += Nrow * (Tper_row + Ncol * Tper_col)
|
||||
total_cost += Tcorrection1 * math.log(Tcorrection2 * Nrow , 2)
|
||||
return total_cost
|
||||
|
||||
def get_model_arr(arg_sets,
|
||||
# Tstartup,
|
||||
Tper_row,
|
||||
Tper_col,
|
||||
Tcorrection1,
|
||||
Tcorrection2,
|
||||
# Tlog3
|
||||
):
|
||||
res = []
|
||||
for single_arg_set in arg_sets:
|
||||
res.append(get_model_form(single_arg_set,
|
||||
# Tstartup,
|
||||
Tper_row,
|
||||
Tper_col,
|
||||
Tcorrection1,
|
||||
Tcorrection2,
|
||||
# Tlog3
|
||||
))
|
||||
return np.array(res)
|
||||
|
||||
get_model = Model(get_model_arr)
|
||||
# get_model.set_param_hint("Tstartup", min=0.0)
|
||||
get_model.set_param_hint("Tper_row", min=0.0)
|
||||
get_model.set_param_hint("Tper_col", min=0.0)
|
||||
get_model.set_param_hint("Tcorrection1", min=0.0)
|
||||
get_model.set_param_hint("Tcorrection2", min=0.0)
|
||||
# get_model.set_param_hint("Tlog3", min=0.0)
|
||||
|
||||
|
||||
def extract_info_from_line(line):
|
||||
splited = line.split(",")
|
||||
line_info = []
|
||||
for item in splited:
|
||||
line_info.append(float(item))
|
||||
return line_info
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
file_name = "scan_model.res.formal.prep"
|
||||
out_file_name = "scan_model.fit"
|
||||
|
||||
# sys.argv.extend("-i get.IO.prep -o get.IO.model".split(" "))
|
||||
|
||||
output_fit_res = False
|
||||
wrong_arg = False
|
||||
opts,args = getopt.getopt(sys.argv[1:],"i:o:")
|
||||
for op, value in opts:
|
||||
if "-i" == op:
|
||||
file_name = value
|
||||
elif "-o" == op:
|
||||
output_fit_res = True
|
||||
out_file_name = value
|
||||
else:
|
||||
wrong_arg = True
|
||||
|
||||
if wrong_arg:
|
||||
print "wrong arg"
|
||||
sys.exit(1)
|
||||
|
||||
if file_name.find('rc') != -1:
|
||||
STARTUP = 170.0
|
||||
elif file_name.find('bc') != -1:
|
||||
STARTUP = 210.0
|
||||
else:
|
||||
STARTUP = 520.0
|
||||
|
||||
file = open(file_name, "r")
|
||||
arg_sets = []
|
||||
times = []
|
||||
case_params = []
|
||||
for line in file:
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
case_param = extract_info_from_line(line)
|
||||
case_params.append(case_param)
|
||||
arg_sets.append((case_param[0], case_param[1]))
|
||||
times.append(case_param[4])
|
||||
file.close()
|
||||
arg_sets_np = np.array(arg_sets)
|
||||
times_np = np.array(times)
|
||||
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
|
||||
result = get_model.fit(times_np, arg_sets=arg_sets_np,
|
||||
# Tstartup=10.0,
|
||||
Tper_row=10.0,
|
||||
Tper_col=1.0,
|
||||
Tcorrection1=1.0,
|
||||
Tcorrection2=1.0,
|
||||
# Tlog3=1.0,
|
||||
)
|
||||
|
||||
|
||||
# res_line = str(result.best_values["Tstartup"]) + ","
|
||||
res_line = str(result.best_values["Tper_row"]) + ","
|
||||
res_line += str(result.best_values["Tper_col"]) + ","
|
||||
res_line += str(result.best_values["Tcorrection1"]) + ","
|
||||
res_line += str(result.best_values["Tcorrection2"]) #+ ","
|
||||
# res_line += str(result.best_values["Tlog3"])
|
||||
|
||||
print result.fit_report()
|
||||
|
||||
if output_fit_res:
|
||||
out_file = open(out_file_name, "w")
|
||||
out_file.write(res_line)
|
||||
out_file.close()
|
||||
Reference in New Issue
Block a user