#!/bin/env python __author__ = 'dongyun.zdy' import math import numpy as np from scipy.optimize import leastsq from scipy.optimize import curve_fit import sys from lmfit import Model import getopt def merge_model_form(args, Tstartup, Tres_right_op, Tres_right_cache, Tmatch_group, #Tassemble_row, Tequal_fail, Trow_left, Trow_right ): ( Nrow_res, Nrow_left, Nrow_right, Nright_cache_in, Nright_cache_out, Nright_cache_clear, Nequal_cond ) = args total_cost = Tstartup total_cost += Nrow_left * Trow_left total_cost += (Nrow_right - Nright_cache_in) * Trow_right total_cost += Nright_cache_in * Tres_right_op total_cost += Nright_cache_out * Tres_right_cache #total_cost += Nrow_res * Tassemble_row total_cost += Nright_cache_clear * Tmatch_group total_cost += (Nequal_cond - Nrow_res - 2 * Tmatch_group) * Tequal_fail # total_cost += Nright_cache_in * Tres_right_op # total_cost += (Nrow_res - Nright_cache_in) * Tres_right_cache # total_cost += Nright_cache_clear * Tmatch_group # total_cost += Nrow_res * Tassemble_row # total_cost += (Nequal_cond - Nrow_res - 2 * Tmatch_group) * Tequal_fail # total_cost += Nrow_left * Trow_left # total_cost += (Nrow_right - Nright_cache_in) * Trow_right return total_cost eval_count = 0 def merge_model_arr(arg_sets, Tstartup, Tres_right_op, Tres_right_cache, Tmatch_group, #Tassemble_row, Tequal_fail, Trow_left, Trow_right ): res = [merge_model_form(single_arg_set, Tstartup, Tres_right_op, Tres_right_cache, Tmatch_group, #Tassemble_row, Tequal_fail, Trow_left, Trow_right ) for single_arg_set in arg_sets] global eval_count eval_count += 1 return np.array(res) merge_model = Model(merge_model_arr) merge_model.set_param_hint("Tstartup", min=0.0) merge_model.set_param_hint("Tres_right_op", min=0.0) merge_model.set_param_hint("Tres_right_cache", min=0.0) merge_model.set_param_hint("Tmatch_group", min=0.0) #merge_model.set_param_hint("Tassemble_row", min=0.0) merge_model.set_param_hint("Tequal_fail", min=0.0) merge_model.set_param_hint("Trow_left", min=0.0) merge_model.set_param_hint("Trow_right", min=0.0) def extract_info_from_line(line): splited = line.split(",") line_info = [] for item in splited: line_info.append(float(item)) return line_info if __name__ == '__main__': file_name = "scan_model.res.formal.prep" out_file_name = "scan_model.fit" sys.argv.extend("-i merge.prep.1 -o merge.model".split(" ")) output_fit_res = False wrong_arg = False opts,args = getopt.getopt(sys.argv[1:],"i:o:") for op, value in opts: if "-i" == op: file_name = value elif "-o" == op: output_fit_res = True out_file_name = value else: wrong_arg = True if wrong_arg: print "wrong arg" sys.exit(1) file = open(file_name, "r") arg_sets = [] times = [] case_params = [] for line in file: case_param = extract_info_from_line(line) case_params.append(case_param) arg_sets.append((case_param[6], #Nrow_res case_param[0], #Nrow_left case_param[1], #Nrow_right case_param[-3], #Nright_cache_in case_param[-2], #Nright_cache_out case_param[-1], #Nright_cache_clear case_param[8] #Nequal_cond )) times.append(case_param[7]) file.close() arg_sets_np = np.array(arg_sets) times_np = np.array(times) #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0 result = merge_model.fit(times_np, arg_sets=arg_sets_np, Tstartup=0.1, Tres_right_op=0.1, Tres_right_cache=0.1, Tmatch_group=1.0, #Tassemble_row=0.5, Tequal_fail=1.0, Trow_left=0.05, Trow_right=0.05 ) res_line = str(result.best_values["Tstartup"]) + "," res_line += str(result.best_values["Tres_right_op"]) + "," res_line += str(result.best_values["Tres_right_cache"]) + "," res_line += str(result.best_values["Tmatch_group"]) + "," #res_line += str(result.best_values["Tassemble_row"]) + "," res_line += str(result.best_values["Tequal_fail"]) + "," res_line += str(result.best_values["Trow_left"]) + "," res_line += str(result.best_values["Trow_right"]) print result.fit_report() if output_fit_res: out_file = open(out_file_name, "w") out_file.write(res_line) out_file.close()