patch 4.0
This commit is contained in:
164
unittest/sql/optimizer/storage_perf/fit_io.py
Executable file
164
unittest/sql/optimizer/storage_perf/fit_io.py
Executable file
@ -0,0 +1,164 @@
|
||||
#!/bin/env python
|
||||
__author__ = 'dongyun.zdy'
|
||||
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
from scipy.optimize import leastsq
|
||||
from scipy.optimize import curve_fit
|
||||
import sys
|
||||
from lmfit import Model
|
||||
import getopt
|
||||
|
||||
|
||||
|
||||
def io_model_form(args,
|
||||
# Trow_once,
|
||||
# Trow_col,
|
||||
Tio_row,
|
||||
# Tio_col_desc,
|
||||
Tio_row_col_desc,
|
||||
):
|
||||
(
|
||||
Nrow,
|
||||
Ncol,
|
||||
) = args
|
||||
#
|
||||
# total_cost = Tstartup
|
||||
# total_cost += Nrow * (Trow_once + Ncol * Trow_col)
|
||||
|
||||
io_cost = Nrow * Tio_row
|
||||
# io_cost -= Ncol * Tio_col_desc
|
||||
io_cost -= Nrow * Ncol * Tio_row_col_desc
|
||||
if io_cost < 0:
|
||||
io_cost = 0
|
||||
|
||||
total_cost = io_cost
|
||||
return total_cost
|
||||
|
||||
def io_model_arr(arg_sets,
|
||||
# Tstartup,
|
||||
# Trow_once,
|
||||
# Trow_col,
|
||||
Tio_row,
|
||||
# Tio_col_desc,
|
||||
Tio_row_col_desc
|
||||
):
|
||||
res = []
|
||||
for single_arg_set in arg_sets:
|
||||
res.append(io_model_form(single_arg_set,
|
||||
# Tstartup,
|
||||
# Trow_once,
|
||||
# Trow_col,
|
||||
Tio_row,
|
||||
# Tio_col_desc,
|
||||
Tio_row_col_desc
|
||||
))
|
||||
return np.array(res)
|
||||
|
||||
io_model = Model(io_model_arr)
|
||||
# io_model.set_param_hint("Tstartup", min=0.0)
|
||||
# io_model.set_param_hint("Trow_once", min=0.0)
|
||||
# io_model.set_param_hint("Trow_col", min=0.0)
|
||||
io_model.set_param_hint("Tio_row", min=0.0)
|
||||
# io_model.set_param_hint("Tio_col_desc", min=0.0)
|
||||
io_model.set_param_hint("Tio_row_col_desc", min=0.0, max=0.07)
|
||||
|
||||
def extract_info_from_line(line):
|
||||
splited = line.split(",")
|
||||
line_info = []
|
||||
for item in splited:
|
||||
line_info.append(float(item))
|
||||
return line_info
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
file_name = "scan_model.res.formal.prep"
|
||||
out_file_name = "scan_model.fit"
|
||||
model_file = None
|
||||
|
||||
|
||||
# sys.argv.extend("-i scan.W.small.prep -o scan.io.fit".split(" "))
|
||||
|
||||
output_fit_res = False
|
||||
wrong_arg = False
|
||||
opts,args = getopt.getopt(sys.argv[1:],"i:o:m:")
|
||||
for op, value in opts:
|
||||
if "-i" == op:
|
||||
file_name = value
|
||||
elif "-o" == op:
|
||||
output_fit_res = True
|
||||
out_file_name = value
|
||||
elif "-m" == op:
|
||||
model_file = value
|
||||
else:
|
||||
wrong_arg = True
|
||||
|
||||
if wrong_arg:
|
||||
print "wrong arg"
|
||||
sys.exit(1)
|
||||
|
||||
file = open(file_name, "r")
|
||||
arg_sets = []
|
||||
times = []
|
||||
case_params = []
|
||||
for line in file:
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
case_param = extract_info_from_line(line)
|
||||
case_params.append(case_param)
|
||||
arg_sets.append((case_param[0], case_param[1]))
|
||||
times.append(case_param[6])
|
||||
file.close()
|
||||
arg_sets_np = np.array(arg_sets)
|
||||
times_np = np.array(times)
|
||||
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
|
||||
result = io_model.fit(times_np, arg_sets=arg_sets_np,
|
||||
# Tstartup=10.0,
|
||||
# Trow_once=10.0,
|
||||
# Trow_col=1.0,
|
||||
Tio_row=1.0,
|
||||
# Tio_col_desc=1.0,
|
||||
Tio_row_col_desc=1.0
|
||||
)
|
||||
|
||||
# Tstartup = result.best_values["Tstartup"]
|
||||
# Trow_once = result.best_values["Trow_once"]
|
||||
# Trow_col = result.best_values["Trow_col"]
|
||||
Tio_row = result.best_values["Tio_row"]
|
||||
# Tio_col_desc = result.best_values["Tio_col_desc"]
|
||||
Tio_row_col_desc = result.best_values["Tio_row_col_desc"]
|
||||
|
||||
print result.fit_report()
|
||||
|
||||
fit_res = io_model_arr(arg_sets_np,
|
||||
# Tstartup,
|
||||
# Trow_once,
|
||||
# Trow_col,
|
||||
Tio_row,
|
||||
# Tio_col_desc,
|
||||
Tio_row_col_desc
|
||||
)
|
||||
|
||||
if output_fit_res:
|
||||
out_file = open(out_file_name, "w")
|
||||
for i in xrange(len(arg_sets_np)):
|
||||
a = list(arg_sets_np[i])
|
||||
b = [times_np[i]]
|
||||
c = [fit_res[i]]
|
||||
d = [(fit_res[i] - times_np[i]) * 100 / times_np[i]]
|
||||
out_file.write(','.join([str(i) for i in a + b + c + d]) + "\n")
|
||||
out_file.close()
|
||||
|
||||
if model_file is not None:
|
||||
mf = open(model_file, 'w')
|
||||
mf.write(','.join([str(i) for i in [
|
||||
# Tstartup,
|
||||
# Trow_once,
|
||||
# Trow_col,
|
||||
Tio_row,
|
||||
# Tio_col_desc,
|
||||
Tio_row_col_desc
|
||||
]]))
|
||||
mf.close()
|
||||
|
Reference in New Issue
Block a user