/** * Copyright (c) 2021 OceanBase * OceanBase CE is licensed under Mulan PubL v2. * You can use this software according to the terms and conditions of the Mulan PubL v2. * You may obtain a copy of Mulan PubL v2 at: * http://license.coscl.org.cn/MulanPubL-2.0 * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * See the Mulan PubL v2 for more details. */ #define USING_LOG_PREFIX SQL_JO #include "sql/optimizer/ob_join_order.h" #include "share/object/ob_obj_cast.h" #include "sql/ob_sql_utils.h" #include "sql/rewrite/ob_equal_analysis.h" #include "sql/optimizer/ob_log_distinct.h" #include "sql/optimizer/ob_opt_est_cost.h" #include "sql/optimizer/ob_log_plan_factory.h" #include "sql/optimizer/ob_select_log_plan.h" #include "sql/optimizer/ob_skyline_prunning.h" #include "sql/optimizer/ob_log_table_scan.h" #include "sql/optimizer/ob_log_subplan_scan.h" #include "sql/optimizer/ob_log_temp_table_access.h" #include "sql/plan_cache/ob_plan_set.h" #include "sql/rewrite/ob_transform_utils.h" #include "sql/optimizer/ob_access_path_estimation.h" #include "common/ob_smart_call.h" #include "sql/optimizer/ob_log_temp_table_insert.h" #include "sql/optimizer/ob_opt_selectivity.h" #include "share/stat/ob_opt_stat_manager.h" #include "sql/rewrite/ob_predicate_deduce.h" using namespace oceanbase; using namespace sql; using namespace oceanbase::common; using namespace oceanbase::share; using namespace oceanbase::storage; using oceanbase::share::schema::ObTableSchema; using oceanbase::share::schema::ObColumnSchemaV2; using oceanbase::share::schema::ObColDesc; using share::schema::ObSchemaGetterGuard; using common::ObArray; class OrderingInfo; class QueryRangeInfo; #define OPT_CTX (get_plan()->get_optimizer_context()) int ConflictDetector::build_confict(common::ObIAllocator &allocator, ConflictDetector* &detector) { int ret = OB_SUCCESS; if (OB_ISNULL(detector = static_cast(allocator.alloc(sizeof(ConflictDetector))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("allocate memory for conflict detector failed"); } else { new(detector) ConflictDetector(); } return ret; } ObJoinOrder::~ObJoinOrder() { } int ObJoinOrder::fill_query_range_info(const QueryRangeInfo &range_info, ObCostTableScanInfo &est_cost_info, bool use_skip_scan) { int ret = OB_SUCCESS; const ObQueryRangeArray &ranges = range_info.get_ranges(); const ObQueryRangeArray &ss_ranges = range_info.get_ss_ranges(); est_cost_info.ranges_.reset(); est_cost_info.ss_ranges_.reset(); est_cost_info.at_most_one_range_ = false; // maintain query range info for(int64_t i = 0; OB_SUCC(ret) && i < ranges.count(); ++i) { if (OB_ISNULL(ranges.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("range is null", K(ret)); } else if (OB_FAIL(est_cost_info.ranges_.push_back(*ranges.at(i)))) { LOG_WARN("failed to add range", K(ret)); } else { /*do nothing*/ } } for(int64_t i = 0; use_skip_scan && OB_SUCC(ret) && i < ss_ranges.count(); ++i) { if (OB_ISNULL(ss_ranges.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("range is null", K(ret)); } else if (OB_FAIL(est_cost_info.ss_ranges_.push_back(*ss_ranges.at(i)))) { LOG_WARN("failed to add range", K(ret)); } else { /*do nothing*/ } } if (OB_SUCC(ret) && ranges.count() > 1) { // if there is more than one range and it is exists exec params in ranges_exprs, check at most one range. // for (min; max) range extract from range_exprs contain exec params, do nothing now. ObSEArray cur_const_exprs; ObSEArray columns; bool has_exec_param = false; if (OB_ISNULL(range_info.get_query_range())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected NULL", K(ret), K(range_info.get_query_range())); } else if (OB_FAIL(check_has_exec_param(*range_info.get_query_range(), has_exec_param))) { LOG_WARN("failed to check has exec param", K(ret)); } else if (OB_FAIL(ObRawExprUtils::extract_column_exprs(range_info.get_query_range()->get_range_exprs(), columns))) { LOG_WARN("failed to extract column exprs", K(ret)); } else if (columns.empty() || !has_exec_param) { /* do nothing */ } else if (OB_FAIL(ObOptimizerUtil::compute_const_exprs(range_info.get_query_range()->get_range_exprs(), cur_const_exprs))) { // for inner path, const expr is computed without pushdown filter. // need compute const expr by range_exprs. LOG_WARN("failed to compute const exprs", K(ret)); } else { bool at_most_one_range = true; for (int64_t i = 0; at_most_one_range && i < columns.count(); ++i) { at_most_one_range = ObOptimizerUtil::find_equal_expr(cur_const_exprs, columns.at(i), get_output_equal_sets()); } est_cost_info.at_most_one_range_ = at_most_one_range; } } return ret; } int ObJoinOrder::compute_table_location_for_paths(ObIArray &access_paths, ObIArray &tbl_part_infos) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan()) || OB_ISNULL(allocator_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(allocator_), K(ret)); } else if (NULL == table_partition_info_) { // generate table location for main table if (OB_FAIL(compute_table_location(table_id_, table_meta_info_.ref_table_id_, false, table_partition_info_))) { LOG_WARN("failed to calc table location", K(ret)); } else if (OB_ISNULL(table_partition_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } } else if (OB_FAIL(tbl_part_infos.push_back(table_partition_info_))) { LOG_WARN("failed to push back table partition info", K(ret)); } // compute table location for global index for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); ++i) { AccessPath *path = NULL; if (OB_ISNULL(path = access_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (!path->is_global_index_) { path->table_partition_info_ = table_partition_info_; } else { for (int64_t j = 0; OB_SUCC(ret) && j < available_access_paths_.count(); ++j) { AccessPath *cur_path = available_access_paths_.at(j); if (OB_ISNULL(cur_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (path->table_id_ == cur_path->table_id_ && path->ref_table_id_ == cur_path->ref_table_id_ && path->index_id_ == cur_path->index_id_) { path->table_partition_info_ = cur_path->table_partition_info_; break; } } if (OB_SUCC(ret) && NULL == path->table_partition_info_) { ObTablePartitionInfo *table_partition_info = NULL; if (OB_FAIL(compute_table_location(path->table_id_, path->index_id_, true, table_partition_info))) { LOG_WARN("failed to calc table location", K(ret)); } else if (OB_ISNULL(table_partition_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else { table_partition_info->get_table_location().set_use_das(path->use_das_); path->table_partition_info_ = table_partition_info; } } } if (OB_FAIL(ret)) { } else if (OB_ISNULL(path->table_partition_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(i)); } else if (OB_FAIL(add_var_to_array_no_dup(tbl_part_infos, path->table_partition_info_))) { LOG_WARN("failed to add table partition info", K(ret)); } } return ret; } int ObJoinOrder::compute_table_location(const uint64_t table_id, const uint64_t ref_table_id, const bool is_global_index, ObTablePartitionInfo *&table_partition_info) { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; ObSchemaGetterGuard *schema_guard = NULL; ObSqlSchemaGuard *sql_schema_guard = NULL; const ObDMLStmt *stmt = NULL; const ParamStore *params = NULL; const TableItem *table_item = NULL; ObExecContext *exec_ctx = NULL; ObSqlCtx *sql_ctx = NULL; ObPhysicalPlanCtx *phy_plan_ctx = NULL; ObSQLSessionInfo *session_info = NULL; table_partition_info = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(allocator_) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(schema_guard = opt_ctx->get_schema_guard()) || OB_ISNULL(sql_schema_guard = opt_ctx->get_sql_schema_guard()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id)) || OB_ISNULL(params = opt_ctx->get_params()) || OB_ISNULL(exec_ctx = opt_ctx->get_exec_ctx()) || OB_ISNULL(sql_ctx = exec_ctx->get_sql_ctx()) || OB_ISNULL(phy_plan_ctx = exec_ctx->get_physical_plan_ctx()) || OB_ISNULL(session_info = sql_ctx->session_info_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(schema_guard), K(sql_schema_guard), K(stmt), K(params), K(exec_ctx), K(sql_ctx), K(phy_plan_ctx), K(session_info), K(allocator_), K(ret)); } else if (OB_ISNULL(table_partition_info = reinterpret_cast( allocator_->alloc(sizeof(ObTablePartitionInfo))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate memory", K(table_partition_info), K(ret)); } else { table_partition_info = new(table_partition_info) ObTablePartitionInfo(*allocator_); const ObDataTypeCastParams dtc_params = ObBasicSessionInfo::create_dtc_params(opt_ctx->get_session_info()); // check whether the ref table will be modified by dml operator bool is_dml_table = false; const ObDMLStmt *top_stmt = opt_ctx->get_root_stmt(); if (NULL != top_stmt) { if (top_stmt->is_explain_stmt()) { top_stmt = static_cast(top_stmt)->get_explain_query_stmt(); } if (OB_ISNULL(top_stmt)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("top stmt should not be null", K(ret)); } else if (OB_FAIL(top_stmt->check_table_be_modified(ref_table_id, is_dml_table))) { LOG_WARN("failed to check table be modified", K(ret)); } } //this place restrict_info include sub_query. ObArray correlated_filters; ObArray uncorrelated_filters; if (OB_FAIL(ObOptimizerUtil::extract_parameterized_correlated_filters(get_restrict_infos(), correlated_filters, uncorrelated_filters))) { LOG_WARN("Failed to extract correlated filters", K(ret)); } else if (OB_FAIL(table_partition_info->init_table_location(*sql_schema_guard, *stmt, exec_ctx, uncorrelated_filters, table_id, ref_table_id, is_global_index ? NULL : &table_item->part_ids_, dtc_params, is_dml_table, NULL))) { LOG_WARN("Failed to initialize table location", K(ret)); } else if (OB_FAIL(table_partition_info->calculate_phy_table_location_info(*exec_ctx, *params, dtc_params))) { LOG_WARN("failed to calculate table location", K(ret)); } else { LOG_INFO("succeed to calculate base table sharding info", K(table_id), K(ref_table_id), K(is_global_index)); } } return ret; } bool ObJoinOrder::is_main_table_use_das(const ObIArray &access_paths) { bool use_das = false; for (int64_t i = 0; !use_das && i < access_paths.count(); ++i) { //all local index path use the same table location info with the main table //so any local index path use DAS means the main table path use DAS const AccessPath *path = access_paths.at(i); if (path != nullptr && path->table_id_ == table_id_ && path->ref_table_id_ == table_meta_info_.ref_table_id_ && !path->is_global_index_) { use_das = path->use_das_; } } return use_das; } int ObJoinOrder::compute_sharding_info_for_base_paths(ObIArray &access_paths) { int ret = OB_SUCCESS; // compute path sharding info for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); ++i) { if (OB_FAIL(compute_sharding_info_for_base_path(access_paths, i))) { LOG_WARN("failed to compute sharding info for base path", K(ret)); } } if (OB_SUCC(ret) && OB_FAIL(prune_paths_due_to_parallel(access_paths))) { LOG_WARN("failed to prune path due to parallel", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); i++) { AccessPath *path = NULL; if (OB_ISNULL(path = access_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (OB_FAIL(compute_base_table_path_plan_type(path))) { LOG_WARN("failed to compute base table path plan type", K(ret)); } else if (OB_FAIL(compute_base_table_path_ordering(path))) { LOG_WARN("failed to compute base table path ordering", K(ret)); } else { LOG_TRACE("succeed to compute base sharding info", K(*path)); } } return ret; } // prune paths added because of auto dop: // global index and is not inner path / subquery with pushdown filter // 1. not use das but parallel = 1 // 2. use das and exits same index path with parallel > 1 int ObJoinOrder::prune_paths_due_to_parallel(ObIArray &access_paths) { int ret = OB_SUCCESS; if (access_paths.empty()) { /* do nothing */ } else if (OB_ISNULL(access_paths.at(0)) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(ret), K(access_paths.empty()), K(get_plan())); } else if (!is_virtual_table(access_paths.at(0)->ref_table_id_) && (get_tables().is_subset(get_plan()->get_subq_pdfilter_tset()) || access_paths.at(0)->is_inner_path_)) { /* do nothing */ } else { ObSEArray tmp_paths; AccessPath *path = NULL; AccessPath *default_path = NULL; // to reserve at least one path bool need_prune = false; for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); i++) { need_prune = false; if (OB_ISNULL(path = access_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (!path->is_global_index_) { /* do nothing */ } else if (!path->use_das_ && 1 >= path->parallel_) { default_path = NULL == default_path ? path : default_path; need_prune = true; } else if (path->use_das_) { AccessPath *cur_path = NULL; for (int64_t j = 0; NULL == cur_path && j < access_paths.count(); ++j) { if (i != j && NULL != access_paths.at(j) && path->index_id_ == access_paths.at(j)->index_id_) { cur_path = access_paths.at(j); } } need_prune = NULL != cur_path && cur_path->parallel_ > 1; } if (OB_SUCC(ret) && !need_prune && OB_FAIL(tmp_paths.push_back(path))) { LOG_WARN("failed to push back access path", K(ret)); } } if (OB_FAIL(ret)) { } else if (tmp_paths.count() == access_paths.count()) { /* do nothing */ } else if (OB_FAIL(access_paths.assign(tmp_paths))) { LOG_WARN("failed to assign paths", K(ret)); } else if (access_paths.empty() && NULL != default_path && !default_path->is_inner_path_ && OB_FAIL(access_paths.push_back(default_path))) { LOG_WARN("failed to push back access path", K(ret)); } } return ret; } int ObJoinOrder::compute_sharding_info_for_base_path(ObIArray &access_paths, const int64_t cur_idx) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObOptimizerContext *opt_ctx = NULL; ObSQLSessionInfo *session_info = NULL; ObTableLocationType location_type = OB_TBL_LOCATION_UNINITIALIZED; bool is_modified = false; AccessPath *path = NULL; ObShardingInfo *sharding_info = NULL; ObTablePartitionInfo *table_partition_info = NULL; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema *table_schema = NULL; if (OB_UNLIKELY(access_paths.count() <= cur_idx) || OB_ISNULL(path = access_paths.at(cur_idx)) || OB_ISNULL(table_partition_info = path->table_partition_info_) || OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(session_info = opt_ctx->get_session_info()) || OB_ISNULL(schema_guard = opt_ctx->get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(access_paths.count()), K(path), K(table_partition_info), K(cur_idx), K(get_plan()), K(stmt), K(opt_ctx), K(session_info)); } else if (path->use_das_) { sharding_info = opt_ctx->get_match_all_sharding(); } else if (OB_FAIL(schema_guard->get_table_schema(table_partition_info->get_ref_table_id(), table_schema))) { LOG_WARN("failed to get table schema", K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (table_schema->is_external_table()) { if (path->parallel_ > 1 || ObSQLUtils::is_external_files_on_local_disk(table_schema->get_external_file_location())) { sharding_info = opt_ctx->get_distributed_sharding(); } else { sharding_info = opt_ctx->get_local_sharding(); } } else if (OB_FAIL(table_partition_info->get_location_type(opt_ctx->get_local_server_addr(), location_type))) { LOG_WARN("failed to get location type", K(ret)); } else if (ObGlobalHint::DEFAULT_PARALLEL < path->parallel_ && (OB_TBL_LOCATION_LOCAL == location_type || OB_TBL_LOCATION_REMOTE == location_type)) { sharding_info = opt_ctx->get_distributed_sharding(); } else if (OB_FAIL(get_sharding_info_from_available_access_paths(access_paths, cur_idx, sharding_info))) { LOG_WARN("failed to get sharding info from available access paths", K(ret)); } else if (NULL != sharding_info) { /* do nothing */ } else if (OB_ISNULL(sharding_info = reinterpret_cast( allocator_->alloc(sizeof(ObShardingInfo))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate memory", K(ret)); } else if (OB_FAIL(stmt->check_table_be_modified(table_partition_info->get_ref_table_id(), is_modified))) { LOG_WARN("failed to check table be modified", K(ret)); } else { const ObCandiTableLoc &phy_tbl_info = table_partition_info->get_phy_tbl_location_info(); bool can_reselect_replica = (phy_tbl_info.is_duplicate_table_not_in_dml() && (1 == phy_tbl_info.get_phy_part_loc_info_list().count()) && !session_info->get_is_in_retry_for_dup_tbl() && !is_modified); sharding_info = new(sharding_info) ObShardingInfo(); sharding_info->set_location_type(location_type); if (OB_FAIL(sharding_info->init_partition_info( get_plan()->get_optimizer_context(), *get_plan()->get_stmt(), table_partition_info->get_table_id(), table_partition_info->get_ref_table_id(), table_partition_info->get_phy_tbl_location_info_for_update()))) { LOG_WARN("failed to set partition key", K(ret)); } else { sharding_info->set_can_reselect_replica(can_reselect_replica); LOG_TRACE("succeed to compute base table sharding info", K(*sharding_info)); } } if (OB_FAIL(ret)) { } else if (OB_ISNULL(sharding_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to compute base table sharding info", K(ret), K(sharding_info)); } else { path->strong_sharding_ = sharding_info; } return ret; } int ObJoinOrder::get_sharding_info_from_available_access_paths(ObIArray &access_paths, const int64_t cur_idx, ObShardingInfo *&sharding_info) const { int ret = OB_SUCCESS; sharding_info = NULL; AccessPath *path = NULL; if (OB_UNLIKELY(access_paths.count() <= cur_idx) || OB_ISNULL(path = access_paths.at(cur_idx))) { LOG_WARN("get unexpected params", K(ret), K(access_paths.count()), K(cur_idx), K(path)); } else { AccessPath *cur_path = NULL; const int64_t cnt = available_access_paths_.count(); const int64_t all_cnt = cnt + cur_idx; for (int64_t i = 0; OB_SUCC(ret) && NULL == sharding_info && i < all_cnt; ++i) { cur_path = i >= cnt ? access_paths.at(i - cnt) : available_access_paths_.at(i); if (OB_ISNULL(cur_path) || OB_ISNULL(cur_path->strong_sharding_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(cur_path)); } else if (path->table_id_ != cur_path->table_id_ || path->ref_table_id_ != cur_path->ref_table_id_ || path->is_global_index_ != cur_path->is_global_index_ || path->parallel_ != cur_path->parallel_ || path->use_das_ != cur_path->use_das_) { /* do nothing */ } else if (!path->is_global_index_ || path->index_id_ == cur_path->index_id_) { path->strong_sharding_ = cur_path->strong_sharding_; break; } } } return ret; } int ObJoinOrder::compute_base_table_path_plan_type(AccessPath *path) { int ret = OB_SUCCESS; ObShardingInfo *sharding_info = NULL; if (OB_ISNULL(path) || OB_ISNULL(sharding_info = path->strong_sharding_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(sharding_info), K(ret)); } else { if (sharding_info->get_can_reselect_replica()) { path->phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_UNINITIALIZED; } else if (sharding_info->is_local()) { path->phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_LOCAL; } else if (sharding_info->is_remote()) { path->phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_REMOTE; } else if (sharding_info->is_distributed()) { path->phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_DISTRIBUTED; } if (path->use_das_ || (path->is_global_index_ && path->est_cost_info_.index_meta_info_.is_index_back_)) { path->location_type_ = ObPhyPlanType::OB_PHY_PLAN_UNCERTAIN; } } return ret; } int ObJoinOrder::compute_base_table_path_ordering(AccessPath *path) { int ret = OB_SUCCESS; bool is_left_prefix = false; bool is_right_prefix = false; ObSEArray range_exprs; ObSEArray range_orders; path->is_local_order_ = false; path->is_range_order_ = false; if (OB_ISNULL(path) || OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(path->strong_sharding_) || OB_ISNULL(path->table_partition_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (path->use_das_ && path->table_partition_info_->get_phy_tbl_location_info().get_partition_cnt() > 1) { path->ordering_.reset(); } else if (path->ordering_.empty() || is_at_most_one_row_ || !path->strong_sharding_->is_distributed()) { path->is_local_order_ = false; } else if (get_plan()->get_optimizer_context().is_online_ddl()) { path->is_local_order_ = true; } else if (OB_FAIL(path->table_partition_info_->get_not_insert_dml_part_sort_expr(*get_plan()->get_stmt(), &range_exprs))) { LOG_WARN("fail to get_not_insert_dml_part_sort_expr", K(ret)); } else if (range_exprs.empty()) { path->is_local_order_ = true; } else if (OB_FAIL(ObOptimizerUtil::make_sort_keys(range_exprs, path->order_direction_, range_orders))) { LOG_WARN("failed to make range orders", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::is_prefix_ordering(range_orders, path->ordering_, get_output_equal_sets(), get_output_const_exprs(), is_left_prefix, is_right_prefix))) { LOG_WARN("failed to find common prefix ordering", K(ret)); } else if (is_left_prefix || is_right_prefix) { path->is_local_order_ = false; path->is_range_order_ = true; } else { path->is_local_order_ = true; } return ret; } int ObJoinOrder::get_explicit_dop_for_path(const uint64_t index_id, int64_t ¶llel) { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; parallel = ObGlobalHint::UNSET_PARALLEL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null param", K(ret)); } else if (opt_ctx->force_disable_parallel()) { parallel = opt_ctx->get_parallel(); } else if (ObGlobalHint::UNSET_PARALLEL != (parallel = get_plan()->get_log_plan_hint().get_parallel(get_table_id()))) { /* do nothing */ } else if (opt_ctx->is_use_table_dop()) { if (OB_FAIL(get_base_path_table_dop(index_id, parallel))) { LOG_WARN("failed to get base table dop", K(ret)); } } else if (opt_ctx->is_use_auto_dop()) { /* do nothing */ } else { parallel = opt_ctx->get_parallel(); } return ret; } int ObJoinOrder::compute_parallel_and_server_info_for_base_paths(ObIArray &access_paths) { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; if (access_paths.empty()) { /* do nothing */ } else if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null param", K(ret)); } else { OpParallelRule op_parallel_rule = OpParallelRule::OP_GLOBAL_DOP ; int64_t parallel = ObGlobalHint::UNSET_PARALLEL; if (opt_ctx->force_disable_parallel()) { // force disable parallel parallel = ObGlobalHint::DEFAULT_PARALLEL; } else if (ObGlobalHint::UNSET_PARALLEL != (parallel = get_plan()->get_log_plan_hint().get_parallel(get_table_id()))) { op_parallel_rule = OpParallelRule::OP_HINT_DOP; } else if (opt_ctx->is_use_auto_dop()) { op_parallel_rule = OpParallelRule::OP_AUTO_DOP; if (OB_FAIL(compute_access_path_parallel(access_paths, parallel))) { LOG_WARN("failed to calculate base path parallel", K(ret)); } } else if (opt_ctx->is_use_table_dop()) { op_parallel_rule = OpParallelRule::OP_TABLE_DOP; } else if (OB_UNLIKELY(opt_ctx->get_parallel() < ObGlobalHint::DEFAULT_PARALLEL || !opt_ctx->is_parallel_rule_valid())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid parallel rule", K(ret), K(opt_ctx->get_parallel()), K(opt_ctx->is_parallel_rule_valid())); } else { parallel = opt_ctx->get_parallel(); } for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); i++) { if (OB_FAIL(compute_base_table_parallel_and_server_info(op_parallel_rule, parallel, access_paths.at(i)))) { LOG_WARN("failed to compute base table parallel and server info", K(ret)); } } } return ret; } int ObJoinOrder::get_base_path_table_dop(uint64_t index_id, int64_t ¶llel) { int ret = OB_SUCCESS; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema *table_schema = NULL; parallel = ObGlobalHint::DEFAULT_PARALLEL; if (OB_ISNULL(get_plan()) || OB_ISNULL(schema_guard = get_plan()->get_optimizer_context().get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null param", K(ret), K(get_plan()), K(schema_guard)); } else if (OB_FAIL(schema_guard->get_table_schema(index_id, table_schema))) { LOG_WARN("failed to get table schema", K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (table_schema->get_dop() > ObGlobalHint::DEFAULT_PARALLEL) { parallel = table_schema->get_dop(); } return ret; } // just generate random parallel for access paths when enable trace point test path // alter system set_tp tp_no = 552, error_code = 4016, frequency = 1; // When trace point is enabled, parallel is only limited by parallel_degree_limit. int ObJoinOrder::get_random_parallel(const int64_t parallel_degree_limit, int64_t ¶llel) { int ret = OB_SUCCESS; parallel = ObGlobalHint::DEFAULT_PARALLEL; if (OB_ISNULL(table_partition_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected params", K(ret), K(table_partition_info_)); } else if (ObGlobalHint::DEFAULT_PARALLEL == parallel_degree_limit || is_virtual_table(table_partition_info_->get_ref_table_id())) { /* do nothing */ LOG_TRACE("Auto DOP get_random_parallel", K(parallel_degree_limit), K(table_partition_info_->get_ref_table_id()), K(is_virtual_table(table_partition_info_->get_ref_table_id()))); } else { const int64_t part_cnt = table_partition_info_->get_phy_tbl_location_info().get_partition_cnt(); const bool limit_beyond_part_cnt = ObGlobalHint::UNSET_PARALLEL == parallel_degree_limit || parallel_degree_limit > part_cnt; int64_t parallel_type = ObRandom::rand(0, limit_beyond_part_cnt ? 2 : 1); switch (parallel_type) { case 0: { parallel = 1; break; } case 1: { if (part_cnt > 1) { if (limit_beyond_part_cnt) { parallel = ObRandom::rand(2, part_cnt); } else { parallel = ObRandom::rand(2, parallel_degree_limit); } break; } } default: { parallel = part_cnt + 1; break; } } LOG_TRACE("Auto DOP get_random_parallel", K(parallel_degree_limit), K(part_cnt), K(parallel_type), K(parallel)); } return ret; } int ObJoinOrder::get_parallel_from_available_access_paths(int64_t ¶llel) const { int ret = OB_SUCCESS; parallel = ObGlobalHint::UNSET_PARALLEL; AccessPath *path = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < available_access_paths_.count(); ++i) { if (OB_ISNULL(path = available_access_paths_.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (path->is_inner_path_ || path->use_das_) { /* do nothing */ } else { parallel = path->parallel_; break; } } return ret; } // compute auto dop int ObJoinOrder::compute_access_path_parallel(ObIArray &access_paths, int64_t ¶llel) { int ret = OB_SUCCESS; parallel = ObGlobalHint::UNSET_PARALLEL; ObOptimizerContext *opt_ctx = NULL; ObSQLSessionInfo *session_info = NULL; int64_t cur_min_parallel = ObGlobalHint::UNSET_PARALLEL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(session_info = opt_ctx->get_session_info())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected params", K(ret), K(get_plan()), K(opt_ctx), K(session_info)); } else if (!opt_ctx->get_global_hint().has_parallel_hint() && OB_FAIL(OB_E(EventTable::EN_ENABLE_AUTO_DOP_FORCE_PARALLEL_PLAN) OB_SUCCESS)) { ret = OB_SUCCESS; if (!session_info->is_user_session()) { parallel = ObGlobalHint::DEFAULT_PARALLEL; } else if (OB_FAIL(get_random_parallel(opt_ctx->get_session_parallel_degree_limit(), parallel))) { LOG_WARN("failed to get random parallel", K(ret)); } LOG_TRACE("Auto DOP trace point", K(session_info->is_user_session()), K(parallel)); } else if (OB_FAIL(get_parallel_from_available_access_paths(cur_min_parallel))) { LOG_WARN("failed to get parallel from available access paths", K(ret)); } else { int64_t calc_parallel = ObGlobalHint::UNSET_PARALLEL; int64_t das_path_cnt = 0; AccessPath *path = NULL; bool finish = false; OPT_TRACE_TITLE("begin compute auto dop for table"); for (int64_t i = 0; !finish && OB_SUCC(ret) && i < access_paths.count(); i++) { if (OB_ISNULL(path = access_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (path->use_das_) { ++das_path_cnt; } else if (OB_FAIL(path->compute_parallel_degree(cur_min_parallel, calc_parallel))) { LOG_WARN("failed to compute parallel degree", K(ret)); } else { LOG_TRACE("finish compute one path parallel degree", K(i), K(cur_min_parallel), K(calc_parallel), K(path->table_id_), K(path->index_id_)); cur_min_parallel = calc_parallel; finish = ObGlobalHint::DEFAULT_PARALLEL == calc_parallel; } } OPT_TRACE_TITLE("end compute auto dop for table"); if (OB_SUCC(ret)) { parallel = access_paths.count() == das_path_cnt ? ObGlobalHint::DEFAULT_PARALLEL : calc_parallel; LOG_TRACE("finish compute paths parallel for Auto DOP", K(parallel), K(das_path_cnt), K(access_paths.count())); } } return ret; } int ObJoinOrder::compute_base_table_parallel_and_server_info(const OpParallelRule op_parallel_rule, const int64_t parallel, AccessPath *path) { int ret = OB_SUCCESS; int64_t final_parallel = parallel; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema *index_schema = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(path) || OB_ISNULL(schema_guard = get_plan()->get_optimizer_context().get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null param", K(ret), K(get_plan()), K(path)); } else if (path->use_das_) { if (OB_FAIL(path->set_parallel_and_server_info_for_match_all())) { LOG_WARN("failed set parallel and server info for match all", K(ret)); } } else if (OB_FAIL(schema_guard->get_table_schema(path->index_id_, index_schema))) { LOG_WARN("failed to get table schema", K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(path->table_partition_info_->get_all_servers(path->server_list_))) { LOG_WARN("failed to get all servers", K(ret)); } else { if (OpParallelRule::OP_TABLE_DOP == op_parallel_rule) { final_parallel = index_schema->get_dop(); } if (index_schema->is_spatial_index() || final_parallel < ObGlobalHint::DEFAULT_PARALLEL) { final_parallel = ObGlobalHint::DEFAULT_PARALLEL; } path->op_parallel_rule_ = op_parallel_rule; path->parallel_ = final_parallel; path->server_cnt_ = path->server_list_.count(); path->available_parallel_ = ObGlobalHint::DEFAULT_PARALLEL; } return ret; } int ObJoinOrder::get_valid_index_ids_with_no_index_hint(ObSqlSchemaGuard &schema_guard, const uint64_t ref_table_id, uint64_t *tids, const int64_t index_count, const ObIArray &ignore_index_ids, ObIArray &valid_index_ids) { int ret = OB_SUCCESS; valid_index_ids.reuse(); const share::schema::ObTableSchema *index_schema = NULL; if (!ObOptimizerUtil::find_item(ignore_index_ids, ref_table_id) && OB_FAIL(valid_index_ids.push_back(ref_table_id))) { LOG_WARN("fail to push back index id", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < index_count; ++i) { uint64_t index_id = tids[i]; if (ObOptimizerUtil::find_item(ignore_index_ids, index_id)) { /* do nothing */ } else if (OB_FAIL(schema_guard.get_table_schema(index_id, index_schema)) || OB_ISNULL(index_schema)) { ret = OB_SCHEMA_ERROR; LOG_WARN("fail to get table schema", K(index_id), K(ret)); } else if (index_schema->is_domain_index()) { /* do nothing */ } else if (OB_FAIL(valid_index_ids.push_back(index_id))) { LOG_WARN("fail to push back index id", K(ret)); } } return ret; } int ObJoinOrder::extract_geo_schema_info(const uint64_t table_id, const uint64_t index_id, ObWrapperAllocator &wrap_allocator, ColumnIdInfoMapAllocer &map_alloc, ColumnIdInfoMap &geo_columnInfo_map) { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; ObSqlSchemaGuard *schema_guard = NULL; const share::schema::ObTableSchema *table_schema = NULL; const share::schema::ObTableSchema *index_schema = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(schema_guard = opt_ctx->get_sql_schema_guard())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(schema_guard), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(table_id, table_schema))) { LOG_WARN("fail to get table schema", K(table_id), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema))) { LOG_WARN("fail to get index schema", K(index_id), K(ret)); } else if (OB_ISNULL(table_schema) || OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(table_schema), K(index_schema), K(ret)); } else if (OB_FAIL(geo_columnInfo_map.create(OB_DEFAULT_SRID_BUKER, &map_alloc, &wrap_allocator))) { LOG_WARN("Init column_info_map failed", K(ret)); } else { const ObRowkeyInfo* rowkey_info = NULL; const ObColumnSchemaV2 *column_schema = NULL; rowkey_info = &index_schema->get_rowkey_info(); uint64_t column_id = OB_INVALID_ID; // traverse index schema for (int col_idx = 0; OB_SUCC(ret) && col_idx < rowkey_info->get_size(); ++col_idx) { if (OB_FAIL(rowkey_info->get_column_id(col_idx, column_id))) { LOG_WARN("Failed to get column id", K(ret)); } else if (OB_ISNULL(column_schema = (index_schema->get_column_schema(column_id)))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to get column schema", K(column_id), K(ret)); } else if (column_schema->is_spatial_cellid_column()) { const ObColumnSchemaV2 *geo_column_schema = NULL; uint64_t geo_col_id = column_schema->get_geo_col_id(); ObGeoColumnInfo column_info; if (OB_ISNULL(geo_column_schema = (table_schema->get_column_schema(geo_col_id)))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to get column schema", K(column_id), K(ret)); } else if (geo_column_schema->is_geometry()) { column_info.srid_ = geo_column_schema->get_srid(); column_info.cellid_columnId_ = column_id; if (OB_FAIL(geo_columnInfo_map.set_refactored(geo_col_id, column_info))) { LOG_WARN("failed to set columnId_map", K(geo_col_id), K(ret)); } else if (OB_FAIL(geo_columnInfo_map.set_refactored(column_id, column_info))) { LOG_WARN("failed to set columnId_map", K(column_id), K(ret)); } } } } } return ret; } int ObJoinOrder::get_query_range_info(const uint64_t table_id, const uint64_t base_table_id, const uint64_t index_id, QueryRangeInfo &range_info, PathHelper &helper) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObOptimizerContext *opt_ctx = NULL; ObSqlSchemaGuard *schema_guard = NULL; ObExecContext *exec_ctx = NULL; ObQueryRange *query_range = NULL; const share::schema::ObTableSchema *index_schema = NULL; ObQueryRangeArray &ranges = range_info.get_ranges(); ObQueryRangeArray &ss_ranges = range_info.get_ss_ranges(); ObIArray &range_columns = range_info.get_range_columns(); bool is_geo_index = false; ObWrapperAllocator wrap_allocator(*allocator_); ColumnIdInfoMapAllocer map_alloc(OB_MALLOC_NORMAL_BLOCK_SIZE, wrap_allocator); ColumnIdInfoMap geo_columnInfo_map; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(schema_guard = opt_ctx->get_sql_schema_guard()) || OB_ISNULL(exec_ctx = opt_ctx->get_exec_ctx())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(schema_guard), K(exec_ctx), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema, ObSqlSchemaGuard::is_link_table(get_plan()->get_stmt(), table_id)))) { LOG_WARN("fail to get table schema", K(index_id), K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(index_schema), K(ret)); } else if (OB_FAIL(get_plan()->get_index_column_items(opt_ctx->get_expr_factory(), table_id, *index_schema, range_columns))) { LOG_WARN("failed to generate rowkey column items", K(ret)); } else if ((is_geo_index = index_schema->is_spatial_index()) && OB_FAIL(extract_geo_schema_info(base_table_id, index_id, wrap_allocator, map_alloc, geo_columnInfo_map))) { LOG_WARN("failed to extract geometry schema info", K(ret), K(table_id), K(index_id)); } else { const ObSQLSessionInfo *session = opt_ctx->get_session_info(); const ObDataTypeCastParams dtc_params = ObBasicSessionInfo::create_dtc_params(session); bool all_single_value_range = false; int64_t equal_prefix_count = 0; int64_t equal_prefix_null_count = 0; int64_t range_prefix_count = 0; bool contain_always_false = false; bool has_exec_param = false; common::ObSEArray agent_table_filter; bool is_oracle_inner_index_table = share::is_oracle_mapping_real_virtual_table(index_schema->get_table_id()); if (is_oracle_inner_index_table && OB_FAIL(extract_valid_range_expr_for_oracle_agent_table(helper.filters_, agent_table_filter))) { LOG_WARN("failed to extract expr", K(ret)); } else if (!is_geo_index && OB_FAIL(extract_preliminary_query_range(range_columns, is_oracle_inner_index_table ? agent_table_filter : helper.filters_, range_info.get_expr_constraints(), table_id, query_range))) { LOG_WARN("failed to extract query range", K(ret), K(index_id)); } else if (is_geo_index && OB_FAIL(extract_geo_preliminary_query_range(range_columns, is_oracle_inner_index_table ? agent_table_filter : helper.filters_, geo_columnInfo_map, query_range))) { LOG_WARN("failed to extract query range", K(ret), K(index_id)); } else if (OB_ISNULL(query_range)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(query_range), K(ret)); } else if (OB_FAIL(query_range->get_tablet_ranges(*allocator_, *exec_ctx, ranges, all_single_value_range, dtc_params))) { LOG_WARN("failed to final extract query range", K(ret)); } else if (OB_FAIL(query_range->get_ss_tablet_ranges(*allocator_, *exec_ctx, ss_ranges, dtc_params))) { LOG_WARN("failed to final extract index skip query range", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::check_prefix_ranges_count(range_info.get_ranges(), equal_prefix_count, equal_prefix_null_count, range_prefix_count, contain_always_false))) { LOG_WARN("failed to compute query range prefix count", K(ret)); } else if (OB_FAIL(check_has_exec_param(*query_range, has_exec_param))) { LOG_WARN("failed to check has exec param", K(ret)); } else if (!has_exec_param) { //没有exec param就使用真实query range计算equal prefix count //有exec param就使用query range的形状计算equal prefix count range_info.set_equal_prefix_count(equal_prefix_count); range_info.set_range_prefix_count(range_prefix_count); range_info.set_contain_always_false(contain_always_false); } else if (OB_FAIL(get_preliminary_prefix_info(*query_range, range_info))) { LOG_WARN("failed to get preliminary prefix info", K(ret)); } range_info.set_valid(); range_info.set_query_range(query_range); range_info.set_equal_prefix_null_count(equal_prefix_null_count); range_info.set_index_column_count(index_schema->is_index_table() ? index_schema->get_index_column_num() : index_schema->get_rowkey_column_num()); if (OB_FAIL(ret)) { if (NULL != query_range) { query_range->~ObQueryRange(); query_range = NULL; } } else { LOG_TRACE("succeed to get query range", K(ranges), K(ss_ranges), K(helper.filters_), K(*query_range), K(range_columns), K(query_range->get_range_exprs()), K(table_id), K(index_id)); } } return ret; } int ObJoinOrder::check_has_exec_param(const ObQueryRange &query_range, bool &has_exec_param) { int ret = OB_SUCCESS; has_exec_param = false; const ObIArray &range_exprs = query_range.get_range_exprs(); for (int64_t i = 0; OB_SUCC(ret) && !has_exec_param && i < range_exprs.count(); ++i) { ObRawExpr *expr = range_exprs.at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (expr->has_flag(CNT_DYNAMIC_PARAM)) { has_exec_param = true; } } return ret; } int ObJoinOrder::get_preliminary_prefix_info(ObQueryRange &query_range, QueryRangeInfo &range_info) { int ret = OB_SUCCESS; int64_t equal_prefix_count = 0; int64_t range_prefix_count = 0; bool contain_always_false = false; const ObKeyPart *key_part_head = query_range.get_table_grapth().key_part_head_; if (OB_ISNULL(key_part_head)) { ret = OB_NOT_INIT; LOG_WARN("table_graph.key_part_head_ is not inited.", K(ret)); } else { get_prefix_info(key_part_head, equal_prefix_count, range_prefix_count, contain_always_false); range_info.set_equal_prefix_count(equal_prefix_count); range_info.set_range_prefix_count(range_prefix_count); range_info.set_contain_always_false(contain_always_false); LOG_TRACE("success to get preliminary prefix info", K(equal_prefix_count), K(range_prefix_count), K(contain_always_false)); } return ret; } void ObJoinOrder::get_prefix_info(const ObKeyPart *key_part, int64_t &equal_prefix_count, int64_t &range_prefix_count, bool &contain_always_false) { if (OB_NOT_NULL(key_part)) { equal_prefix_count = OB_USER_MAX_ROWKEY_COLUMN_NUMBER; range_prefix_count = OB_USER_MAX_ROWKEY_COLUMN_NUMBER; for ( /*do nothing*/ ; NULL != key_part; key_part = key_part->or_next_) { int64_t cur_equal_prefix_count = 0; int64_t cur_range_prefix_count = 0; if (key_part->is_equal_condition()) { get_prefix_info(key_part->and_next_, cur_equal_prefix_count, cur_range_prefix_count, contain_always_false); ++cur_equal_prefix_count; ++cur_range_prefix_count; } else if (key_part->is_range_condition()) { ++cur_range_prefix_count; } else if (key_part->is_always_false()) { contain_always_false = true; } equal_prefix_count = std::min(cur_equal_prefix_count, equal_prefix_count); range_prefix_count = std::min(cur_range_prefix_count, range_prefix_count); } } } int ObJoinOrder::add_table_by_heuristics(const uint64_t table_id, const uint64_t ref_table_id, const ObIndexInfoCache &index_info_cache, const ObIArray &candi_index_ids, ObIArray &valid_index_ids, PathHelper &helper) { int ret = OB_SUCCESS; uint64_t index_to_use = OB_INVALID_ID; if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id) || OB_ISNULL(helper.table_opt_info_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid table id", K(table_id), K(ref_table_id), K(ret)); } else { if (is_virtual_table(ref_table_id) && !share::is_oracle_mapping_real_virtual_table(ref_table_id)) { // check virtual table heuristics if (OB_FAIL(virtual_table_heuristics(table_id, ref_table_id, index_info_cache, candi_index_ids, index_to_use))) { LOG_WARN("failed to check virtual table heuristics", K(table_id), K(ref_table_id), K(ret)); } else if (OB_INVALID_ID != index_to_use) { helper.table_opt_info_->optimization_method_ = OptimizationMethod::RULE_BASED; helper.table_opt_info_->heuristic_rule_ = HeuristicRule::VIRTUAL_TABLE_HEURISTIC; OPT_TRACE("choose index using heuristics for virtual table", index_to_use); LOG_TRACE("OPT:[RBO] choose index using heuristics for virtual table", K(table_id), K(ref_table_id), K(index_to_use)); } } else { //check whether we can use single table heuristics: if (OB_FAIL(user_table_heuristics(table_id, ref_table_id, index_info_cache, candi_index_ids, index_to_use, helper))) { LOG_WARN("Failed to check user_table_heuristics", K(ret)); } else if (OB_INVALID_ID != index_to_use) { OPT_TRACE("choose primary/index using heuristics", index_to_use); LOG_TRACE("OPT:[RBO] choose primary/index using heuristics", K(table_id), K(index_to_use)); } } if (OB_SUCC(ret)) { if (OB_INVALID_ID != index_to_use) { if (OB_FAIL(valid_index_ids.push_back(index_to_use))) { LOG_WARN("failed to push back index id", K(ret)); } else { OPT_TRACE("table added using heuristics", index_to_use); LOG_TRACE("OPT:[RBO] table added using heuristics", K(table_id), K(ref_table_id), K(index_to_use)); } } else { OPT_TRACE("table not added using heuristics", ref_table_id); LOG_TRACE("OPT:[RBO] table not added using heuristics", K(table_id), K(ref_table_id)); } } } return ret; } int ObJoinOrder::virtual_table_heuristics(const uint64_t table_id, const uint64_t ref_table_id, const ObIndexInfoCache &index_info_cache, const ObIArray &valid_index_ids, uint64_t &index_to_use) { int ret = OB_SUCCESS; ObSqlSchemaGuard *schema_guard = NULL; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null pointer", K(get_plan())); } else if (OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("schema guard should not be null", K(ret)); } else if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid table id", K(table_id), K(ref_table_id), K(ret)); } else { // for virtual table, choose any index to use uint64_t idx_id = OB_INVALID_ID; const ObTableSchema *index_schema = NULL; const QueryRangeInfo *query_range_info = NULL; LOG_TRACE("OPT:[VT] begin search index for virtual table", K(valid_index_ids.count())); for (int64_t i = 0; OB_SUCC(ret) && OB_INVALID_ID == idx_id && i < valid_index_ids.count(); ++i) { if (OB_UNLIKELY(OB_INVALID_ID == valid_index_ids.at(i))) { LOG_WARN("index id invalid", K(table_id), K(valid_index_ids.at(i)), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(valid_index_ids.at(i), index_schema)) || OB_ISNULL(index_schema)) { LOG_WARN("fail to get table schema", K(index_schema), K(valid_index_ids.at(i)), K(ret)); } else if (!index_schema->is_index_table()) { /*do nothing*/ } else if (OB_FAIL(index_info_cache.get_query_range(table_id, valid_index_ids.at(i), query_range_info))) { LOG_WARN("failed to get query range", K(ret)); } else if (OB_ISNULL(query_range_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("query_range_info should not be null", K(ret)); } else if (query_range_info->is_index_column_get() || (query_range_info->has_valid_range_condition() && virtual_table_index_can_range_scan(valid_index_ids.at(i)))) { idx_id = valid_index_ids.at(i); LOG_TRACE("OPT:[VT] found index to use", K(idx_id)); } else { LOG_TRACE("OPT:[VT] not found index to use", K(idx_id)); } } if (OB_INVALID_ID == idx_id) { index_to_use = ref_table_id; } else { index_to_use = idx_id; } } return ret; } /* * Different with cost-based approach, this function tries to use heuristics to generate access path * The heuristics used to generate access path is as follows: * 1 if search condition cover an unique index key (primary key is treated as unique key), and no need index_back, use that key, * if there is multiple such key, choose the one with the minimum index key count * 2 if search condition cover an unique index key, need index_back, use that key * and follows a refine process to find a better index * 3 otherwise generate all the access path and choose access path using cost model */ int ObJoinOrder::user_table_heuristics(const uint64_t table_id, const uint64_t ref_table_id, const ObIndexInfoCache &index_info_cache, const ObIArray &valid_index_ids, uint64_t &index_to_use, PathHelper &helper) { int ret = OB_SUCCESS; index_to_use = OB_INVALID_ID; const ObDMLStmt *stmt = NULL; const ObTableSchema *table_schema = NULL; ObSqlSchemaGuard *schema_guard = NULL; QueryRangeInfo *range_info = NULL; IndexInfoEntry *index_info_entry = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(helper.table_opt_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(schema_guard), K(stmt), K(ret)); } else if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid table id", K(table_id), K(ref_table_id), K(ret)); } else { uint64_t ukey_idx_without_indexback = OB_INVALID_ID; int64_t minimal_ukey_size_without_indexback = 0; ObSEArray ukey_idx_with_indexback; ObSEArray candidate_refine_index; for (int64_t i = 0; OB_SUCC(ret) && i < valid_index_ids.count(); ++i) { int64_t index_col_num = 0; uint64_t index_id = valid_index_ids.at(i); if (OB_FAIL(schema_guard->get_table_schema(index_id, table_schema))) { LOG_WARN("fail to get table schema", K(index_id), K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index schema should not be null", K(ret), K(index_id)); } else if (OB_FAIL(index_info_cache.get_index_info_entry(table_id, index_id, index_info_entry))) { LOG_WARN("failed to get index info entry", K(ret)); } else if (OB_ISNULL(index_info_entry)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index info entry should not be null", K(ret)); } else { range_info = &index_info_entry->get_range_info(); index_col_num = range_info->get_index_column_count(); LOG_TRACE("index info", K(index_info_entry->is_index_back()), K(index_info_entry->get_index_id()), K(index_info_entry->is_unique_index()), K(range_info->get_equal_prefix_count()), K(index_col_num), K(table_schema->get_column_count())); if (range_info->get_equal_prefix_count() >= index_col_num) { // all key covers if (!index_info_entry->is_index_back()) { if (index_info_entry->is_valid_unique_index()) { if (ukey_idx_without_indexback == OB_INVALID_ID || table_schema->get_column_count() < minimal_ukey_size_without_indexback) { ukey_idx_without_indexback = index_id; minimal_ukey_size_without_indexback = table_schema->get_column_count(); } } else { /*do nothing*/ } } else if (index_info_entry->is_valid_unique_index()) { if (OB_FAIL(ukey_idx_with_indexback.push_back(index_id))) { LOG_WARN("failed to push back unique index with indexback", K(index_id), K(ret)); } else { /* do nothing */ } } else { /* do nothing*/ } } else if (!index_info_entry->is_index_back()) { if (OB_FAIL(candidate_refine_index.push_back(index_id))) { LOG_WARN("failed to push back refine index id", K(ret)); } else { /* do nothing*/ } } else { /* do nothing*/ } } } if (OB_SUCC(ret)) { if (ukey_idx_without_indexback != OB_INVALID_ID) { helper.table_opt_info_->optimization_method_ = OptimizationMethod::RULE_BASED; helper.table_opt_info_->heuristic_rule_ = HeuristicRule::UNIQUE_INDEX_WITHOUT_INDEXBACK; index_to_use = ukey_idx_without_indexback; } else if (ukey_idx_with_indexback.count() > 0) { helper.table_opt_info_->optimization_method_ = OptimizationMethod::RULE_BASED; helper.table_opt_info_->heuristic_rule_ = HeuristicRule::UNIQUE_INDEX_WITH_INDEXBACK; LOG_TRACE("start to refine table heuristics", K(index_to_use)); if (OB_FAIL(refine_table_heuristics_result(table_id, ref_table_id, candidate_refine_index, ukey_idx_with_indexback, index_info_cache, index_to_use))) { LOG_WARN("failed to refine heuristic index choosing", K(ukey_idx_with_indexback), K(ret)); } else if (index_to_use == OB_INVALID_ID) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid index id", K(ret)); } else { LOG_TRACE("finish to refine table heuristics", K(index_to_use)); }; } else { /* do nothing */ } } } return ret; } /* * this function try to refine rule 2 * our heuristics sometimes may choose sub-optimal index * for example: create table t1(a int, b int, c int, unique key t1_b(b), unique key t1_b_c(b,c)) * for query, select b, c from t1 where b = 5 and c > 10, * our heuristics will choose index t1_b, however, t1_b_c will be a much better choice since it does not need index back * this, if we meet rule 2, we will search again all other index to find a better one * candidate_refine_idx: all the candidate index we consider to refine * match_unique_idx: all the matched unique index */ int ObJoinOrder::refine_table_heuristics_result(const uint64_t table_id, const uint64_t ref_table_id, const ObIArray &candidate_refine_idx, const ObIArray &match_unique_idx, const ObIndexInfoCache &index_info_cache, uint64_t &index_to_use) { int ret = OB_SUCCESS; index_to_use = OB_INVALID_ID; if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid table id", K(table_id), K(ref_table_id), K(ret)); } else { uint64_t refined_idx = OB_INVALID_ID; int64_t minimal_range_count = 0; ObSEArray match_range_info; ObSEArray match_ordering_info; const QueryRangeInfo *temp_range_info = NULL; const OrderingInfo *temp_ordering_info = NULL; DominateRelation status = DominateRelation::OBJ_UNCOMPARABLE; for(int64_t i = 0; OB_SUCC(ret) && i < match_unique_idx.count(); ++i) { uint64_t index_id = match_unique_idx.at(i); if (OB_FAIL(index_info_cache.get_query_range(table_id, index_id, temp_range_info))) { LOG_WARN("failed to get query range info", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(temp_range_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("range info is NULL", K(ret)); } else if (OB_FAIL(match_range_info.push_back(temp_range_info))) { LOG_WARN("failed to push back range info", K(ret)); } else if (OB_FAIL(index_info_cache.get_access_path_ordering(table_id, index_id, temp_ordering_info))) { LOG_WARN("failed to get ordering info", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(temp_ordering_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("ordering info is null", K(ret)); } else if (OB_FAIL(match_ordering_info.push_back(temp_ordering_info))) { LOG_WARN("failed to push back ordering info", K(ret)); } else { if (index_to_use == OB_INVALID_ID || temp_range_info->get_ranges().count() < minimal_range_count) { index_to_use = index_id; minimal_range_count = temp_range_info->get_ranges().count(); } } } // search all the candidate index to find a better one for(int64_t i = 0; OB_SUCC(ret) && i < candidate_refine_idx.count(); i++) { uint64_t index_id = candidate_refine_idx.at(i); if (OB_FAIL(index_info_cache.get_query_range(table_id, index_id, temp_range_info))) { LOG_WARN("failed to get range info", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(temp_range_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("range info is null", K(ret)); } else if (OB_FAIL(index_info_cache.get_access_path_ordering(table_id, index_id, temp_ordering_info))) { LOG_WARN("failed to get ordering info", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(temp_ordering_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("ordering info is null", K(ret)); } else { /* do nothing*/ } // examine all matched unique index for (int64_t j = 0; OB_SUCC(ret) && j < match_unique_idx.count(); j++) { if (temp_range_info->get_range_prefix_count() >= match_range_info.at(j)->get_range_prefix_count()) { if (OB_FAIL(check_index_subset(match_ordering_info.at(j), match_range_info.at(j)->get_range_prefix_count(), temp_ordering_info, temp_range_info->get_range_prefix_count(), status))) { LOG_WARN("failed to compare two index", K(ret)); } else if (status == DominateRelation::OBJ_LEFT_DOMINATE || status == DominateRelation::OBJ_EQUAL) { if (refined_idx == OB_INVALID_ID || temp_range_info->get_ranges().count() < minimal_range_count) { refined_idx = index_id; minimal_range_count = temp_range_info->get_ranges().count(); } break; } else { /* do nothing*/ } } } } // finally refine the index if we get one if(OB_SUCC(ret)) { if (refined_idx != OB_INVALID_ID) { index_to_use = refined_idx; } else { /* do nothing*/ } } } return ret; } int ObJoinOrder::check_index_subset(const OrderingInfo *first_ordering_info, const int64_t first_index_key_count, const OrderingInfo *second_ordering_info, const int64_t second_index_key_count, DominateRelation &status) { int ret = OB_SUCCESS; status = DominateRelation::OBJ_UNCOMPARABLE; bool is_subset = false; if (OB_ISNULL(first_ordering_info) || OB_ISNULL(second_ordering_info)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid table id", K(first_ordering_info), K(second_ordering_info)); } else if (first_index_key_count <= second_index_key_count) { if (OB_FAIL(ObOptimizerUtil::prefix_subset_exprs(first_ordering_info->get_index_keys(), first_index_key_count, second_ordering_info->get_index_keys(), second_index_key_count, is_subset))) { LOG_WARN("failed to compare index keys", K(ret)); } else if (is_subset) { status = first_index_key_count == second_index_key_count ? DominateRelation::OBJ_EQUAL : DominateRelation::OBJ_LEFT_DOMINATE; } else { status = DominateRelation::OBJ_UNCOMPARABLE; } } else { if (OB_FAIL(ObOptimizerUtil::prefix_subset_exprs(second_ordering_info->get_index_keys(), second_index_key_count, first_ordering_info->get_index_keys(), first_index_key_count, is_subset))) { LOG_WARN("failed to compare index keys", K(ret)); } else if (is_subset) { status = DominateRelation::OBJ_RIGHT_DOMINATE; } else { status = DominateRelation::OBJ_UNCOMPARABLE; } } LOG_TRACE("check index subset", K(*first_ordering_info), K(*second_ordering_info), K(first_index_key_count), K(second_index_key_count)); return ret; } int ObJoinOrder::will_use_das(const uint64_t table_id, const uint64_t ref_id, const uint64_t index_id, const ObIndexInfoCache &index_info_cache, PathHelper &helper, bool &create_das_path, bool &create_basic_path) { int ret = OB_SUCCESS; create_das_path = false; create_basic_path = false; IndexInfoEntry *index_info_entry; bool force_das_tsc = false; bool is_batch_update_table = false; const TableItem *table_item = nullptr; bool is_sample_stmt = false; bool is_online_ddl_insert = false; if (OB_UNLIKELY(OB_INVALID_ID == ref_id) || OB_UNLIKELY(OB_INVALID_ID == index_id) || OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ref_id), K(index_id), K(get_plan()), K(table_item), K(ret)); } else if (OB_FAIL(index_info_cache.get_index_info_entry(table_id, index_id, index_info_entry))) { LOG_WARN("failed to get index info entry", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(index_info_entry)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index info entry should not be null", K(ret)); } else if (OB_ISNULL(table_item = get_plan()->get_stmt()->get_table_item_by_id(table_id))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("table_item is null", K(ret), K(table_id)); } else if (get_plan()->get_optimizer_context().is_batched_multi_stmt()) { if (table_item->is_basic_table()) { is_batch_update_table = true; } } if (OB_SUCC(ret) && OB_NOT_NULL(get_plan()->get_optimizer_context().get_root_stmt())) { if (get_plan()->get_optimizer_context().is_online_ddl() && get_plan()->get_optimizer_context().get_root_stmt()->is_insert_stmt()) { is_online_ddl_insert = true; } } if (OB_SUCC(ret) && get_plan()->get_stmt()->is_select_stmt()) { const ObSelectStmt *stmt = static_cast(get_plan()->get_stmt()); const SampleInfo *sample_info = stmt->get_sample_info_by_table_id(table_id); if (sample_info != NULL && !sample_info->is_no_sample()) { is_sample_stmt = true; } } bool enable_var_assign_use_das = false; if (OB_SUCC(ret)) { ObSQLSessionInfo *session_info = NULL; if (OB_NOT_NULL(session_info = get_plan()->get_optimizer_context().get_session_info())) { enable_var_assign_use_das = session_info->is_var_assign_use_das_enabled(); } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("session info is null", K(ret)); } } if(OB_SUCC(ret)) { bool hint_force_das = false; bool hint_force_no_das = false; int64_t explicit_dop = ObGlobalHint::UNSET_PARALLEL; // TODO: access virtual table by remote das task is not supported, it will report 4016 error in execute server // Ensure that the following scenarios will not combined with virtual table force_das_tsc = get_plan()->get_optimizer_context().in_nested_sql() || get_plan()->get_optimizer_context().has_pl_udf() || get_plan()->get_optimizer_context().has_dblink() || get_plan()->get_optimizer_context().has_subquery_in_function_table() || get_plan()->get_optimizer_context().has_cursor_expression() || (get_plan()->get_optimizer_context().has_var_assign() && enable_var_assign_use_das && !is_virtual_table(ref_id)) || is_batch_update_table; if (EXTERNAL_TABLE == table_item->table_type_) { create_das_path = false; create_basic_path = true; } else //this sql force to use DAS TSC: //batch update table(multi queries or arraybinding) //contain nested sql(pl udf or in nested sql) //trigger or foreign key in the top sql not force to use DAS TSC //has function table if (force_das_tsc) { create_das_path = true; create_basic_path = false; } else if (is_sample_stmt || is_online_ddl_insert) { create_das_path = false; create_basic_path = true; } else if (OB_FAIL(get_plan()->get_log_plan_hint().check_use_das(table_id, hint_force_das, hint_force_no_das))) { LOG_WARN("table_item is null", K(ret), K(table_id)); } else if (hint_force_das || hint_force_no_das) { create_das_path = hint_force_das; create_basic_path = hint_force_no_das; } else if (index_info_entry->is_index_global() && OB_FAIL(get_explicit_dop_for_path(index_id, explicit_dop))) { LOG_WARN("failed to get explicit dop", K(ret)); } else if (ObGlobalHint::DEFAULT_PARALLEL == explicit_dop) { create_das_path = true; create_basic_path = false; } else if ((helper.is_inner_path_ || get_tables().is_subset(get_plan()->get_subq_pdfilter_tset())) && !is_virtual_table(ref_id)) { bool force_use_nlj = false; force_use_nlj = (OB_SUCCESS != (OB_E(EventTable::EN_GENERATE_PLAN_WITH_NLJ) OB_SUCCESS)); create_das_path = true; create_basic_path = force_use_nlj ? false : true; } else if (index_info_entry->is_index_global() && ObGlobalHint::UNSET_PARALLEL == explicit_dop) { // for global index use auto dop, create das path and basic path, after get auto dop result, prune unnecessary path create_das_path = true; create_basic_path = true; } else { create_das_path = false; create_basic_path = true; } LOG_TRACE("will use das", K(force_das_tsc), K(hint_force_das), K(hint_force_no_das), K(helper.is_inner_path_), K(create_das_path), K(create_basic_path)); } return ret; } int ObJoinOrder::create_one_access_path(const uint64_t table_id, const uint64_t ref_id, const uint64_t index_id, const ObIndexInfoCache &index_info_cache, PathHelper &helper, AccessPath *&access_path, bool use_das, bool use_column_store, OptSkipScanState use_skip_scan) { int ret = OB_SUCCESS; IndexInfoEntry *index_info_entry = NULL; access_path = NULL; AccessPath *ap = NULL; bool is_nl_with_extended_range = false; const TableItem *table_item = nullptr; if (OB_UNLIKELY(OB_INVALID_ID == ref_id) || OB_UNLIKELY(OB_INVALID_ID == index_id) || OB_ISNULL(get_plan()) || OB_ISNULL(allocator_) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(table_item = get_plan()->get_stmt()->get_table_item_by_id(table_id))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ref_id), K(index_id), K(get_plan()), K(allocator_), K(table_item), K(ret)); } else if (OB_FAIL(index_info_cache.get_index_info_entry(table_id, index_id, index_info_entry))) { LOG_WARN("failed to get index info entry", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(index_info_entry)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index info entry should not be null", K(ret)); } else if (!helper.force_inner_nl_ && helper.is_inner_path_ && (index_info_entry->get_ordering_info().get_index_keys().count() <= 0)) { LOG_TRACE("skip adding inner access path due to wrong index key count", K(table_id), K(ref_id), KPC(index_info_entry)); } else if (OB_ISNULL(ap = reinterpret_cast(allocator_->alloc(sizeof(AccessPath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an AccessPath", K(ret)); } else { LOG_TRACE("OPT:start to create access path", K(table_id), K(ref_id), K(index_id), K(helper.is_inner_path_), K(use_das)); const QueryRangeInfo &range_info = index_info_entry->get_range_info(); const OrderingInfo &ordering_info = index_info_entry->get_ordering_info(); ap = new(ap) AccessPath(table_id, ref_id, index_id, this, ordering_info.get_scan_direction()); ap->is_get_ = range_info.is_get(); ap->is_global_index_ = index_info_entry->is_index_global(); ap->use_das_ = use_das; ap->is_hash_index_ = is_virtual_table(ref_id) && ref_id != index_id; ap->est_cost_info_.index_meta_info_.is_index_back_ = index_info_entry->is_index_back(); ap->est_cost_info_.index_meta_info_.is_unique_index_ = index_info_entry->is_unique_index(); ap->est_cost_info_.index_meta_info_.is_global_index_ = index_info_entry->is_index_global(); ap->est_cost_info_.index_meta_info_.is_geo_index_ = index_info_entry->is_index_geo(); ap->est_cost_info_.is_virtual_table_ = is_virtual_table(ref_id); ap->est_cost_info_.table_metas_ = &get_plan()->get_basic_table_metas(); ap->est_cost_info_.sel_ctx_ = &get_plan()->get_selectivity_ctx(); ap->est_cost_info_.is_unique_ = ap->is_get_ || (index_info_entry->is_unique_index() && range_info.is_index_column_get() && index_info_entry->is_valid_unique_index()); ap->table_opt_info_ = helper.table_opt_info_; ap->is_inner_path_ = helper.is_inner_path_; ap->est_cost_info_.is_inner_path_ = helper.is_inner_path_; ap->range_prefix_count_ = index_info_entry->get_range_info().get_range_prefix_count(); ap->interesting_order_info_ = index_info_entry->get_interesting_order_info(); ap->for_update_ = table_item->for_update_; ap->use_skip_scan_ = use_skip_scan; ap->use_column_store_ = use_column_store; ap->est_cost_info_.use_column_store_ = use_column_store; ap->contain_das_op_ = ap->use_das_; if (OB_FAIL(init_sample_info_for_access_path(ap, table_id))) { LOG_WARN("failed to init sample info", K(ret)); } else if (OB_FAIL(add_access_filters(ap, ordering_info.get_index_keys(), range_info.get_query_range()->get_range_exprs(), helper))) { LOG_WARN("failed to add access filters", K(*ap), K(ordering_info.get_index_keys()), K(ret)); } else if (OB_FAIL(get_plan()->get_stmt()->get_column_items(table_id, ap->est_cost_info_.access_column_items_))) { LOG_WARN("failed to get column items", K(ret)); } else if ((!ap->is_global_index_ || !index_info_entry->is_index_back()) && OB_FAIL(ObOptimizerUtil::make_sort_keys(ordering_info.get_ordering(), ordering_info.get_scan_direction(), ap->ordering_))) { LOG_WARN("failed to create index keys expression array", K(index_id), K(ret)); } else if (ordering_info.get_index_keys().count() > 0) { ap->pre_query_range_ = const_cast(range_info.get_query_range()); if (OB_FAIL(ap->index_keys_.assign(ordering_info.get_index_keys()))) { LOG_WARN("failed to get index keys", K(ret)); } else if (OB_FAIL(ap->est_cost_info_.range_columns_.assign(range_info.get_range_columns()))) { LOG_WARN("failed to assign range columns", K(ret)); } else if (OB_FAIL(fill_query_range_info(range_info, ap->est_cost_info_, OptSkipScanState::SS_DISABLE != use_skip_scan))) { LOG_WARN("failed to fill query range info", K(ret)); } else { /*do nothing*/ } } else { /*do nothing*/ } for (int i = 0; OB_SUCC(ret) && i < ap->est_cost_info_.range_columns_.count(); ++i) { ColumnItem &col = ap->est_cost_info_.range_columns_.at(i); if (NULL == get_plan()->get_stmt()->get_column_expr_by_id(col.table_id_, col.column_id_)) { //do nothing } else if (OB_FAIL(ap->est_cost_info_.index_access_column_items_.push_back(col))) { LOG_WARN("failed to push back column item", K(ret)); } } if (OB_SUCC(ret)) { if (OB_FAIL(fill_filters(ap->filter_, ap->pre_query_range_, ap->est_cost_info_, is_nl_with_extended_range, ObSqlSchemaGuard::is_link_table(get_plan()->get_stmt(), table_id), OptSkipScanState::SS_DISABLE != use_skip_scan))) { LOG_WARN("failed to fill filters for cost table info", K(ret)); } else if (OB_FAIL(init_filter_selectivity(ap->est_cost_info_))) { LOG_WARN("failed to calc filter sel", K(ret)); } else if (!helper.is_inner_path_ && OB_FAIL(increase_diverse_path_count(ap))) { LOG_WARN("failed to increase diverse path count", K(ret)); } else if (OB_FAIL(ap->subquery_exprs_.assign(helper.subquery_exprs_))) { LOG_WARN("failed to assign exprs", K(ret)); } else if (OB_FAIL(ap->equal_param_constraints_.assign(helper.equal_param_constraints_))) { LOG_WARN("failed to assign equal param constraints", K(ret)); } else if (OB_FAIL(ap->const_param_constraints_.assign(helper.const_param_constraints_))) { LOG_WARN("failed to assign equal param constraints", K(ret)); } else if (OB_FAIL(ap->expr_constraints_.assign(range_info.get_expr_constraints()))) { LOG_WARN("failed to assign expr constraints", K(ret)); } else if (OB_FAIL(append(ap->expr_constraints_, helper.expr_constraints_))) { LOG_WARN("append expr constraints failed", K(ret)); } else if (OB_FAIL(init_column_store_est_info(table_id, ref_id, ap->est_cost_info_))) { LOG_WARN("failed to init column store est cost info", K(ret)); } else { access_path = ap; } } LOG_TRACE("OPT:succeed to create one access path", K(table_id), K(ref_id), K(index_id), K(helper.is_inner_path_)); } return ret; } int ObJoinOrder::init_sample_info_for_access_path(AccessPath *ap, const uint64_t table_id) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null stmt", K(ret)); } else if (!get_plan()->get_stmt()->is_select_stmt()) { // do nothing // sample scan doesn't support DML other than SELECT. } else { const ObSelectStmt *stmt = static_cast(get_plan()->get_stmt()); const SampleInfo *sample_info = stmt->get_sample_info_by_table_id(table_id); if (sample_info != NULL) { ap->sample_info_ = *sample_info; ap->sample_info_.table_id_ = ap->get_index_table_id(); } else if (get_plan()->get_optimizer_context().is_online_ddl() && get_plan()->get_optimizer_context().get_root_stmt()->is_insert_stmt() && !get_plan()->get_optimizer_context().is_heap_table_ddl()) { ap->sample_info_.method_ = SampleInfo::SampleMethod::BLOCK_SAMPLE; ap->sample_info_.scope_ = SampleInfo::SAMPLE_ALL_DATA; ap->sample_info_.percent_ = (double)get_plan()->get_optimizer_context().get_px_object_sample_rate() / 1000; ap->sample_info_.table_id_ = ap->get_index_table_id(); } ap->est_cost_info_.sample_info_ = ap->sample_info_; } return ret; } int ObJoinOrder::init_filter_selectivity(ObCostTableScanInfo &est_cost_info) { int ret = OB_SUCCESS; ObLogPlan *plan = get_plan(); if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null plan", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_basic_table_metas(), plan->get_selectivity_ctx(), est_cost_info.prefix_filters_, est_cost_info.prefix_filter_sel_, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_basic_table_metas(), plan->get_selectivity_ctx(), est_cost_info.pushdown_prefix_filters_, est_cost_info.pushdown_prefix_filter_sel_, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_basic_table_metas(), plan->get_selectivity_ctx(), est_cost_info.ss_postfix_range_filters_, est_cost_info.ss_postfix_range_filters_sel_, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_basic_table_metas(), plan->get_selectivity_ctx(), est_cost_info.postfix_filters_, est_cost_info.postfix_filter_sel_, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_basic_table_metas(), plan->get_selectivity_ctx(), est_cost_info.table_filters_, est_cost_info.table_filter_sel_, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } return ret; } int ObJoinOrder::init_column_store_est_info(const uint64_t table_id, const uint64_t ref_id, ObCostTableScanInfo &est_cost_info) { int ret = OB_SUCCESS; bool index_back_will_use_row_store = false; bool index_back_will_use_column_store = false; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null plan", K(ret)); } else if (OB_FAIL(get_plan()->will_use_column_store(OB_INVALID_ID, ref_id, index_back_will_use_column_store, index_back_will_use_row_store))) { LOG_WARN("failed to check will use column store", K(ret)); } else if (est_cost_info.use_column_store_ || !index_back_will_use_row_store) { FilterCompare filter_compare(get_plan()->get_predicate_selectivities()); std::sort(est_cost_info.table_filters_.begin(), est_cost_info.table_filters_.end(), filter_compare); ObSqlBitSet<> used_column_ids; est_cost_info.use_column_store_ = true; est_cost_info.index_back_with_column_store_ = !index_back_will_use_row_store; const OptTableMetas& table_opt_meta = get_plan()->get_basic_table_metas(); ObIArray &index_scan_column_group_infos = est_cost_info.index_scan_column_group_infos_; ObIArray &index_back_column_group_infos = est_cost_info.index_meta_info_.is_index_back_ ? est_cost_info.index_back_column_group_infos_ : est_cost_info.index_scan_column_group_infos_; //add column group with prefix filters if (OB_FAIL(init_column_store_est_info_with_filter(table_id, est_cost_info, table_opt_meta, est_cost_info.prefix_filters_, index_scan_column_group_infos, used_column_ids, filter_compare, false))) { LOG_WARN("failed to init column store est info with filter", K(ret)); } else if (OB_FAIL(init_column_store_est_info_with_filter(table_id, est_cost_info, table_opt_meta, est_cost_info.pushdown_prefix_filters_, index_scan_column_group_infos, used_column_ids, filter_compare, false))) { LOG_WARN("failed to init column store est info with filter", K(ret)); } //add column group with postfix filters else if (OB_FAIL(init_column_store_est_info_with_filter(table_id, est_cost_info, table_opt_meta, est_cost_info.postfix_filters_, index_scan_column_group_infos, used_column_ids, filter_compare, true))) { LOG_WARN("failed to init column store est info with filter", K(ret)); } //add column group with index back filters else if (OB_FAIL(init_column_store_est_info_with_filter(table_id, est_cost_info, table_opt_meta, est_cost_info.table_filters_, index_back_column_group_infos, used_column_ids, filter_compare, true))) { LOG_WARN("failed to init column store est info with filter", K(ret)); } //add other column group else if (OB_FAIL(init_column_store_est_info_with_other_column(table_id, est_cost_info, table_opt_meta, used_column_ids))) { LOG_WARN("failed to init column store est info with other column", K(ret)); } } return ret; } int ObJoinOrder::init_column_store_est_info_with_filter(const uint64_t table_id, ObCostTableScanInfo &est_cost_info, const OptTableMetas& table_opt_meta, ObIArray &filters, ObIArray &column_group_infos, ObSqlBitSet<> &used_column_ids, FilterCompare &filter_compare, const bool use_filter_sel) { int ret = OB_SUCCESS; ObSEArray filter_columns; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null plan", K(ret)); } for (int i = 0; OB_SUCC(ret) && i < filters.count(); ++i) { ObRawExpr *filter = filters.at(i); filter_columns.reuse(); if (OB_FAIL(ObRawExprUtils::extract_column_exprs(filter, filter_columns))) { LOG_WARN("failed to extract column exprs", K(ret)); } //init column group info for (int j = 0; OB_SUCC(ret) && j < filter_columns.count(); ++j) { ObRawExpr *expr = filter_columns.at(j); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (expr->is_column_ref_expr()) { ObColumnRefRawExpr* col_expr = static_cast(expr); ObDMLStmt *stmt = const_cast(get_plan()->get_stmt()); ColumnItem *col_item = stmt->get_column_item(table_id, col_expr->get_column_id()); const OptColumnMeta* col_opt_meta = table_opt_meta.get_column_meta_by_table_id( table_id, col_expr->get_column_id()); if (used_column_ids.has_member(col_expr->get_column_id())) { //do nothing } else if (OB_FAIL(used_column_ids.add_member(col_expr->get_column_id()))) { LOG_WARN("failed to add memeber", K(ret)); } else if (OB_ISNULL(col_opt_meta) || OB_ISNULL(col_item)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null column meta", K(ret)); } else { ObCostColumnGroupInfo cg_info; cg_info.micro_block_count_ = col_opt_meta->get_cg_micro_blk_cnt(); cg_info.column_id_ = col_expr->get_column_id(); cg_info.skip_rate_ = col_opt_meta->get_cg_skip_rate(); if (OB_FAIL(cg_info.access_column_items_.push_back(*col_item))) { LOG_WARN("failed to push back filter", K(ret)); } else if (OB_FAIL(column_group_infos.push_back(cg_info))) { LOG_WARN("failed to push back column group info", K(ret)); } } } } //distribute filter int max_pos = -1; for (int j = 0; OB_SUCC(ret) && j < filter_columns.count(); ++j) { ObRawExpr *expr = filter_columns.at(j); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (expr->is_column_ref_expr()) { ObColumnRefRawExpr* col_expr = static_cast(expr); int find_pos = -1; for (int k = 0; OB_SUCC(ret) && find_pos < 0 && k < column_group_infos.count(); ++k) { ObCostColumnGroupInfo &cg_info = column_group_infos.at(k); if (cg_info.column_id_ == col_expr->get_column_id()) { find_pos = k; } } if (OB_FAIL(ret)) { } else if (find_pos < 0) { //ignore index column group } else if (find_pos > max_pos) { max_pos = find_pos; } } } if (OB_FAIL(ret) || filter_columns.empty()) { } else if (max_pos < 0 || max_pos >= column_group_infos.count()) { ret = OB_ERR_UNEXPECTED; LOG_WARN("can not find column group info for filter", K(ret)); } else if (OB_FAIL(column_group_infos.at(max_pos).filters_.push_back(filter))) { LOG_WARN("failed to push back filter", K(ret)); } else if (use_filter_sel) { column_group_infos.at(max_pos).filter_sel_ *= filter_compare.get_selectivity(filter); } } return ret; } int ObJoinOrder::init_column_store_est_info_with_other_column(const uint64_t table_id, ObCostTableScanInfo &est_cost_info, const OptTableMetas& table_opt_meta, ObSqlBitSet<> &used_column_ids) { int ret = OB_SUCCESS; ObIArray &column_group_infos = est_cost_info.index_meta_info_.is_index_back_ ? est_cost_info.index_back_column_group_infos_ : est_cost_info.index_scan_column_group_infos_; for (int i = 0; OB_SUCC(ret) && i < est_cost_info.access_column_items_.count(); ++i) { uint64_t column_id = est_cost_info.access_column_items_.at(i).column_id_; const OptColumnMeta* col_opt_meta = table_opt_meta.get_column_meta_by_table_id( table_id, column_id); ObRawExpr *expr = est_cost_info.access_column_items_.at(i).expr_; if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (used_column_ids.has_member(column_id)) { //do nothing } else if (expr->get_ref_count() <= 0) { //do nothing } else if (OB_ISNULL(col_opt_meta)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null column meta", K(ret)); } else { ObCostColumnGroupInfo cg_info; cg_info.micro_block_count_ = col_opt_meta->get_cg_micro_blk_cnt(); cg_info.skip_rate_ = col_opt_meta->get_cg_skip_rate(); cg_info.column_id_ = column_id; if (OB_FAIL(cg_info.access_column_items_.push_back(est_cost_info.access_column_items_.at(i)))) { LOG_WARN("failed to push back filter", K(ret)); } else if (OB_FAIL(column_group_infos.push_back(cg_info))) { LOG_WARN("failed to push back column group info", K(ret)); } } } return ret; } int ObJoinOrder::get_access_path_ordering(const uint64_t table_id, const uint64_t ref_table_id, const uint64_t index_id, common::ObIArray &index_keys, common::ObIArray &ordering, ObOrderDirection &direction, const bool is_index_back) { int ret = OB_SUCCESS; direction = default_asc_direction(); const ObDMLStmt *stmt = NULL; ObOptimizerContext *opt_ctx = NULL; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema *index_schema = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(schema_guard = opt_ctx->get_sql_schema_guard())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(get_plan()), K(stmt), K(opt_ctx), K(schema_guard), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema, ObSqlSchemaGuard::is_link_table(stmt, table_id)))) { LOG_WARN("fail to get table schema", K(ref_table_id), K(index_schema), K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index schema should not be null", K(index_schema), K(ret)); } else if (OB_FAIL(get_plan()->get_rowkey_exprs(table_id, *index_schema, index_keys))) { LOG_WARN("NULL pointer error", K(ret), K(table_id), K(ref_table_id), K(index_id)); } else if (!index_schema->is_ordered()) { // for virtual table, we have HASH index which offers no ordering on index keys } else if (index_schema->is_global_index_table() && is_index_back) { // for global index lookup, the order is wrong. } else if (OB_FAIL(append(ordering, index_keys))) { LOG_WARN("failed to append index ordering expr", K(ret)); } else if (OB_FAIL(get_index_scan_direction(ordering, stmt, get_plan()->get_equal_sets(), direction))) { LOG_WARN("failed to get index scan direction", K(ret)); } return ret; } /** * 获取索引扫描的序 * 首先检查window function中的order by, 然后在检查stmt中的order by */ int ObJoinOrder::get_index_scan_direction(const ObIArray &keys, const ObDMLStmt *stmt, const EqualSets &equal_sets, ObOrderDirection &index_direction) { int ret = OB_SUCCESS; index_direction = default_asc_direction(); bool check_order_by = true; int64_t order_match_count = 0; if (OB_ISNULL(stmt) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("stmt is null", K(ret), K(stmt), K(get_plan())); } else if (stmt->is_select_stmt()) { const ObSelectStmt *sel_stmt = static_cast(stmt); int64_t max_order_match_count = 0; const ObWinFunRawExpr *win_expr = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < sel_stmt->get_window_func_count(); ++i) { bool full_covered = false; int64_t partition_match_count = 0; ObOrderDirection tmp_direction = default_asc_direction(); if (OB_ISNULL(win_expr = sel_stmt->get_window_func_expr(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get null win expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::prefix_subset_exprs(win_expr->get_partition_exprs(), keys, equal_sets, get_plan()->get_const_exprs(), full_covered, &partition_match_count))) { LOG_WARN("check is covered by ordering failed", K(ret)); } else if (!full_covered) { check_order_by = false; } else if (win_expr->get_order_items().count() > 0) { check_order_by = false; if (OB_FAIL(get_direction_in_order_by(win_expr->get_order_items(), keys, partition_match_count, equal_sets, get_plan()->get_const_exprs(), tmp_direction, order_match_count))) { LOG_WARN("failed to match order-by against index", K(ret)); } else if (order_match_count > max_order_match_count) { max_order_match_count = order_match_count; index_direction = tmp_direction; } } } } if (OB_SUCC(ret) && check_order_by) { ObOrderDirection tmp_direction = default_asc_direction(); if (OB_FAIL(get_direction_in_order_by(stmt->get_order_items(), keys, 0, // index start offset equal_sets, get_plan()->get_const_exprs(), tmp_direction, order_match_count))) { LOG_WARN("failed to match order-by against index", K(ret)); } else if (order_match_count > 0) { index_direction = tmp_direction; } } return ret; } int ObJoinOrder::get_direction_in_order_by(const ObIArray &order_by, const ObIArray &index_keys, const int64_t index_start_offset, const EqualSets &equal_sets, const ObIArray &const_exprs, ObOrderDirection &direction, int64_t &order_match_count) { int ret = OB_SUCCESS; order_match_count = 0; int64_t order_offset = order_by.count(); int64_t index_offset = index_start_offset; bool is_const = true; //找到第一个非const的order项 for (int64_t i = 0; OB_SUCC(ret) && is_const && i < order_by.count(); ++i) { if (OB_FAIL(ObOptimizerUtil::is_const_expr(order_by.at(i).expr_, equal_sets, const_exprs, is_const))) { LOG_WARN("failed to check is_const_expr", K(ret)); } else if (!is_const) { // oracle的索引默认为NULLS_LAST_ASC,reverse之后为NULLS_FIRST_DESC // mysql只有nulls_first_asc和nulls_last_desc,都可以用到索引上的序 if (is_ascending_direction(order_by.at(i).order_type_)) { direction = default_asc_direction(); } else { direction = default_desc_direction(); } order_offset = i; } } //计算index和order项的最大匹配,跳过const表达式 ObRawExpr *index_expr = NULL; ObRawExpr *order_expr = NULL; int64_t order_start = order_offset; while (OB_SUCC(ret) && index_offset < index_keys.count() && order_offset < order_by.count()) { if (OB_ISNULL(index_expr = index_keys.at(index_offset)) || OB_ISNULL(order_expr = order_by.at(order_offset).expr_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("exprs have null", K(ret), K(index_expr), K(order_expr)); } else if (ObOptimizerUtil::is_expr_equivalent(index_expr, order_expr, equal_sets) && (is_ascending_direction(order_by.at(order_offset).order_type_) == is_ascending_direction(direction))) { ++index_offset; ++order_offset; } else if (OB_FAIL(ObOptimizerUtil::is_const_expr(order_expr, equal_sets, const_exprs, is_const))) { LOG_WARN("failed to check order_expr is const expr", K(ret)); } else if (is_const) { ++order_offset; } else if (OB_FAIL(ObOptimizerUtil::is_const_expr(index_expr, equal_sets, const_exprs, is_const))) { LOG_WARN("failed to check index_expr is const expr", K(ret)); } else if (is_const) { ++index_offset; } else { break; } } if (OB_SUCC(ret)) { order_match_count = order_offset - order_start; } return ret; } int ObJoinOrder::add_access_filters(AccessPath *path, const ObIArray &index_keys, const ObIArray &range_exprs, PathHelper &helper) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; const ObIArray &restrict_infos = helper.filters_; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(path)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(get_plan()), K(stmt), K(path), K(ret)); } else { ObSEArray remove_dup; for (int64_t i = 0; OB_SUCC(ret) && i < restrict_infos.count(); i++) { bool found = false; for (int64_t j = 0; OB_SUCC(ret) && !found && j < deduced_exprs_info_.count(); j++) { const DeducedExprInfo &deduced_expr_info = deduced_exprs_info_.at(j); if (ObOptimizerUtil::is_expr_equivalent(deduced_expr_info.deduced_expr_, restrict_infos.at(i), get_plan()->get_equal_sets())) { found = true; if (ObOptimizerUtil::find_equal_expr(range_exprs, restrict_infos.at(i))) { if (OB_FAIL(path->filter_.push_back(restrict_infos.at(i)))) { LOG_WARN("push back error", K(ret)); } else if (OB_FAIL(append(helper.const_param_constraints_, deduced_expr_info.const_param_constraints_))) { LOG_WARN("append failed", K(ret)); } else if (deduced_expr_info.is_precise_) { ObRawExpr *raw_expr = deduced_expr_info.deduced_from_expr_; if (OB_ISNULL(raw_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("raw expr is null", K(ret)); } else if (OB_FAIL(remove_dup.push_back(raw_expr))) { LOG_WARN("push back error", K(ret)); } } else { //do nothing } } } } if (OB_SUCC(ret) && !found) { if (OB_FAIL(path->filter_.push_back(restrict_infos.at(i)))) { LOG_WARN("push back error", K(ret)); } } } if (OB_FAIL(ObOptimizerUtil::remove_item(path->filter_, remove_dup))) { LOG_WARN("remove dup failed", K(ret)); } } return ret; } int ObJoinOrder::check_and_extract_query_range(const uint64_t table_id, const uint64_t index_table_id, const ObIArray &index_keys, const ObIndexInfoCache &index_info_cache, bool &contain_always_false, ObIArray &prefix_range_ids, ObIArray &restrict_infos) { int ret = OB_SUCCESS; //do some quick check bool expr_match = false; //some condition on index contain_always_false = false; if (OB_FAIL(check_exprs_overlap_index(restrict_infos, index_keys, expr_match))) { LOG_WARN("check quals match index error", K(restrict_infos), K(index_keys)); } else if (expr_match) { prefix_range_ids.reset(); const QueryRangeInfo *query_range_info = NULL; if (OB_FAIL(index_info_cache.get_query_range(table_id, index_table_id, query_range_info))) { LOG_WARN("get_range_columns failed", K(ret)); } else if (OB_ISNULL(query_range_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("query_range_info should not be null", K(ret)); } else { contain_always_false = query_range_info->get_contain_always_false(); uint64_t range_prefix_count = query_range_info->get_range_prefix_count(); const ObIArray &range_columns = query_range_info->get_range_columns(); if (OB_UNLIKELY(range_prefix_count > range_columns.count())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("range prefix count is invalid", K(range_prefix_count), K(ret)); } else { for (int i = 0; OB_SUCC(ret) && i < range_prefix_count; ++i) { if (OB_FAIL(prefix_range_ids.push_back(range_columns.at(i).column_id_))) { LOG_WARN("failed to push back column_id", K(ret), K(i)); } } } } } //not match, do nothing LOG_TRACE("extract prefix range ids", K(ret), K(contain_always_false), K(expr_match), K(prefix_range_ids)); return ret; } /* * 计算维度信息 * @table_id 从table_item获取的table_id * @data_table_id 真实table_id * @index_table_id 索引的table_id * @stmt * @index_dim 记录了三种维度的信息 * */ int ObJoinOrder::cal_dimension_info(const uint64_t table_id, //alias table id const uint64_t data_table_id, //real table id const uint64_t index_table_id, const ObDMLStmt *stmt, ObIndexSkylineDim &index_dim, const ObIndexInfoCache &index_info_cache, ObIArray &restrict_infos) { int ret = OB_SUCCESS; ObSqlSchemaGuard *guard = NULL; IndexInfoEntry *index_info_entry = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(guard = OPT_CTX.get_sql_schema_guard()) || OB_ISNULL(stmt)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(get_plan()), K(guard), K(stmt)); } else if (OB_FAIL(index_info_cache.get_index_info_entry(table_id, index_table_id, index_info_entry))) { LOG_WARN("failed to get index info entry", K(ret), K(data_table_id), K(index_table_id)); } else if (OB_ISNULL(index_info_entry)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index info entry should not be null", K(ret)); } else { ObSEArray filter_column_ids; bool is_index_back = index_info_entry->is_index_back(); const OrderingInfo *ordering_info = &index_info_entry->get_ordering_info(); ObSEArray interest_column_ids; ObSEArray const_column_info; ObSEArray prefix_range_ids; //for query range compare bool contain_always_false = false; if (OB_FAIL(extract_interesting_column_ids(ordering_info->get_index_keys(), index_info_entry->get_interesting_order_prefix_count(), interest_column_ids, const_column_info))) { LOG_WARN("failed to extract interest column ids", K(ret)); } else if (OB_FAIL(check_and_extract_query_range(table_id, index_table_id, ordering_info->get_index_keys(), index_info_cache, contain_always_false, prefix_range_ids, restrict_infos))) { LOG_WARN("check_and_extract query range failed", K(ret)); } else { const ObTableSchema *index_schema = NULL; if (OB_FAIL(guard->get_table_schema(index_table_id, index_schema))) { LOG_WARN("failed to get table schema", K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index schema should not be null", K(ret)); } else if (OB_FAIL(extract_filter_column_ids(restrict_infos, data_table_id == index_table_id, *index_schema, filter_column_ids))) { LOG_WARN("extract filter column ids failed", K(ret)); } if (OB_SUCC(ret)) { /* * 添加三种维度的信息 * (1) 是否回表 * (2) interesting_order * (3) query range * */ bool can_extract_range = prefix_range_ids.count() > 0 || contain_always_false; if (OB_FAIL(index_dim.add_index_back_dim(is_index_back, interest_column_ids.count() > 0, can_extract_range, index_schema->get_column_count(), filter_column_ids, *allocator_))) { LOG_WARN("add index back dim failed", K(is_index_back), K(ret)); } else if (OB_FAIL(index_dim.add_interesting_order_dim(is_index_back, can_extract_range, filter_column_ids, interest_column_ids, const_column_info, *allocator_))) { LOG_WARN("add interesting order dim failed", K(interest_column_ids), K(ret)); } else if (OB_FAIL(index_dim.add_query_range_dim(prefix_range_ids, *allocator_, contain_always_false))) { LOG_WARN("add query range dimension failed", K(ret)); } } } } return ret; } /* * 裁剪索引 * @table_id 从table_item里面获取的table_id * @base_table_id 真实的table_id * @stmt * @do_prunning 标记是否做skyline的分支裁剪 * @index_info_cache 索引的query range缓存 * @valid_index_ids 可用的索引id * @skyline_index_ids 裁剪完的索引id * */ int ObJoinOrder::skyline_prunning_index(const uint64_t table_id, const uint64_t base_table_id, const ObDMLStmt *stmt, const bool do_prunning, const ObIndexInfoCache &index_info_cache, const ObIArray &valid_index_ids, ObIArray &skyline_index_ids, ObIArray &restrict_infos) { int ret = OB_SUCCESS; if (!do_prunning) { skyline_index_ids.reset(); LOG_TRACE("do not do index prunning", K(table_id), K(base_table_id)); OPT_TRACE("do not do index prunning"); if (OB_FAIL(append(skyline_index_ids, valid_index_ids))) { LOG_WARN("failed to append id", K(ret)); } else { /*do nothing*/ } } else { //维度统计信息 OPT_TRACE_TITLE("BEGIN SKYLINE INDEX PRUNNING"); ObSkylineDimRecorder recorder; bool has_add = false; for (int64_t i = 0; OB_SUCC(ret) && i < valid_index_ids.count(); ++i) { const uint64_t tid = valid_index_ids.at(i); LOG_TRACE("cal dimension info of index", K(tid)); ObIndexSkylineDim *index_dim = NULL; if (OB_FAIL(ObSkylineDimFactory::get_instance().create_skyline_dim(*allocator_, index_dim))) { LOG_WARN("failed to create index skylined dimension", K(ret)); } else if (OB_ISNULL(index_dim)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index dimension should not be null", K(ret)); } else if (FALSE_IT(index_dim->set_index_id(tid))) { //计算维度信息, 封装在 ObSkylineIndexDim 里面 } else if (OB_FAIL(cal_dimension_info(table_id, base_table_id, tid, stmt, *index_dim, index_info_cache, restrict_infos))) { LOG_WARN("Failed to cal dimension info", K(ret), "index_id", valid_index_ids, K(i)); } else if (OB_FAIL(recorder.add_index_dim(*index_dim, has_add))) { LOG_WARN("failed to add index dimension", K(ret)); } } if (OB_SUCC(ret)) { skyline_index_ids.reset(); //获取裁剪完的索引id if (OB_FAIL(recorder.get_dominated_idx_ids(skyline_index_ids))) { LOG_WARN("get dominated idx ids failed", K(ret)); } else { LOG_TRACE("after prunning remain index ids", K(skyline_index_ids)); OPT_TRACE("after prunning remain index ids", skyline_index_ids); } } } return ret; } int ObJoinOrder::fill_index_info_entry(const uint64_t table_id, const uint64_t base_table_id, const uint64_t index_id, IndexInfoEntry *&index_entry, PathHelper &helper) { int ret = OB_SUCCESS; const ObTableSchema *index_schema = NULL; ObSqlSchemaGuard *schema_guard = NULL; const ObDMLStmt *stmt = NULL; index_entry = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard()) || OB_ISNULL(allocator_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(stmt), K(schema_guard), K(ret)); } if (OB_FAIL(ret)) { // do nothing } else if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema, ObSqlSchemaGuard::is_link_table(stmt, table_id)))) { LOG_WARN("failed to get index schema", K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(table_id), K(base_table_id), K(index_id)); } else { void *ptr = allocator_->alloc(sizeof(IndexInfoEntry)); if (OB_ISNULL(ptr)) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("entry should not be null", K(ret)); } else { IndexInfoEntry *entry = new (ptr) IndexInfoEntry(); ObOrderDirection direction = default_asc_direction(); bool is_index_back = false; bool is_unique_index = false; bool is_index_global = false; bool is_index_geo = index_schema->is_spatial_index(); entry->set_index_id(index_id); int64_t interesting_order_info = OrderingFlag::NOT_MATCH; int64_t max_prefix_count = 0; if (OB_FAIL(get_simple_index_info(table_id, base_table_id, index_id, is_unique_index, is_index_back, is_index_global))) { LOG_WARN("failed to get simple index info", K(ret)); } else if (OB_FAIL(get_access_path_ordering(table_id, base_table_id, index_id, entry->get_ordering_info().get_index_keys(), entry->get_ordering_info().get_ordering(), direction, is_index_back))) { LOG_WARN("get_access_path_ordering ", K(ret)); } else { entry->set_is_index_global(is_index_global); entry->set_is_index_geo(is_index_geo); entry->set_is_index_back(is_index_back); entry->set_is_unique_index(is_unique_index); entry->get_ordering_info().set_scan_direction(direction); } if (OB_SUCC(ret)) { ObSEArray index_ordering; ObIArray &ordering_expr = entry->get_ordering_info().get_ordering(); for (int64_t i = 0; OB_SUCC(ret) && i < ordering_expr.count(); ++i) { OrderItem order_item(ordering_expr.at(i), direction); if (OB_FAIL(index_ordering.push_back(order_item))) { LOG_WARN("failed to push back order item", K(ret)); } } if (OB_FAIL(ret)) { } else if (OB_FAIL(check_all_interesting_order(index_ordering, stmt, max_prefix_count, interesting_order_info))) { LOG_WARN("failed to check all interesting order", K(ret)); } else { entry->set_interesting_order_prefix_count(max_prefix_count); entry->set_interesting_order_info(interesting_order_info); } } if (OB_SUCC(ret)) { if ((index_id == base_table_id && is_virtual_table(index_id) && entry->get_ordering_info().get_index_keys().count() <= 0)) { //ignore extract query range LOG_TRACE("ignore virtual table", K(base_table_id), K(index_id)); } else if (OB_FAIL(get_query_range_info(table_id, base_table_id, index_id, entry->get_range_info(), helper))) { LOG_WARN("failed to get query range", K(ret), K(table_id), K(base_table_id), K(index_id)); } else { LOG_TRACE("finish extract query range", K(table_id), K(index_id)); } } if (OB_SUCC(ret)) { index_entry = entry; } if (OB_FAIL(ret) && OB_NOT_NULL(entry)) { entry->~IndexInfoEntry(); } } } return ret; } //fill all index info entry int ObJoinOrder::fill_index_info_cache(const uint64_t table_id, const uint64_t base_table_id, const ObIArray &valid_index_ids, ObIndexInfoCache &index_info_cache, PathHelper &helper) { int ret = OB_SUCCESS; index_info_cache.set_table_id(table_id); index_info_cache.set_base_table_id(base_table_id); for (int64_t i = 0; OB_SUCC(ret) && i < valid_index_ids.count(); i++) { IndexInfoEntry *index_info_entry = NULL; if (OB_FAIL(fill_index_info_entry(table_id, base_table_id, valid_index_ids.at(i), index_info_entry, helper))) { LOG_WARN("fill_index_info_entry failed", K(ret)); } else if (OB_ISNULL(index_info_entry)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("fill index info entry failed", K(ret)); } else if (OB_FAIL(index_info_cache.add_index_info_entry(index_info_entry))) { LOG_WARN("failed to add index info entry", K(ret)); } else { LOG_TRACE("succeed to fill index index entry", K(*index_info_entry)); } } return ret; } int ObJoinOrder::create_access_paths(const uint64_t table_id, const uint64_t ref_table_id, PathHelper &helper, ObIArray &access_paths) { int ret = OB_SUCCESS; ObSEArray candi_index_ids; ObSEArray valid_index_ids; ObIndexInfoCache index_info_cache; const ObDMLStmt *stmt = NULL; ObOptimizerContext *opt_ctx = NULL; const ParamStore *params = NULL; bool is_valid = true; ObSQLSessionInfo *session_info = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(params = opt_ctx->get_params()) || OB_ISNULL(opt_ctx->get_exec_ctx()) || OB_ISNULL(opt_ctx->get_exec_ctx()->get_sql_ctx()) || OB_ISNULL(helper.table_opt_info_) || OB_ISNULL(session_info = opt_ctx->get_session_info())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(params), K(stmt), K(ret)); } else if (OB_FAIL(get_generated_col_index_qual(table_id, helper.filters_, helper))) { LOG_WARN("get prefix index qual failed"); } else if (OB_FAIL(get_valid_index_ids(table_id, ref_table_id, candi_index_ids))) { LOG_WARN("failed to get valid index ids", K(ret)); } else if (OB_FAIL(fill_index_info_cache(table_id, ref_table_id, candi_index_ids, index_info_cache, helper))) { LOG_WARN("failed to fill index info cache", K(ret)); } else if (OB_FAIL(add_table_by_heuristics(table_id, ref_table_id, index_info_cache, candi_index_ids, valid_index_ids, helper))) { LOG_WARN("failed to add table by heuristics", K(ret)); } else if (!valid_index_ids.empty()) { LOG_TRACE("table added using heuristics", K(table_id)); } else if (OB_FAIL(skyline_prunning_index(table_id, ref_table_id, stmt, true, index_info_cache, candi_index_ids, valid_index_ids, helper.filters_))) { LOG_WARN("failed to pruning_index", K(table_id), K(ref_table_id), K(ret)); } else { LOG_TRACE("table added using skyline", K(table_id), K(valid_index_ids)); } if (OB_SUCC(ret)) { helper.table_opt_info_->optimization_method_ = OptimizationMethod::COST_BASED; for (int64_t i = 0; OB_SUCC(ret) && i < valid_index_ids.count(); ++i) { bool is_create_basic_path = false; bool is_create_das_path = false; bool use_column_store = false; bool use_row_store = false; AccessPath *das_row_store_access_path = NULL; AccessPath *basic_row_store_access_path = NULL; // the path does not use DAS, maybe optimal sometime. AccessPath *das_column_store_access_path = NULL; AccessPath *basic_column_store_access_path = NULL; OptSkipScanState use_skip_scan = OptSkipScanState::SS_UNSET; if (OB_FAIL(will_use_das(table_id, ref_table_id, valid_index_ids.at(i), index_info_cache, helper, is_create_das_path, is_create_basic_path))) { LOG_WARN("failed to check will use das", K(ret)); } else if (OB_FAIL(will_use_skip_scan(table_id, ref_table_id, valid_index_ids.at(i), index_info_cache, helper, session_info, use_skip_scan))) { LOG_WARN("failed to check will use skip scan", K(ret)); } else if (OB_FAIL(get_plan()->will_use_column_store(table_id, valid_index_ids.at(i), use_column_store, use_row_store))) { LOG_WARN("failed to check will use column store", K(ret)); } else if (is_create_das_path && use_row_store && OB_FAIL(create_one_access_path(table_id, ref_table_id, valid_index_ids.at(i), index_info_cache, helper, das_row_store_access_path, true, false, use_skip_scan))) { LOG_WARN("failed to make index path", "index_table_id", valid_index_ids.at(i), K(ret)); } else if (OB_NOT_NULL(das_row_store_access_path) && OB_FAIL(access_paths.push_back(das_row_store_access_path))) { LOG_WARN("failed to push back access path", K(ret)); } else if (is_create_das_path && use_column_store && OB_FAIL(create_one_access_path(table_id, ref_table_id, valid_index_ids.at(i), index_info_cache, helper, das_column_store_access_path, true, true, use_skip_scan))) { LOG_WARN("failed to make index path", "index_table_id", valid_index_ids.at(i), K(ret)); } else if (OB_NOT_NULL(das_column_store_access_path) && OB_FAIL(access_paths.push_back(das_column_store_access_path))) { LOG_WARN("failed to push back access path", K(ret)); } else if (is_create_basic_path && use_row_store && OB_FAIL(create_one_access_path(table_id, ref_table_id, valid_index_ids.at(i), index_info_cache, helper, basic_row_store_access_path, false, false, use_skip_scan))) { LOG_WARN("failed to make index path", "index_table_id", valid_index_ids.at(i), K(ret)); } else if(OB_NOT_NULL(basic_row_store_access_path) && OB_FAIL(access_paths.push_back(basic_row_store_access_path))) { LOG_WARN("failed to push back access path", K(ret)); } else if (is_create_basic_path && use_column_store && OB_FAIL(create_one_access_path(table_id, ref_table_id, valid_index_ids.at(i), index_info_cache, helper, basic_column_store_access_path, false, true, use_skip_scan))) { LOG_WARN("failed to make index path", "index_table_id", valid_index_ids.at(i), K(ret)); } else if( OB_NOT_NULL(basic_column_store_access_path) && OB_FAIL(access_paths.push_back(basic_column_store_access_path))) { LOG_WARN("failed to push back access path", K(ret)); } } } return ret; } int ObJoinOrder::will_use_skip_scan(const uint64_t table_id, const uint64_t ref_id, const uint64_t index_id, const ObIndexInfoCache &index_info_cache, PathHelper &helper, ObSQLSessionInfo *session_info, OptSkipScanState &use_skip_scan) { int ret = OB_SUCCESS; use_skip_scan = OptSkipScanState::SS_UNSET; IndexInfoEntry *index_info_entry = NULL; const ObQueryRange *query_range = NULL; bool hint_force_skip_scan = false; bool hint_force_no_skip_scan = false; if (OB_UNLIKELY(OB_INVALID_ID == ref_id) || OB_UNLIKELY(OB_INVALID_ID == index_id) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ref_id), K(index_id), K(get_plan()), K(ret)); } else if (is_virtual_table(ref_id)) { use_skip_scan = OptSkipScanState::SS_DISABLE; } else if (OB_FAIL(index_info_cache.get_index_info_entry(table_id, index_id, index_info_entry))) { LOG_WARN("failed to get index info entry", K(table_id), K(index_id), K(ret)); } else if (OB_ISNULL(index_info_entry)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index info entry should not be null", K(ret)); } else if (OB_ISNULL(query_range = index_info_entry->get_range_info().get_query_range()) || !query_range->is_ss_range()) { use_skip_scan = OptSkipScanState::SS_DISABLE; } else if (OB_FAIL(get_plan()->get_log_plan_hint().check_use_skip_scan(table_id, index_id, hint_force_skip_scan, hint_force_no_skip_scan))) { LOG_WARN("failed to check use skip scan", K(ret), K(table_id)); } else if (hint_force_skip_scan) { use_skip_scan = OptSkipScanState::SS_HINT_ENABLE; } else if (hint_force_no_skip_scan) { use_skip_scan = OptSkipScanState::SS_DISABLE; } else if (!session_info->is_index_skip_scan_enabled()) { use_skip_scan = OptSkipScanState::SS_DISABLE; } else if (helper.is_inner_path_ || get_tables().is_subset(get_plan()->get_subq_pdfilter_tset())) { use_skip_scan = OptSkipScanState::SS_DISABLE; } else { // may use skip scan for SS_NDV_SEL_ENABLE after calculate ndv and selectivity use_skip_scan = OptSkipScanState::SS_UNSET; } if (OB_SUCC(ret) && OptSkipScanState::SS_DISABLE != use_skip_scan) { // OptColumnMeta for prefix columns may be not added. It's needed to calculate prefix NDV const ObIArray &column_items = index_info_entry->get_range_info().get_range_columns(); const int64_t ss_offset = query_range->get_skip_scan_offset(); const OptSelectivityCtx &ctx = get_plan()->get_selectivity_ctx(); OptTableMeta *table_meta = NULL; if (OB_UNLIKELY(column_items.count() < ss_offset) || OB_ISNULL(table_meta = get_plan()->get_basic_table_metas().get_table_meta_by_table_id(table_id))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(ret), K(column_items.count()), K(ss_offset), K(table_meta)); } for (int64_t i = 0; OB_SUCC(ret) && i < ss_offset; ++i) { if (OB_FAIL(table_meta->add_column_meta_no_dup(column_items.at(i).column_id_ , ctx))) { LOG_WARN("failed to add column meta no duplicate", K(ret)); } } } LOG_TRACE("check use skip scan", K(helper.is_inner_path_), K(hint_force_skip_scan), K(hint_force_no_skip_scan), K(use_skip_scan)); return ret; } /** * @brief ObJoinOrder::estimate_rowcount_for_access_path * STEP 1: choose a proper estimate partition for table info (best_table_part) * STEP 2: choose a proper estimate partition for each index path * i. local index uses the best_table_part * ii. global index choose a new estimate partition * STEP 3: process all estimation task using local/remote storage * STEP 4: fill estimate results and process filter selectivity * @return */ int ObJoinOrder::estimate_rowcount_for_access_path(ObIArray &all_paths, const bool is_inner_path, common::ObIArray &filter_exprs, ObBaseTableEstMethod &method) { int ret = OB_SUCCESS; bool is_use_ds = false; method = EST_INVALID; get_plan()->get_selectivity_ctx().set_dependency_type(FilterDependencyType::INDEPENDENT); if (OB_FAIL(ObAccessPathEstimation::estimate_rowcount(OPT_CTX, all_paths, is_inner_path, filter_exprs, method))) { LOG_WARN("failed to do access path estimation", K(ret)); } else if (!is_inner_path && !(method & EST_DS_FULL) && OB_FAIL(compute_table_rowcount_info())) { LOG_WARN("failed to compute table rowcount info", K(ret)); } return ret; } int ObJoinOrder::compute_table_rowcount_info() { int ret = OB_SUCCESS; /* * 计算完所有的信息再计算选择率. 为了统计信息的准确, * 我们需要先将行数置为全表的行数. */ if (OB_SUCC(ret)) { double selectivity = 0.0; if (OB_FAIL(ObOptSelectivity::calculate_selectivity(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), get_restrict_infos(), selectivity, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else { table_meta_info_.row_count_ = static_cast(table_meta_info_.table_row_count_) * selectivity; set_output_rows(table_meta_info_.row_count_); } LOG_TRACE("OPT: after fill table meta info", K(table_meta_info_), K(selectivity)); } return ret; } int ObJoinOrder::get_valid_index_ids(const uint64_t table_id, const uint64_t ref_table_id, ObIArray &valid_index_ids) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; ObSqlSchemaGuard *schema_guard = NULL; uint64_t tids[OB_MAX_INDEX_PER_TABLE + 1]; int64_t index_count = OB_MAX_INDEX_PER_TABLE + 1; const LogTableHint *log_table_hint = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(get_plan()), K(stmt), K(schema_guard), K(ret)); } else if (OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("Table item should not be NULL", K(table_id), K(table_item), K(ret)); } else if (table_item->is_index_table_) { if (OB_FAIL(valid_index_ids.push_back(table_item->ref_id_))) { LOG_WARN("failed to push back array", K(ret)); } else { /*do nothing*/ } } else if (FALSE_IT(log_table_hint = get_plan()->get_log_plan_hint().get_index_hint(table_id))) { } else if (NULL != log_table_hint && log_table_hint->is_use_index_hint()) { // for use index hint, get index ids from hint. if (OB_FAIL(valid_index_ids.assign(log_table_hint->index_list_))) { LOG_WARN("failed to assign index ids", K(ret)); } } else if (OB_FAIL(schema_guard->get_can_read_index_array(ref_table_id, tids, index_count, false, table_item->access_all_part(), false /*domain index*/, false /*spatial index*/))) { LOG_WARN("failed to get can read index", K(ref_table_id), K(ret)); } else if (index_count > OB_MAX_INDEX_PER_TABLE + 1) { ret = OB_ERR_UNEXPECTED; LOG_WARN("Invalid index count", K(ref_table_id), K(index_count), K(ret)); } else if (NULL != log_table_hint && OB_FAIL(get_valid_index_ids_with_no_index_hint(*schema_guard, ref_table_id, tids, index_count, log_table_hint->index_list_, valid_index_ids))) { LOG_WARN("failed to get hint index ids", K(ret)); } else if (0 == valid_index_ids.count()) { for (int64_t i = -1; OB_SUCC(ret) && i < index_count; ++i) { const uint64_t tid = (i == -1) ? ref_table_id : tids[i]; //with base table if (OB_FAIL(valid_index_ids.push_back(tid))) { LOG_WARN("failed to push back index id", K(ret)); } else { /*do nothing*/ } } } else { /*do nothing*/ } if (OB_SUCC(ret)) { const ObTableSchema *schema = NULL; bool is_link = ObSqlSchemaGuard::is_link_table(stmt, table_id); OPT_TRACE("valid index:"); for (int64_t i = 0; i < valid_index_ids.count(); ++i) { schema_guard->get_table_schema(valid_index_ids.at(i), schema, is_link); ObString name; if (OB_ISNULL(schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null table schema", K(ret)); } else if (ref_table_id == valid_index_ids.at(i)) { name = schema->get_table_name_str(); } else if (OB_FAIL(schema->get_index_name(name))) { LOG_WARN("failed to get index name", K(ret)); } OPT_TRACE(valid_index_ids.at(i), "->", name); } } if (OB_SUCC(ret) && is_virtual_table(ref_table_id) && !valid_index_ids.empty() && OB_FAIL(add_var_to_array_no_dup(valid_index_ids, ref_table_id))) { LOG_WARN("failed add primary key id to array no dup", K(ret)); } LOG_TRACE("all valid index id", K(valid_index_ids), K(ret)); return ret; } int ObJoinOrder::compute_cost_and_prune_access_path(PathHelper &helper, ObIArray &access_paths) { int ret = OB_SUCCESS; ObSqlCtx *sql_ctx = NULL; ObTaskExecutorCtx *task_exec_ctx = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_optimizer_context().get_exec_ctx()) || OB_ISNULL(task_exec_ctx = get_plan()->get_optimizer_context().get_task_exec_ctx()) || OB_ISNULL(sql_ctx = get_plan()->get_optimizer_context().get_exec_ctx()->get_sql_ctx())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(sql_ctx), K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); ++i) { AccessPath *ap = access_paths.at(i); if (OB_ISNULL(ap) || OB_ISNULL(ap->get_sharding())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ap), K(ret)); } else if (OB_FAIL(ap->estimate_cost())) { LOG_WARN("failed to estimate cost", K(ret)); } else if (OB_FAIL(ap->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(ap->compute_valid_inner_path())) { LOG_WARN("failed to compute inner path with pushdown filters", K(ret)); } else if (!ap->is_inner_path()) { if (OB_FAIL(add_path(ap))) { LOG_WARN("failed to add the interesting order"); } else { LOG_TRACE("OPT:succeed to create normal access path", K(*ap)); } } else if (!is_virtual_table(ap->get_ref_table_id()) || is_oracle_mapping_real_virtual_table(ap->get_ref_table_id()) || ap->is_get_ || helper.force_inner_nl_) { if (OB_FAIL(helper.inner_paths_.push_back(ap))) { LOG_WARN("failed to push back inner path", K(ret)); } else { LOG_TRACE("OPT:succeed to add inner access path", K(*ap)); } } else { LOG_TRACE("path not add ", K(helper.force_inner_nl_)); } } // add path end } return ret; } /* * this function try to revise output rows after creating all paths */ int ObJoinOrder::revise_output_rows_after_creating_path(PathHelper &helper, ObIArray &access_paths) { int ret = OB_SUCCESS; AccessPath *path = NULL; if (!helper.is_inner_path_) { LOG_TRACE("OPT:output row count before revising", K(output_rows_)); // get the minimal output row count int64_t maximum_count = -1; int64_t range_prefix_count = -1; if (helper.est_method_ & EST_STORAGE) { bool contain_false_range_path = false; for (int64_t i = 0; OB_SUCC(ret) && !contain_false_range_path && i < access_paths.count(); ++i) { AccessPath *path = access_paths.at(i); if (OB_ISNULL(path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null path", K(ret)); } else if (OB_UNLIKELY((range_prefix_count = path->range_prefix_count_) < 0)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected range prefix count", K(ret), K(range_prefix_count)); } else if (path->is_false_range()) { contain_false_range_path = true; output_rows_ = 0.0; LOG_TRACE("OPT:revise output rows for false range", K(output_rows_)); } else if (maximum_count <= range_prefix_count) { LOG_TRACE("OPT:revise output rows", K(path->get_output_row_count()), K(output_rows_), K(maximum_count), K(range_prefix_count), K(ret)); if (maximum_count == range_prefix_count) { output_rows_ = std::min(path->get_output_row_count(), output_rows_); } else { output_rows_ = path->get_output_row_count(); maximum_count = range_prefix_count; } } else { /*do nothing*/ } } } else { if (OB_UNLIKELY(access_paths.empty()) || OB_ISNULL(access_paths.at(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(access_paths)); } else { output_rows_ = access_paths.at(0)->get_output_row_count(); } } LOG_TRACE("OPT:output row count after revising", K(output_rows_)); if (OB_SUCC(ret)) { if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(ObOptSelectivity::update_table_meta_info( get_plan()->get_basic_table_metas(), get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), table_id_, output_rows_, get_restrict_infos(), get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to update table meta info", K(ret)); } } if (OB_FAIL(ret)) { } else if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("plan and stmt should not be null", K(ret)); } else if (get_plan()->get_stmt()->has_limit()) { // 这部分代码主要处理有limit时re_est_cost()的时候行数估计的问题 // 仅在含有limit的时候才调整选择率 for (int64_t i = 0; OB_SUCC(ret) && i < interesting_paths_.count(); ++i) { if (OB_ISNULL(interesting_paths_.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null path", K(ret)); } else if (!interesting_paths_.at(i)->is_access_path()) { ret = OB_ERR_UNEXPECTED; LOG_WARN("should be access path", K(ret)); } else { path = static_cast (interesting_paths_.at(i)); if (OB_UNLIKELY(std::fabs(path->get_output_row_count()) < OB_DOUBLE_EPSINON)) { // do nothing } else { double revise_ratio = output_rows_ / path->get_output_row_count(); ObCostTableScanInfo &cost_info = path->get_cost_table_scan_info(); bool has_table_filter = !(std::fabs(cost_info.table_filter_sel_ - 1.0) < OB_DOUBLE_EPSINON); bool has_postfix_filter = !(std::fabs(cost_info.postfix_filter_sel_ - 1.0) < OB_DOUBLE_EPSINON); if (!has_table_filter && !has_postfix_filter) { // do nothing } else if (has_table_filter && !has_postfix_filter) { cost_info.table_filter_sel_ *= revise_ratio; } else if (!has_table_filter && has_postfix_filter) { cost_info.postfix_filter_sel_ *= revise_ratio; } else { cost_info.table_filter_sel_ *= std::sqrt(revise_ratio); cost_info.postfix_filter_sel_ *= std::sqrt(revise_ratio); } cost_info.table_filter_sel_ = ObOptSelectivity::revise_between_0_1(cost_info.table_filter_sel_); cost_info.postfix_filter_sel_ = ObOptSelectivity::revise_between_0_1(cost_info.postfix_filter_sel_); } } } } else { // do nothing, we only revise selectivity when LIMIT is provided } } else { // update index rows in inner index path for (int64_t i = 0; OB_SUCC(ret) && i < helper.inner_paths_.count(); ++i) { if (OB_ISNULL(helper.inner_paths_.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null path", K(ret)); } else { path = static_cast (helper.inner_paths_.at(i)); path->inner_row_count_ = std::min(path->get_output_row_count(), output_rows_); } } } return ret; } int ObJoinOrder::fill_opt_info_index_name(const uint64_t table_id, const uint64_t base_table_id, ObIArray &available_index_id, ObIArray &unstable_index_id, BaseTableOptInfo *table_opt_info) { int ret = OB_SUCCESS; const ObTableSchema *table_schema = NULL; uint64_t index_ids[OB_MAX_INDEX_PER_TABLE + 3]; int64_t index_count = OB_MAX_INDEX_PER_TABLE + 3; ObSqlSchemaGuard *schema_guard = NULL; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(table_opt_info) || OB_ISNULL(get_plan()) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()),K(schema_guard), K(table_opt_info), K(ret)); } else if (OB_UNLIKELY(OB_INVALID_ID == base_table_id)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid table id", K(base_table_id), K(ret)); } if (OB_FAIL(ret)) { // do nothing } else if (OB_FAIL(schema_guard->get_can_read_index_array(base_table_id, index_ids, index_count, false, true /*global index*/, false /*domain index*/))) { LOG_WARN("failed to get can read index", K(base_table_id), K(ret)); } else if (index_count > OB_MAX_INDEX_PER_TABLE + 1) { ret = OB_ERR_UNEXPECTED; LOG_WARN("Invalid index count", K(base_table_id), K(index_count), K(ret)); } else if (OB_FAIL(table_opt_info->available_index_id_.assign(available_index_id))) { LOG_WARN("failed to assign available index id", K(ret)); } else { index_ids[index_count++] = base_table_id; // i == -1 represents primary key, other value of i represent index for (int64_t i = 0; OB_SUCC(ret) && i < index_count; ++i) { ObString name; uint64_t index_id = index_ids[i]; if (OB_FAIL(schema_guard->get_table_schema(index_id, table_schema))) { LOG_WARN("fail to get table schema", K(index_id), K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index schema should not be null", K(ret), K(index_id)); } else if (base_table_id == index_id) { name = table_schema->get_table_name_str(); } else if (OB_FAIL(table_schema->get_index_name(name))) { LOG_WARN("failed to get index name", K(ret)); } else { /*do nothing*/ } if (OB_SUCC(ret)) { if (OB_FAIL(table_opt_info->available_index_name_.push_back(name))) { LOG_WARN("failed to push back index name", K(name), K(ret)); } else { /* do nothing */ } } if (OB_FAIL(ret)) { } else if (ObOptimizerUtil::find_item(available_index_id, index_id)) { //do nothing } else if (ObOptimizerUtil::find_item(unstable_index_id, index_id)) { if (OB_FAIL(table_opt_info->unstable_index_name_.push_back(name))) { LOG_WARN("failed to push back index name", K(name), K(ret)); } else { /* do nothing */ } } else if (OB_FAIL(table_opt_info->pruned_index_name_.push_back(name))) { LOG_WARN("failed to push back index name", K(name), K(ret)); } else { /* do nothing */ } } } return ret; } /* * 检查interesting order * @keys 索引列 * @stmt * @interest_column_ids 匹配索引前缀的列id * @const_column_info interest_column_ids对应的每一个column是否为const * 具体的匹配规则可以看 * * */ int ObJoinOrder::check_all_interesting_order(const ObIArray &ordering, const ObDMLStmt *stmt, int64_t &max_prefix_count, int64_t &interesting_order_info) { int ret = OB_SUCCESS; max_prefix_count = 0; if (OB_ISNULL(stmt) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(stmt), K(get_plan())); } else { int64_t prefix_count = 0; bool join_match = false; //连接条件上是否匹配, 外连接和内连接 if (OB_FAIL(is_join_match(ordering, prefix_count, join_match))) { LOG_WARN("check_join_match failed", K(ret)); } else if (join_match) { max_prefix_count = std::max(max_prefix_count, prefix_count); interesting_order_info |= OrderingFlag::JOIN_MATCH; LOG_TRACE("check is_join_match debug", K(join_match), K(max_prefix_count), K(prefix_count)); } //检查是否有GroupBy/OrderBy/Distinct可用 if (OB_SUCC(ret)) { int64_t check_scope = OrderingCheckScope::CHECK_ALL; prefix_count = 0; if (OB_FAIL(ObOptimizerUtil::compute_stmt_interesting_order(ordering, stmt, get_plan()->get_is_subplan_scan(), get_plan()->get_equal_sets(), get_plan()->get_const_exprs(), get_plan()->get_is_parent_set_distinct(), check_scope, interesting_order_info, prefix_count))) { LOG_WARN("failed to compute stmt interesting order", K(ret)); } else { max_prefix_count = std::max(max_prefix_count, prefix_count); } } } return ret; } int ObJoinOrder::check_all_interesting_order(const ObIArray &ordering, const ObDMLStmt *stmt, int64_t &interesting_order_info) { int ret = OB_SUCCESS; bool join_match = false; int64_t check_scope = OrderingCheckScope::CHECK_ALL; if (OB_ISNULL(stmt) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(stmt), K(get_plan())); } else if (OB_FAIL(is_join_match(ordering, join_match))) { LOG_WARN("check_join_match failed", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::compute_stmt_interesting_order(ordering, stmt, get_plan()->get_is_subplan_scan(), get_plan()->get_equal_sets(), get_plan()->get_const_exprs(), get_plan()->get_is_parent_set_distinct(), check_scope, interesting_order_info))) { LOG_WARN("failed to compute stmt interesting order", K(ret)); } else if (join_match) { interesting_order_info |= OrderingFlag::JOIN_MATCH; LOG_TRACE("check is_join_match debug", K(join_match)); } return ret; } int ObJoinOrder::extract_interesting_column_ids(const ObIArray &keys, const int64_t &max_prefix_count, ObIArray &interest_column_ids, ObIArray &const_column_info) { int ret = OB_SUCCESS; if (max_prefix_count > 0) {//some sort match if (OB_FAIL(ObSkylineDimRecorder::extract_column_ids(keys, max_prefix_count, interest_column_ids))) { LOG_WARN("extract column ids failed", K(ret)); } else { LOG_TRACE("check interesting order debug", K(max_prefix_count), K(keys.count())); for (int64_t i = 0; OB_SUCC(ret) && i < max_prefix_count; i++) { bool is_const = false; if (OB_ISNULL(keys.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::is_const_expr(keys.at(i), output_equal_sets_, get_output_const_exprs(), is_const))) { LOG_WARN("check expr is const expr failed", K(ret)); } else if (OB_FAIL(const_column_info.push_back(is_const))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to push back const column info", K(ret)); } else { /*do nothing*/ } } } } return ret; } int ObJoinOrder::is_join_match(const ObIArray &ordering, int64_t &prefix_count, // max join match prefix bool &sort_match) { int ret = OB_SUCCESS; sort_match = false; prefix_count = 0; const JoinInfo *join_info = NULL; ObSEArray ordering_exprs; ObSEArray ordering_directions; ObSEArray related_join_keys; ObSEArray other_join_keys; ObSEArray null_safe_info; bool dummy_is_coverd = false; int64_t match_prefix_count = 0; ObLogPlan *plan = get_plan(); if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null plan", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::split_expr_direction(ordering, ordering_exprs, ordering_directions))) { LOG_WARN("failed to split expr direction", K(ret)); } else { const ObIArray &conflict_detectors = plan->get_conflict_detectors(); // get max prefix count from inner join infos for (int64_t i = 0; OB_SUCC(ret) && i < conflict_detectors.count(); i++) { related_join_keys.reuse(); other_join_keys.reuse(); if (OB_ISNULL(conflict_detectors.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null detectors", K(ret)); } else if (OB_FALSE_IT(join_info = &(conflict_detectors.at(i)->join_info_))) { } else if (!join_info->table_set_.overlap(get_tables()) || ObOptimizerUtil::find_item(used_conflict_detectors_, conflict_detectors.at(i))) { //do nothing } else if (OB_FAIL(ObOptimizerUtil::get_equal_keys(join_info->equal_join_conditions_, get_tables(), related_join_keys, other_join_keys, null_safe_info))) { LOG_WARN("failed to get equal keys", K(ret)); } else if (OB_FAIL(extract_real_join_keys(related_join_keys))) { LOG_WARN("failed to extract real join keys", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::prefix_subset_exprs(related_join_keys, ordering_exprs, get_output_equal_sets(), get_output_const_exprs(), dummy_is_coverd, &match_prefix_count))) { LOG_WARN("failed to fidn common prefix ordering", K(ret)); } else { prefix_count = std::max(prefix_count, match_prefix_count); } } if (OB_SUCC(ret)) { if (prefix_count > 0) { sort_match = true; } } } return ret; } int ObJoinOrder::is_join_match(const ObIArray &ordering, bool &sort_match) { int ret = OB_SUCCESS; sort_match = false; const JoinInfo *join_info = NULL; ObSEArray ordering_exprs; ObSEArray ordering_directions; ObSEArray related_join_keys; ObSEArray other_join_keys; ObSEArray null_safe_info; bool dummy_is_coverd = false; ObLogPlan *plan = get_plan(); if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null plan", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::split_expr_direction(ordering, ordering_exprs, ordering_directions))) { LOG_WARN("failed to split expr direction", K(ret)); } else { const ObIArray &conflict_detectors = plan->get_conflict_detectors(); for (int64_t i = 0; OB_SUCC(ret) && !sort_match && i < conflict_detectors.count(); i++) { related_join_keys.reuse(); other_join_keys.reuse(); if (OB_ISNULL(conflict_detectors.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null detectors", K(ret)); } else if (OB_FALSE_IT(join_info = &(conflict_detectors.at(i)->join_info_))) { } else if (!join_info->table_set_.overlap(get_tables()) || ObOptimizerUtil::find_item(used_conflict_detectors_, conflict_detectors.at(i))) { //do nothing } else if (OB_FAIL(ObOptimizerUtil::get_equal_keys(join_info->equal_join_conditions_, get_tables(), related_join_keys, other_join_keys, null_safe_info))) { LOG_WARN("failed to get equal keys", K(ret)); } else if (OB_FAIL(extract_real_join_keys(related_join_keys))) { LOG_WARN("failed to extract real join keys", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::prefix_subset_exprs(related_join_keys, ordering_exprs, output_equal_sets_, get_output_const_exprs(), sort_match))) { LOG_WARN("failed to fidn common prefix ordering", K(ret)); } } } return ret; } int ObJoinOrder::check_expr_overlap_index(const ObRawExpr* qual, const ObIArray& keys, bool &overlap) { int ret = OB_SUCCESS; overlap = false; ObArray cur_vars; if (OB_FAIL(ObRawExprUtils::extract_column_exprs(qual, cur_vars))) { LOG_WARN("extract_column_exprs error", K(ret)); } else if (ObOptimizerUtil::overlap_exprs(cur_vars, keys)) { overlap = true; } else { /*do nothing*/ } return ret; } /* 拿到quals中涉及的 column的列的id 这个函数在抽取不出query range和 interesting order的情况下调用 */ int ObJoinOrder::extract_filter_column_ids(const ObIArray &quals, const bool is_data_table, const ObTableSchema &index_schema, ObIArray &filter_column_ids) { int ret = OB_SUCCESS; filter_column_ids.reset(); if (quals.count() > 0) { ObArray column_exprs; if (OB_FAIL(ObRawExprUtils::extract_column_exprs(quals, column_exprs))) { LOG_WARN("extract_column_expr error", K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && i < column_exprs.count(); ++i) { const ObColumnRefRawExpr *column = static_cast(column_exprs.at(i)); if (OB_ISNULL(column)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("column expr should not be null", K(ret), K(i)); } else { uint64_t column_id = column->get_column_id(); bool has = false; if (is_data_table) { has = true; } else if (index_schema.is_spatial_index()) { const ObRowkeyInfo* rowkey_info = &index_schema.get_rowkey_info(); const ObColumnSchemaV2 *column_schema = NULL; uint64_t index_column_id = OB_INVALID_ID; for (int col_idx = 0; OB_SUCC(ret) && col_idx < rowkey_info->get_size(); ++col_idx) { if (OB_FAIL(rowkey_info->get_column_id(col_idx, index_column_id))) { LOG_WARN("Failed to get column id", K(ret)); } else if (OB_ISNULL(column_schema = (index_schema.get_column_schema(index_column_id)))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to get column schema", K(index_column_id), K(ret)); } else if (column_schema->is_spatial_cellid_column()) { uint64_t geo_col_id = column_schema->get_geo_col_id(); if (geo_col_id == column_id) { has = true; column_id = index_column_id; } } } } else if (OB_FAIL(index_schema.has_column(column_id, has))) { LOG_WARN("check has column failed", K(column_id), K(has), K(ret)); } if (OB_SUCC(ret) && has) { if (!ObRawExprUtils::contain_id(filter_column_ids, column_id)) { if (OB_FAIL(filter_column_ids.push_back(column_id))) { LOG_WARN("failed to push back column_ids", K(ret)); } } } } } } } LOG_TRACE("extract filter column ids finish", K(ret), K(filter_column_ids), K(quals.count())); return ret; } int ObJoinOrder::check_exprs_overlap_index(const ObIArray& quals, const ObIArray& keys, bool &match) { LOG_TRACE("OPT:[CHECK MATCH]", K(keys)); int ret = OB_SUCCESS; match = false; if (keys.empty()) { ret = OB_ERR_UNEXPECTED; LOG_WARN("Index keys should not be empty", K(keys.count()), K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && !match && i < quals.count(); ++i) { ObRawExpr *expr = quals.at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("qual expr should not be NULL", K(expr), K(i), K(ret)); } else { LOG_TRACE("OPT:[CHECK MATCH]", K(*expr)); if (OB_FAIL(check_expr_overlap_index(expr, keys, match))) { LOG_WARN("check_expr_overlap_index error", K(ret)); } else { /*do nothing*/ } } } } return ret; } int ObJoinOrder::extract_preliminary_query_range(const ObIArray &range_columns, const ObIArray &predicates, ObIArray &expr_constraints, int64_t table_id, ObQueryRange *&query_range) { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; const ParamStore *params = NULL; ObSQLSessionInfo *session_info = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(allocator_) || OB_ISNULL(params = opt_ctx->get_params()) || OB_ISNULL(session_info = opt_ctx->get_session_info())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(allocator_), K(params), K(ret)); } else { void *tmp_ptr = allocator_->alloc(sizeof(ObQueryRange)); ObQueryRange *tmp_qr = NULL; ObSEArray range_predicates; bool enable_better_inlist = false; if (OB_ISNULL(tmp_ptr)) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate memory for query range", K(ret)); } else if (OB_FAIL(check_enable_better_inlist(table_id, enable_better_inlist))) { LOG_WARN("failed to check better inlist enabled", K(ret)); } else if (enable_better_inlist && OB_FAIL(get_candi_range_expr(range_columns, predicates, range_predicates))) { LOG_WARN("failed to get candi range expr", K(ret)); } else if (!enable_better_inlist && OB_FAIL(range_predicates.assign(predicates))) { LOG_WARN("failed to assign exprs", K(ret)); } else { tmp_qr = new(tmp_ptr)ObQueryRange(*allocator_); const ObDataTypeCastParams dtc_params = ObBasicSessionInfo::create_dtc_params(session_info); bool is_in_range_optimization_enabled = false; if (OB_FAIL(ObOptimizerUtil::is_in_range_optimization_enabled(opt_ctx->get_global_hint(), session_info, is_in_range_optimization_enabled))) { LOG_WARN("failed to check in range optimization enabled", K(ret)); } else if (OB_FAIL(tmp_qr->preliminary_extract_query_range(range_columns, range_predicates, dtc_params, opt_ctx->get_exec_ctx(), &expr_constraints, params, false, true, is_in_range_optimization_enabled))) { LOG_WARN("failed to preliminary extract query range", K(ret)); } } if (OB_SUCC(ret)) { query_range = tmp_qr; } else { if (NULL != tmp_qr) { tmp_qr->~ObQueryRange(); tmp_qr = NULL; } } } return ret; } int ObJoinOrder::check_enable_better_inlist(int64_t table_id, bool &enable) { int ret = OB_SUCCESS; enable = false; ObOptimizerContext *opt_ctx = NULL; ObSQLSessionInfo *session_info = NULL; OptTableMeta *table_meta = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(session_info = opt_ctx->get_session_info())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(ret)); } else if (!session_info->is_user_session()) { enable = false; } else if (session_info->is_better_inlist_enabled(enable)) { LOG_WARN("failed to check better inlist enabled", K(ret)); } else if (!enable) { //do nothing } else if (OB_ISNULL(table_meta=get_plan()->get_basic_table_metas(). get_table_meta_by_table_id(table_id))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null table meta", K(ret)); } else if (table_meta->use_default_stat()) { enable = false; } return ret; } int ObJoinOrder::extract_geo_preliminary_query_range(const ObIArray &range_columns, const ObIArray &predicates, const ColumnIdInfoMap &column_schema_info, ObQueryRange *&query_range) { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; const ParamStore *params = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(allocator_) || OB_ISNULL(params = opt_ctx->get_params())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(allocator_), K(params), K(ret)); } else { void *tmp_ptr = allocator_->alloc(sizeof(ObQueryRange)); ObQueryRange *tmp_qr = NULL; if (OB_ISNULL(tmp_ptr)) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate memory for query range", K(ret)); } else { tmp_qr = new(tmp_ptr)ObQueryRange(*allocator_); const ObDataTypeCastParams dtc_params = ObBasicSessionInfo::create_dtc_params(opt_ctx->get_session_info()); // deep copy ColumnIdInfoMap::const_iterator iter = column_schema_info.begin(); if (OB_FAIL(tmp_qr->init_columnId_map())) { LOG_WARN("Init column_info_map failed", K(ret)); } while (OB_SUCC(ret) && iter != column_schema_info.end()) { if (OB_FAIL(tmp_qr->set_columnId_map(iter->first, iter->second))) { LOG_WARN("set column info map failed", K(ret), K(iter->first)); } iter++; } if (OB_FAIL(ret)) { } else if (OB_FAIL(tmp_qr->preliminary_extract_query_range(range_columns, predicates, dtc_params, opt_ctx->get_exec_ctx(), NULL, params))) { LOG_WARN("failed to preliminary extract query range", K(ret)); } } if (OB_SUCC(ret)) { query_range = tmp_qr; } else { if (NULL != tmp_qr) { tmp_qr->~ObQueryRange(); tmp_qr = NULL; } } } return ret; } int ObJoinOrder::get_candi_range_expr(const ObIArray &range_columns, const ObIArray &predicates, ObIArray &range_predicates) { int ret = OB_SUCCESS; double min_cost = 0; double cost = 0; bool has_in_pred = false; int64_t range_count = 1; ObSEArray range_exprs; ObSEArray ignore_predicates; ObSEArray sorted_predicates; LOG_TRACE("check index", K(range_columns)); if (OB_FAIL(sort_predicate_by_index_column(range_columns, predicates, sorted_predicates, has_in_pred))) { LOG_WARN("failed to sort predicate by index column", K(ret)); } else if (!has_in_pred) { //do nothing //calculate full index scan cost } else if (OB_FAIL(calculate_range_expr_cost(sorted_predicates, range_exprs, range_columns.count(), range_count, min_cost))) { LOG_WARN("failed to calculate range expr cost", K(ret)); } if (OB_SUCC(ret) && has_in_pred) { auto compare_op = [](CandiRangeExprs *lhs, CandiRangeExprs *rhs) { bool b_ret = false; if (NULL != lhs && NULL != rhs) { b_ret = lhs->index_ < rhs->index_; } return b_ret; }; std::sort(sorted_predicates.begin(), sorted_predicates.end(), compare_op); LOG_TRACE("sort predicates and calc cost", K(min_cost), K(sorted_predicates)); } //for each candi range expr, check scan cost for (int64_t i = 0; OB_SUCC(ret) && has_in_pred && i < sorted_predicates.count(); ++i) { CandiRangeExprs *candi_exprs = sorted_predicates.at(i); ObRawExpr *min_cost_in_expr = NULL; uint64_t min_cost_range_count = INT64_MAX; if (OB_ISNULL(candi_exprs)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null range exprs", K(ret)); } else if (!candi_exprs->eq_exprs_.empty()) { //has equal condition, ignore all in exprs if (OB_FAIL(append(range_exprs, candi_exprs->eq_exprs_))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(calculate_range_expr_cost(sorted_predicates, range_exprs, range_columns.count(), range_count, min_cost))) { LOG_WARN("failed to calculate range expr cost", K(ret)); } else if (OB_FAIL(append(ignore_predicates, candi_exprs->in_exprs_))) { LOG_WARN("failed to append exprs", K(ret)); } } else { //choose less in list expr for (int64_t j = 0; OB_SUCC(ret) && j < candi_exprs->in_exprs_.count(); ++j) { ObRawExpr* in_expr = candi_exprs->in_exprs_.at(j); ObRawExpr* row_expr = NULL; if (OB_ISNULL(in_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null in expr", K(ret)); } else if (2 != in_expr->get_param_count() || OB_ISNULL(row_expr=in_expr->get_param_expr(1))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (row_expr->get_param_count() * range_count < min_cost_range_count) { min_cost_range_count = row_expr->get_param_count() * range_count; if (NULL == min_cost_in_expr) { min_cost_in_expr = in_expr; } else if (OB_FAIL(ignore_predicates.push_back(min_cost_in_expr))) { LOG_WARN("failed to push back expr", K(ret)); } else { min_cost_in_expr = in_expr; } } else if (OB_FAIL(ignore_predicates.push_back(in_expr))) { LOG_WARN("failed to push back expr", K(ret)); } } if (OB_SUCC(ret) && NULL != min_cost_in_expr) { //check cost if (OB_FAIL(range_exprs.push_back(min_cost_in_expr))) { LOG_WARN("failed to push back expr", K(ret)); } else if (OB_FAIL(calculate_range_expr_cost(sorted_predicates, range_exprs, range_columns.count(), min_cost_range_count, cost))) { LOG_WARN("failed to calculate range expr cost", K(ret)); } else if (cost >= min_cost) { //increase cost, ignore in expr range_exprs.pop_back(); if (OB_FAIL(ignore_predicates.push_back(min_cost_in_expr))) { LOG_WARN("failed to push back expr", K(ret)); } } else { //reduce cost, use in expr range_count = min_cost_range_count; min_cost = cost; } } } } //remove ignore in expr for (int64_t i = 0; OB_SUCC(ret) && i < predicates.count(); ++i) { if (ObOptimizerUtil::find_item(ignore_predicates, predicates.at(i))) { //do nothing } else if (OB_FAIL(range_predicates.push_back(predicates.at(i)))) { LOG_WARN("failed to push back expr", K(ret)); } } //destroy candi range exprs for (int64_t i = 0; i < sorted_predicates.count(); ++i) { if (NULL != sorted_predicates.at(i)) { sorted_predicates.at(i)->~CandiRangeExprs(); sorted_predicates.at(i) = NULL; } } LOG_TRACE("used predicates calc query range:", K(range_predicates)); return ret; } int ObJoinOrder::calculate_range_expr_cost(ObIArray &sorted_predicates, ObIArray &range_exprs, int64_t range_column_count, int64_t range_count, double &cost) { int ret = OB_SUCCESS; double range_sel = 1; ObSEArray filters; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null plan", K(ret)); } else if (OB_FAIL(get_range_filter(sorted_predicates, range_exprs, filters))) { LOG_WARN("failed to get range filter", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), range_exprs, range_sel, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else if (OB_FAIL(ObOptEstCost::calc_range_cost(table_meta_info_, filters, range_column_count, range_count, range_sel, cost, get_plan()->get_optimizer_context()))) { LOG_WARN("failed to estimate range scan cost", K(ret)); } else { LOG_TRACE("query range cost:", K(range_column_count), K(range_count), K(range_sel), K(cost)); LOG_TRACE("candi range exprs:", K(range_exprs)); } return ret; } int ObJoinOrder::sort_predicate_by_index_column(const ObIArray &range_columns, const ObIArray &predicates, ObIArray &sort_exprs, bool &has_in_pred) { int ret = OB_SUCCESS; has_in_pred = false; int64_t column_id = 0; bool is_in_expr = false; bool is_valid = false; if (OB_ISNULL(allocator_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null allocator", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < predicates.count(); ++i) { ObRawExpr* expr = predicates.at(i); bool find = false; if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (OB_FAIL(is_eq_or_in_range_expr(expr, column_id, is_in_expr, is_valid))) { LOG_WARN("failed check is valid range expr", K(ret)); } else if (!is_valid) { find = true; } else { has_in_pred |= is_in_expr; } for (int64_t j = 0; OB_SUCC(ret) && !find && j < sort_exprs.count(); ++j) { CandiRangeExprs *candi_exprs = sort_exprs.at(j); if (OB_ISNULL(candi_exprs)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null range exprs", K(ret)); } else if (column_id == candi_exprs->column_id_) { find = true; if (is_in_expr && OB_FAIL(candi_exprs->in_exprs_.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } else if (!is_in_expr && OB_FAIL(candi_exprs->eq_exprs_.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } } } if (OB_SUCC(ret) && !find) { int64_t index = OB_INVALID_INDEX; for (int64_t j = 0; OB_INVALID_INDEX == index && j < range_columns.count(); ++j) { if (column_id == range_columns.at(j).column_id_) { index = j; } } if (OB_INVALID_INDEX != index) { CandiRangeExprs *candi_exprs = NULL; if (OB_ISNULL(candi_exprs = static_cast( allocator_->alloc(sizeof(CandiRangeExprs))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to create outer join info", K(ret)); } else { candi_exprs = new (candi_exprs) CandiRangeExprs(); candi_exprs->index_ = index; candi_exprs->column_id_ = column_id; if (is_in_expr && OB_FAIL(candi_exprs->in_exprs_.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } else if (!is_in_expr && OB_FAIL(candi_exprs->eq_exprs_.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } else if (OB_FAIL(sort_exprs.push_back(candi_exprs))) { LOG_WARN("failed to push back expr", K(ret)); } } } } } return ret; } int ObJoinOrder::is_eq_or_in_range_expr(ObRawExpr* expr, int64_t &column_id, bool &is_in_expr, bool &is_valid) { int ret = OB_SUCCESS; column_id = OB_INVALID_ID; is_in_expr = false; is_valid = false; if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (T_OP_EQ == expr->get_expr_type() || T_OP_NSEQ == expr->get_expr_type()) { ObRawExpr* l_expr = NULL; ObRawExpr* r_expr = NULL; if (expr->get_param_count() < 2) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null param count", K(ret)); } else if (OB_ISNULL(l_expr=expr->get_param_expr(0)) || OB_ISNULL(r_expr=expr->get_param_expr(1))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (T_OP_ROW == l_expr->get_expr_type()) { //do nothing } else if (OB_FAIL(ObOptimizerUtil::get_expr_without_lossless_cast(l_expr, l_expr))) { LOG_WARN("failed to get lossless cast expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_expr_without_lossless_cast(r_expr, r_expr))) { LOG_WARN("failed to get lossless cast expr", K(ret)); } else if (l_expr->has_flag(IS_COLUMN) && r_expr->is_const_expr()) { ObColumnRefRawExpr *col_expr = static_cast(l_expr); column_id = col_expr->get_column_id(); is_in_expr = false; is_valid = true; } else if (l_expr->is_const_expr() && r_expr->has_flag(IS_COLUMN)) { ObColumnRefRawExpr *col_expr = static_cast(r_expr); column_id = col_expr->get_column_id(); is_in_expr = false; is_valid = true; } } else if (T_OP_IN == expr->get_expr_type()) { ObRawExpr* l_expr = NULL; if (expr->get_param_count() < 1) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null param count", K(ret)); } else if (OB_ISNULL(l_expr=expr->get_param_expr(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_expr_without_lossless_cast(l_expr, l_expr))) { LOG_WARN("failed to get lossless cast expr", K(ret)); } else if (l_expr->has_flag(IS_COLUMN)) { ObColumnRefRawExpr *col_expr = static_cast(l_expr); column_id = col_expr->get_column_id(); is_in_expr = true; is_valid = true; } } return ret; } int ObJoinOrder::get_range_filter(ObIArray &sort_exprs, ObIArray &range_exprs, ObIArray &filters) { int ret = OB_SUCCESS; filters.reuse(); for (int64_t i = 0; OB_SUCC(ret) && i < sort_exprs.count(); ++i) { CandiRangeExprs *candi_exprs = sort_exprs.at(i); if (OB_ISNULL(candi_exprs)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null range exprs", K(ret)); } for (int64_t j = 0; OB_SUCC(ret) && j < candi_exprs->eq_exprs_.count(); ++j) { ObRawExpr *expr = candi_exprs->eq_exprs_.at(j); if (ObOptimizerUtil::find_item(range_exprs, expr)) { //do nothing } else if (OB_FAIL(filters.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } } for (int64_t j = 0; OB_SUCC(ret) && j < candi_exprs->in_exprs_.count(); ++j) { ObRawExpr *expr = candi_exprs->in_exprs_.at(j); if (ObOptimizerUtil::find_item(range_exprs, expr)) { //do nothing } else if (OB_FAIL(filters.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } } } return ret; } int ObJoinOrder::estimate_size_for_base_table(PathHelper &helper, ObIArray &access_paths) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id_)) || OB_UNLIKELY(type_ != ACCESS) || OB_ISNULL(helper.table_opt_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null or path type", K(ret), K(get_plan()), K(table_item), K(type_), K(stmt)); } else if (OB_FAIL(fill_path_index_meta_info(table_item->table_id_, table_item->ref_id_, access_paths))) { LOG_WARN("failed to fill path index meta info", K(ret)); } else if (OB_FAIL(estimate_rowcount_for_access_path(access_paths, helper.is_inner_path_, helper.filters_, helper.est_method_))) { LOG_WARN("failed to estimate and add access path", K(ret)); } else { LOG_TRACE("estimate rows for base table", K(output_rows_), K(get_plan()->get_basic_table_metas()), K(output_row_size_)); } return ret; } int ObJoinOrder::estimate_size_and_width_for_join(const ObJoinOrder* left_tree, const ObJoinOrder* right_tree, const ObJoinType join_type) { int ret = OB_SUCCESS; double new_rows = 0.0; double sel = 1.0; EqualSets equal_sets; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || OB_ISNULL(join_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_tree), K(right_tree), K(ret)); } else if (OB_FAIL(est_join_width())) { LOG_WARN("failed to estimate join width", K(ret)); } else if (OB_FAIL(append(equal_sets, left_tree->get_output_equal_sets())) || OB_FAIL(append(equal_sets, right_tree->get_output_equal_sets()))) { LOG_WARN("failed to append equal sets", K(ret)); } else if (OB_FAIL(calc_join_output_rows(get_plan(), left_tree->get_tables(), right_tree->get_tables(), left_tree->get_output_rows(), right_tree->get_output_rows(), *join_info_, new_rows, sel, equal_sets))) { LOG_WARN("failed to calc join output rows", K(ret)); } else { set_output_rows(new_rows); if (IS_SEMI_ANTI_JOIN(join_type)) { anti_or_semi_match_sel_ = sel; } LOG_TRACE("estimate rows for join path", K(output_rows_), K(get_plan()->get_update_table_metas())); } return ret; } int ObJoinOrder::estimate_size_and_width_for_subquery(uint64_t table_id, ObLogicalOperator *root) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; double selectivity = 0; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(stmt), K(ret)); } else if (OB_FAIL(init_est_sel_info_for_subquery(table_id, root))) { LOG_WARN("failed to init est sel info for subplan scan", K(ret)); } else if (OB_FAIL(ObOptEstCost::estimate_width_for_table(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), stmt->get_column_items(), table_id_, output_row_size_))) { LOG_WARN("estimate width of row failed", K(table_id_), K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), get_restrict_infos(), selectivity, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calc filter selectivities", K(get_restrict_infos()), K(ret)); } else { set_output_rows(root->get_card() * selectivity); if (OB_FAIL(ObOptSelectivity::update_table_meta_info(get_plan()->get_basic_table_metas(), get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), table_id, output_rows_, get_restrict_infos(), get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to update table meta info", K(ret)); } LOG_TRACE("estimate rows for subquery", K(output_rows_), K(get_plan()->get_basic_table_metas())); } return ret; } int ObJoinOrder::est_join_width() { int ret = OB_SUCCESS; double width = 0.0; ObSEArray output_exprs; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid plan", K(ret)); } else if (OB_FAIL(get_join_output_exprs(output_exprs))) { LOG_WARN("failed to compute join output column exprs", K(ret)); } else if (OB_FAIL(ObOptEstCost::estimate_width_for_exprs(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), output_exprs, width))) { LOG_WARN("failed to estimate width for output join column exprs", K(ret)); } else { set_output_row_size(width); LOG_TRACE("est_width for join", K(output_exprs), K(width)); } return ret; } int ObJoinOrder::get_join_output_exprs(ObIArray &output_exprs) { int ret = OB_SUCCESS; ObLogPlan *plan = NULL; ObSEArray temp_exprs; ObSEArray extracted_column_exprs; ObSEArray excluded_condition_exprs; if (OB_ISNULL(plan = get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid parameters", K(ret)); } else if (OB_FAIL(get_excluded_condition_exprs(excluded_condition_exprs))) { LOG_WARN("failed to get excluded column exprs"); } else if (OB_FAIL(ObOptimizerUtil::except_exprs(plan->get_condition_exprs_for_width_est(), excluded_condition_exprs, temp_exprs))) { LOG_WARN("failed to except excluded exprs", K(ret)); } else if (OB_FAIL(append_array_no_dup(temp_exprs, plan->get_groupby_rollup_exprs_for_width_est()))) { LOG_WARN("failed to append into width candi exprs", K(ret)); } else if (OB_FAIL(append_array_no_dup(temp_exprs, plan->get_having_exprs_for_width_est()))) { LOG_WARN("failed to append into width candi exprs", K(ret)); } else if (OB_FAIL(append_array_no_dup(temp_exprs, plan->get_winfunc_exprs_for_width_est()))) { LOG_WARN("failed to append into width candi exprs", K(ret)); } else if (OB_FAIL(append_array_no_dup(temp_exprs, plan->get_select_item_exprs_for_width_est()))) { LOG_WARN("failed to append into width candi exprs", K(ret)); } else if (OB_FAIL(append_array_no_dup(temp_exprs, plan->get_orderby_exprs_for_width_est()))) { LOG_WARN("failed to append into width candi exprs", K(ret)); } else if (OB_FAIL(ObRawExprUtils::extract_column_exprs(temp_exprs, get_tables(), extracted_column_exprs))) { LOG_WARN("failed to extract expr", K(ret)); } else if (OB_FAIL(append_array_no_dup(output_exprs, extracted_column_exprs))) { LOG_WARN("failed to add into output exprs", K(ret)); } else {/*do nothing*/} return ret; } int ObJoinOrder::get_excluded_condition_exprs(ObIArray &excluded_conditions) { int ret = OB_SUCCESS; for (int64_t i = 0; OB_SUCC(ret) && i < used_conflict_detectors_.count(); ++i) { JoinInfo &join_info = used_conflict_detectors_.at(i)->join_info_; if (OB_FAIL(append_array_no_dup(excluded_conditions, join_info.on_conditions_))) { LOG_WARN("failed to append on condition exprs", K(ret)); } else if (OB_FAIL(append_array_no_dup(excluded_conditions, join_info.where_conditions_))) { LOG_WARN("failed to append where condition exprs", K(ret)); } } return ret; } double ObJoinOrder::calc_single_parallel_rows(double rows, int64_t parallel) { double ret = rows; if (parallel >= 1) { ret = rows / parallel; } ret = ret < 1 ? 1 : ret; return ret; } int ObJoinOrder::compute_const_exprs_for_subquery(uint64_t table_id, ObLogicalOperator *root) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(root) || OB_ISNULL(root->get_stmt()) || OB_ISNULL(root->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(root), K(ret)); } else if (OB_UNLIKELY(!root->get_stmt()->is_select_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected stmt type", K(ret)); } else { const ObDMLStmt *parent_stmt = get_plan()->get_stmt(); const ObSelectStmt *child_stmt = static_cast(root->get_stmt()); if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_expr( get_plan()->get_optimizer_context().get_expr_factory(), root->get_output_equal_sets(), table_id, *parent_stmt, *child_stmt, true, root->get_output_const_exprs(), output_const_exprs_))) { LOG_WARN("failed to convert subplan scan expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_subplan_const_column(*parent_stmt, table_id, *child_stmt, root->get_plan()->get_onetime_query_refs(), output_const_exprs_))) { LOG_WARN("failed to get subplan const column expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::compute_const_exprs(restrict_info_set_, output_const_exprs_))) { LOG_WARN("failed to compute const exprs", K(ret)); } else { /*do nothing*/ } } return ret; } int ObJoinOrder::compute_const_exprs_for_join(const ObJoinOrder* left_tree, const ObJoinOrder* right_tree, const ObJoinType join_type) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_tree), K(right_tree), K(ret)); } else if (INNER_JOIN == join_type) { if (OB_FAIL(append(output_const_exprs_, left_tree->get_output_const_exprs()))) { LOG_WARN("failed to append const exprs", K(ret)); } else if (OB_FAIL(append(output_const_exprs_, right_tree->get_output_const_exprs()))) { LOG_WARN("failed to append const exprs", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::compute_const_exprs(join_info_->where_conditions_, output_const_exprs_))) { LOG_WARN("failed to compute const exprs", K(ret)); } else {/*do nothing*/} } else if (IS_OUTER_JOIN(join_type)) { if (OB_ISNULL(join_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(join_info_), K(ret)); } else if (LEFT_OUTER_JOIN == join_type && OB_FAIL(append(output_const_exprs_, left_tree->get_output_const_exprs()))) { LOG_WARN("failed to append const exprs", K(ret)); } else if (RIGHT_OUTER_JOIN == join_type && OB_FAIL(append(output_const_exprs_, right_tree->get_output_const_exprs()))) { LOG_WARN("failed to append const exprs", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::compute_const_exprs(join_info_->where_conditions_, output_const_exprs_))) { LOG_WARN("failed to compute const exprs", K(ret)); } } else if (IS_SEMI_ANTI_JOIN(join_type)) { if (IS_LEFT_SEMI_ANTI_JOIN(join_type)) { if (OB_FAIL(append(output_const_exprs_, left_tree->get_output_const_exprs()))) { LOG_WARN("failed to append const exprs", K(ret)); } } else if (IS_RIGHT_SEMI_ANTI_JOIN(join_type)) { if (OB_FAIL(append(output_const_exprs_, right_tree->get_output_const_exprs()))) { LOG_WARN("failed to append const exprs", K(ret)); } } if (OB_SUCC(ret) && IS_SEMI_JOIN(join_type) && OB_FAIL(ObOptimizerUtil::compute_const_exprs(join_info_->where_conditions_, output_const_exprs_))) { LOG_WARN("failed to compute const exprs for semi join", K(ret)); } } else if (CONNECT_BY_JOIN == join_type) { if (OB_FAIL(ObOptimizerUtil::compute_const_exprs(restrict_info_set_, output_const_exprs_))) { LOG_WARN("failed to compute const exprs", K(ret)); } else {/*do nothing*/} } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid join type", K(join_type), K(ret)); } return ret; } int ObJoinOrder::compute_equal_set_for_join(const ObJoinOrder* left_tree, const ObJoinOrder* right_tree, const ObJoinType join_type) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || OB_ISNULL(join_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_tree), K(right_tree), K(ret)); } else if (INNER_JOIN == join_type) { EqualSets input_equal_sets; if (OB_FAIL(append(input_equal_sets, left_tree->output_equal_sets_)) || OB_FAIL(append(input_equal_sets, right_tree->output_equal_sets_))) { LOG_WARN("failed to init input equal sets", K(ret)); } else if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, join_info_->where_conditions_, input_equal_sets, output_equal_sets_))) { LOG_WARN("failed to compute equal sets for inner join", K(ret)); } else { /*do nothing*/ } } else if (IS_OUTER_JOIN(join_type)) { if (LEFT_OUTER_JOIN == join_type || RIGHT_OUTER_JOIN == join_type) { const EqualSets &child_eset = (LEFT_OUTER_JOIN == join_type) ? left_tree->output_equal_sets_ : right_tree->output_equal_sets_; if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, join_info_->where_conditions_, child_eset, output_equal_sets_))) { LOG_WARN("failed to compute ordering equal set for left/right outer join", K(ret)); } } else if (FULL_OUTER_JOIN == join_type) { if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, join_info_->where_conditions_, output_equal_sets_))) { LOG_WARN("failed to compute ordering equal set for full outer join", K(ret)); } } } else if (IS_SEMI_ANTI_JOIN(join_type)) { const EqualSets &child_eset = IS_LEFT_SEMI_ANTI_JOIN(join_type) ? left_tree->output_equal_sets_ : right_tree->output_equal_sets_; if (IS_ANTI_JOIN(join_type)) { if (OB_FAIL(append(output_equal_sets_, child_eset))) { LOG_WARN("failed to append equal set for left/right anti join", K(ret)); } } else if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, join_info_->where_conditions_, child_eset, output_equal_sets_))) { // semi right table exprs may exists in sharding info, // need compute equal sets use semi condition LOG_WARN("failed to compute ordering equal set for left/right semi join", K(ret)); } else { /*do nothing*/ } } else { /*do nothing*/ } return ret; } int ObJoinOrder::compute_equal_set_for_subquery(uint64_t table_id, ObLogicalOperator *root) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(root) || OB_ISNULL(root->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(root)); } else if (OB_UNLIKELY(!root->get_stmt()->is_select_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected stmt type", K(ret)); } else { EqualSets input_equal_sets; ObSEArray preds; const ObDMLStmt *parent_stmt = get_plan()->get_stmt(); const ObSelectStmt *child_stmt = static_cast(root->get_stmt()); if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_equal_sets( allocator_, get_plan()->get_optimizer_context().get_expr_factory(), table_id, *parent_stmt, *child_stmt, root->get_output_equal_sets(), input_equal_sets))) { LOG_WARN("failed to generate subplan scan expr", K(ret)); } else if (OB_FAIL(preds.assign(restrict_info_set_))) { LOG_WARN("failed to assign exprs", K(ret)); // todo link.zt, the generated predicates is only used for deducing equal sets // i think there is a better implementation. // we do not need to build equal predicates here } else if (OB_FAIL(generate_const_predicates_from_view(parent_stmt, child_stmt, table_id, preds))) { LOG_WARN("failed to generate const pred from view", K(ret)); } else if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, preds, input_equal_sets, output_equal_sets_))) { LOG_WARN("failed to compute equal set for subplan scan", K(ret)); } else { /*do nothing*/ } } return ret; } int ObJoinOrder::generate_const_predicates_from_view(const ObDMLStmt *stmt, const ObSelectStmt *child_stmt, uint64_t table_id, ObIArray &preds) { int ret = OB_SUCCESS; ObRawExpr *sel_expr = NULL; ObRawExpr *column_expr = NULL; ObRawExpr *equal_expr = NULL; ObLogPlan *plan = get_plan(); if (OB_ISNULL(child_stmt) || OB_ISNULL(plan) || OB_ISNULL(stmt) || OB_ISNULL(plan->get_optimizer_context().get_params())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(child_stmt)); } for (int64_t i = 0; OB_SUCC(ret) && i < child_stmt->get_select_item_size(); ++i) { int64_t idx = i; bool is_not_null = false; ObNotNullContext not_null_ctx(plan->get_optimizer_context().get_exec_ctx(), &plan->get_allocator(), child_stmt); if (OB_ISNULL(sel_expr = child_stmt->get_select_item(idx).expr_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected expr", K(ret), K(idx), K(sel_expr)); } else if (!sel_expr->is_const_expr() || sel_expr->get_result_type().is_lob() || ob_is_xml_sql_type(sel_expr->get_result_type().get_type(), sel_expr->get_result_type().get_subschema_id())) { //do nothing } else if (OB_FAIL(ObTransformUtils::is_expr_not_null(not_null_ctx, sel_expr, is_not_null, NULL))) { LOG_WARN("failed to check expr not null", K(ret)); } else if (!is_not_null) { // column = null is invalid, do nothing } else if (OB_FALSE_IT(column_expr = stmt->get_column_expr_by_id(table_id, OB_APP_MIN_COLUMN_ID + idx))) { } else if (NULL == column_expr) { //not used,do nothing } else if (OB_FAIL(ObRawExprUtils::create_equal_expr(plan->get_optimizer_context().get_expr_factory(), plan->get_optimizer_context().get_session_info(), column_expr, sel_expr, equal_expr))) { LOG_WARN("failed to create equal exprs", K(ret)); } else if (OB_ISNULL(equal_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("equal expr is null", K(ret)); } else if (OB_FAIL(equal_expr->formalize(plan->get_optimizer_context().get_session_info()))) { LOG_WARN("failed to formalize expr", K(ret)); } else if (OB_FAIL(equal_expr->pull_relation_id())) { LOG_WARN("failed to pull relation id and levels", K(ret)); } else if (OB_FAIL(preds.push_back(equal_expr))) { LOG_WARN("failed to push back expr", K(ret)); } } return ret; } int ObJoinOrder::convert_subplan_scan_order_item(ObLogPlan &plan, ObLogicalOperator &subplan_root, const uint64_t table_id, ObIArray &output_order) { int ret = OB_SUCCESS; const EqualSets &equal_sets = subplan_root.get_output_equal_sets(); const ObIArray &const_exprs = subplan_root.get_output_const_exprs(); const ObSelectStmt *child_stmt = static_cast(subplan_root.get_stmt()); const ObIArray &input_order = subplan_root.get_op_ordering(); ObRawExprCopier copier(plan.get_optimizer_context().get_expr_factory()); if (OB_ISNULL(subplan_root.get_stmt()) || !OB_UNLIKELY(subplan_root.get_stmt()->is_select_stmt()) || OB_ISNULL(plan.get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("select stmt is null", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < input_order.count(); ++i) { ObRawExpr *temp_expr = NULL; if (OB_ISNULL(input_order.at(i).expr_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(input_order.at(i).expr_), K(ret)); } else if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_expr(copier, equal_sets, table_id, *plan.get_stmt(), *child_stmt, input_order.at(i).expr_, temp_expr))) { LOG_WARN("failed to convert subplan scan expr", K(ret)); } else if (NULL == temp_expr) { bool is_const = false; if (OB_FAIL(ObOptimizerUtil::is_const_expr(input_order.at(i).expr_, equal_sets, const_exprs, is_const))) { LOG_WARN("failed to check is const expr", K(ret)); } else if (is_const) { /*do nothing*/ } else { break; } } else if (OB_FAIL(output_order.push_back(OrderItem(temp_expr, input_order.at(i).order_type_)))) { LOG_WARN("failed to push back order item", K(ret)); } else { /*do nothing*/} } if (OB_SUCC(ret)) { LOG_TRACE("subplan scan order item", K(output_order)); } return ret; return ret; } int ObJoinOrder::convert_subplan_scan_sharding_info(ObLogPlan &plan, ObLogicalOperator &subplan_root, const uint64_t table_id, ObShardingInfo *&output_strong_sharding, ObIArray &output_weak_sharding) { int ret = OB_SUCCESS; ObOptimizerContext &opt_ctx = plan.get_optimizer_context(); ObShardingInfo *input_strong_sharding = subplan_root.get_strong_sharding(); const ObIArray &input_weak_sharding = subplan_root.get_weak_sharding(); if (NULL != input_strong_sharding && OB_FAIL(convert_subplan_scan_sharding_info(plan, subplan_root, table_id, true, input_strong_sharding, output_strong_sharding))) { LOG_WARN("failed to convert sharding info", K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && i < input_weak_sharding.count(); i++) { ObShardingInfo *temp_sharding = NULL; if (OB_ISNULL(input_weak_sharding.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(convert_subplan_scan_sharding_info(plan, subplan_root, table_id, false, input_weak_sharding.at(i), temp_sharding))) { LOG_WARN("failed to convert sharding info", K(ret)); } else if (NULL != temp_sharding && OB_FAIL(output_weak_sharding.push_back(temp_sharding))) { LOG_WARN("failed to push back sharding", K(ret)); } else { /*do nothing*/ } } if (OB_SUCC(ret) && NULL == output_strong_sharding && output_weak_sharding.empty()) { output_strong_sharding = opt_ctx.get_distributed_sharding(); } } return ret; } int ObJoinOrder::convert_subplan_scan_sharding_info(ObLogPlan &plan, ObLogicalOperator &subplan_root, const uint64_t table_id, bool is_strong, ObShardingInfo *input_sharding, ObShardingInfo *&output_sharding) { int ret = OB_SUCCESS; ObSEArray part_exprs; ObSEArray subpart_exprs; ObSEArray part_func; const ObSelectStmt *child_stmt = static_cast(subplan_root.get_stmt()); ObIAllocator &allocator = plan.get_allocator(); ObRawExprFactory &expr_factory = plan.get_optimizer_context().get_expr_factory(); output_sharding = NULL; if (OB_ISNULL(input_sharding) || OB_ISNULL(plan.get_stmt()) || OB_ISNULL(child_stmt)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(input_sharding), K(ret)); } else if (input_sharding->is_single() || input_sharding->is_distributed_without_partitioning()) { output_sharding = input_sharding; } else if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_expr(expr_factory, subplan_root.get_output_equal_sets(), table_id, *plan.get_stmt(), *child_stmt, false, input_sharding->get_partition_keys(), part_exprs))) { LOG_WARN("failed to convert subplan scan expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_expr(expr_factory, subplan_root.get_output_equal_sets(), table_id, *plan.get_stmt(), *child_stmt, false, input_sharding->get_sub_partition_keys(), subpart_exprs))) { LOG_WARN("failed to convert subplan scan expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_expr(expr_factory, subplan_root.get_output_equal_sets(), table_id, *plan.get_stmt(), *child_stmt, false, input_sharding->get_partition_func(), part_func))) { LOG_WARN("failed to convert subplan scan expr", K(ret)); } else { bool is_converted = input_sharding->get_partition_keys().count() == part_exprs.count() && input_sharding->get_sub_partition_keys().count() == subpart_exprs.count() && input_sharding->get_partition_func().count() == part_func.count(); if (!is_strong && !is_converted) { /*do nothing*/ } else if (is_strong && !is_converted) { output_sharding = plan.get_optimizer_context().get_distributed_sharding(); } else { ObShardingInfo *temp_sharding = NULL; if (OB_ISNULL(temp_sharding = static_cast(allocator.alloc(sizeof(ObShardingInfo))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate memory", K(ret)); } else { temp_sharding = new (temp_sharding) ObShardingInfo(); if (OB_FAIL(temp_sharding->copy_without_part_keys(*input_sharding))) { LOG_WARN("failed to copy sharding info", K(ret)); } else if (!is_converted) { /*do nothing*/ } else if (OB_FAIL(temp_sharding->get_partition_keys().assign(part_exprs))) { LOG_WARN("failed to assign exprs", K(ret)); } else if (OB_FAIL(temp_sharding->get_sub_partition_keys().assign(subpart_exprs))) { LOG_WARN("failed to assign exprs", K(ret)); } else if (OB_FAIL(temp_sharding->get_partition_func().assign(part_func))) { LOG_WARN("failed to assign part funcs", K(ret)); } else { output_sharding = temp_sharding; LOG_TRACE("succeed to convert subplan scan sharding", K(*output_sharding)); } } } } return ret; } double oceanbase::sql::Path::get_path_output_rows() const { double card = 0.0; if (is_inner_path()) { card = inner_row_count_; } else if (NULL != parent_) { card = parent_->get_output_rows(); } return card; } /* 目前ObJoinOrder在添加path的时候,会分成下面两种情况 1 当查询没有limit子句的时候,那么在add path的时候我们会定义如下的dominate关系:一条路径p1 dominate 另外一条路径 p2 如果 1.1 p1的代价比p2的代价小 1.2 p1的interesting order是p2的interesting order的superset 最终所有没有被dominate的path会保留下来 2 当查询有limit子句,我们把dominate关系修正为如下: 一条路径p1 dominate 另外一条路径 p1 如果 2.1 p1的代价比p2的代价小 2.2 p1的interesting order是p2的interesting order的superset 2.3 p1的连接类型跟p2的连接类型是一样的,或者p2的连接类型是merge join,并且两边都需要排序 最终所有没有被dominate的path会保留下来, 虽然这种策略可能会导致选择的计划并不是最优的,但是个人认为概率比较小,相当于我们为每种join类型都会保留一些路径 */ int ObJoinOrder::add_path(Path* path) { int ret = OB_SUCCESS; if (OB_ISNULL(path) || OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(path), K(ret)); } else { bool should_add = true; DominateRelation plan_rel = DominateRelation::OBJ_UNCOMPARABLE; OPT_TRACE_TITLE("new candidate path:", path); /** * fake cte会生成两条path,一条local、一条match all * match fake cte路径只用来生成remote的计划 * 如果当前match all fake cte与其他表join之后sharding变成local了 * 说明这条路径非预期,只用local的fake cte路径即可 */ if (!path->is_cte_path() && path->contain_match_all_fake_cte() && !path->is_remote()) { should_add = false; OPT_TRACE("contain match all fake cte, but not remote path, will not add path"); } for (int64_t i = interesting_paths_.count() - 1; OB_SUCC(ret) && should_add && i >= 0; --i) { Path *cur_path = interesting_paths_.at(i); OPT_TRACE("compare with path:", cur_path); if (OB_ISNULL(cur_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(cur_path), K(ret)); } else if (OB_FAIL(compute_path_relationship(*cur_path, *path, plan_rel))) { LOG_WARN("failed to compute plan relationship", K(*cur_path), K(*path), K(ret)); } else if (DominateRelation::OBJ_LEFT_DOMINATE == plan_rel || DominateRelation::OBJ_EQUAL == plan_rel) { should_add = false; LOG_TRACE("current path has been dominated, no need to add", K(*cur_path), K(*path), K(ret)); OPT_TRACE("current path has been dominated"); } else if (DominateRelation::OBJ_RIGHT_DOMINATE == plan_rel) { if (OB_FAIL(interesting_paths_.remove(i))) { LOG_WARN("failed to remove dominated plans", K(i), K(ret)); } else { LOG_TRACE("current path dominated interesting path", K(*cur_path), K(*path), K(ret)); OPT_TRACE("current path dominated interesting path"); } } else { OPT_TRACE("path can not compare"); } } if (OB_SUCC(ret)) { increase_total_path_num(); if (should_add && OB_FAIL(interesting_paths_.push_back(path))) { LOG_WARN("failed to add plan into interesting paths", K(ret)); } else if (!should_add && OB_FAIL(add_recycled_paths(path))) { LOG_WARN("failed to add recycled path", K(ret)); } else if (should_add) { OPT_TRACE("this path is added, interesting path count:", interesting_paths_.count()); } else { OPT_TRACE("this path is domained, interesting path count:", interesting_paths_.count()); } } } return ret; } int ObJoinOrder::add_recycled_paths(Path* path) { int ret = OB_SUCCESS; if (OB_ISNULL(path) || OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (!path->is_join_path()) { // do nothing } else { static_cast(path)->reuse(); if (OB_FAIL(get_plan()->get_recycled_join_paths().push_back(static_cast(path)))) { LOG_WARN("failed to add plan into recycled paths", K(ret)); } } return ret; } /* * One path dominates another path if * 1 it has lower cost than another path * 2 its interesting order is a superset of another path * 3 its sharding info dominate another path * 4 it is more pipeline than another one */ int ObJoinOrder::compute_path_relationship(const Path &first_path, const Path &second_path, DominateRelation &relation) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; DominateRelation temp_relation; relation = DominateRelation::OBJ_EQUAL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(first_path), K(second_path), K(stmt), K(ret)); } else if (first_path.is_join_path() && second_path.is_join_path() && static_cast(first_path).contain_normal_nl() && !static_cast(second_path).contain_normal_nl()) { relation = DominateRelation::OBJ_RIGHT_DOMINATE; OPT_TRACE("right path dominate left path because of normal nl"); } else if (first_path.is_join_path() && second_path.is_join_path() && !static_cast(first_path).contain_normal_nl() && static_cast(second_path).contain_normal_nl()) { relation = DominateRelation::OBJ_LEFT_DOMINATE; OPT_TRACE("left path dominate right path because of normal nl"); } else if (first_path.is_access_path() && second_path.is_access_path() && !static_cast(first_path).is_valid_inner_path_ && static_cast(second_path).is_valid_inner_path_) { relation = DominateRelation::OBJ_RIGHT_DOMINATE; OPT_TRACE("right path dominate left path because of pushdown prefix filters"); } else if (first_path.is_access_path() && second_path.is_access_path() && static_cast(first_path).is_valid_inner_path_ && !static_cast(second_path).is_valid_inner_path_) { relation = DominateRelation::OBJ_LEFT_DOMINATE; OPT_TRACE("left path dominate right path because of pushdown prefix filters"); } else { int64_t left_dominated_count = 0; int64_t right_dominated_count = 0; int64_t uncompareable_count = 0; // check dominate relationship for cost if (fabs(first_path.cost_ - second_path.cost_) < OB_DOUBLE_EPSINON) { // do nothing OPT_TRACE("the cost of the two paths is equal"); } else if (first_path.cost_ < second_path.cost_) { left_dominated_count++; OPT_TRACE("left path is cheaper"); } else { right_dominated_count++; OPT_TRACE("right path is cheaper"); } // check dominate relationship for parallel degree if (first_path.parallel_ == second_path.parallel_) { // do nothing OPT_TRACE("the parallel of the two paths is equal"); } else if (first_path.parallel_ < second_path.parallel_) { left_dominated_count++; OPT_TRACE("left path use less parallel"); } else { right_dominated_count++; OPT_TRACE("right path use less parallel"); } // check dominate relationship for sharding info if (OB_FAIL(ObOptimizerUtil::compute_sharding_relationship(first_path.get_strong_sharding(), first_path.get_weak_sharding(), second_path.get_strong_sharding(), second_path.get_weak_sharding(), get_output_equal_sets(), temp_relation))) { LOG_WARN("failed to compute sharding relationship", K(ret)); } else if (temp_relation == DominateRelation::OBJ_EQUAL) { /*do nothing*/ OPT_TRACE("the sharding of the two paths is equal"); } else if (temp_relation == DominateRelation::OBJ_LEFT_DOMINATE) { left_dominated_count++; OPT_TRACE("left path dominate right path because of sharding"); if (right_dominated_count > 0) { relation = DominateRelation::OBJ_UNCOMPARABLE; } } else if (temp_relation == DominateRelation::OBJ_RIGHT_DOMINATE) { right_dominated_count++; OPT_TRACE("right path dominate left path because of sharding"); if (left_dominated_count > 0) { relation = DominateRelation::OBJ_UNCOMPARABLE; } } else { OPT_TRACE("sharding can not compare"); uncompareable_count++; relation = DominateRelation::OBJ_UNCOMPARABLE; } // check dominate relationship for pipeline info if (OB_SUCC(ret) && stmt->has_limit() && DominateRelation::OBJ_UNCOMPARABLE !=relation) { if (OB_FAIL(compute_pipeline_relationship(first_path, second_path, temp_relation))) { LOG_WARN("failed to check pipeline relationship", K(ret)); } else if (temp_relation == DominateRelation::OBJ_EQUAL) { /*do nothing*/ OPT_TRACE("both path is pipeline"); } else if (temp_relation == DominateRelation::OBJ_LEFT_DOMINATE) { left_dominated_count++; OPT_TRACE("left path dominate right path because of pipeline"); if (right_dominated_count > 0) { relation = DominateRelation::OBJ_UNCOMPARABLE; } } else if (temp_relation == DominateRelation::OBJ_RIGHT_DOMINATE) { OPT_TRACE("right path dominate left path because of pipeline"); right_dominated_count++; if (left_dominated_count > 0) { relation = DominateRelation::OBJ_UNCOMPARABLE; } } else { OPT_TRACE("pipeline path can not compare"); uncompareable_count++; relation = DominateRelation::OBJ_UNCOMPARABLE; } } // check dominate relationship for ordering info if (OB_FAIL(ret) || relation == DominateRelation::OBJ_UNCOMPARABLE) { //do nothing } else if (OB_FAIL(ObOptimizerUtil::compute_ordering_relationship(first_path.has_interesting_order(), second_path.has_interesting_order(), first_path.ordering_, second_path.ordering_, get_output_equal_sets(), get_output_const_exprs(), temp_relation))) { LOG_WARN("failed to compute ordering relationship", K(ret)); } else if (temp_relation == DominateRelation::OBJ_EQUAL) { /*do nothing*/ OPT_TRACE("the interesting order of the two paths is equal"); } else if (temp_relation == DominateRelation::OBJ_LEFT_DOMINATE) { left_dominated_count++; OPT_TRACE("left path dominate right path because of interesting order"); if (right_dominated_count > 0) { relation = DominateRelation::OBJ_UNCOMPARABLE; } } else if (temp_relation == DominateRelation::OBJ_RIGHT_DOMINATE) { OPT_TRACE("right path dominate left path because of interesting order"); right_dominated_count++; if (left_dominated_count > 0) { relation = DominateRelation::OBJ_UNCOMPARABLE; } } else { OPT_TRACE("interesting order can not compare"); uncompareable_count++; relation = DominateRelation::OBJ_UNCOMPARABLE; } // relation is EQUAL now, check index column count when both not index back // remove this if adjusted estimate cost for table scan if (OB_SUCC(ret) && first_path.is_access_path() && second_path.is_access_path() && left_dominated_count == 0 && right_dominated_count == 0 && uncompareable_count == 0) { const ObIndexMetaInfo &first_index_info = static_cast(first_path).get_cost_table_scan_info().index_meta_info_; const ObIndexMetaInfo &second_index_info = static_cast(second_path).get_cost_table_scan_info().index_meta_info_; if (first_index_info.is_index_back_ || second_index_info.is_index_back_) { // do nothing for this, will return EQUAL final } else if (first_index_info.index_column_count_ < second_index_info.index_column_count_) { ++left_dominated_count; } else if (first_index_info.index_column_count_ > second_index_info.index_column_count_) { ++right_dominated_count; } else { // do nothing } } // compute final result if (OB_SUCC(ret)) { if (left_dominated_count > 0 && right_dominated_count == 0 && uncompareable_count == 0) { relation = DominateRelation::OBJ_LEFT_DOMINATE; } else if (right_dominated_count > 0 && left_dominated_count == 0 && uncompareable_count == 0) { relation = DominateRelation::OBJ_RIGHT_DOMINATE; } else if (left_dominated_count == 0 && right_dominated_count == 0 && uncompareable_count == 0) { relation = DominateRelation::OBJ_EQUAL; } else { relation = DominateRelation::OBJ_UNCOMPARABLE; } } } return ret; } int ObJoinOrder::compute_pipeline_relationship(const Path &first_path, const Path &second_path, DominateRelation &relation) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; relation = DominateRelation::OBJ_UNCOMPARABLE; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(stmt), K(ret)); } else { if (!stmt->get_order_items().empty()) { bool is_first_left_prefix = false; bool is_first_right_prefix = false; bool is_second_left_prefix = false; bool is_second_right_prefix = false; if (OB_FAIL(ObOptimizerUtil::is_prefix_ordering(stmt->get_order_items(), first_path.ordering_, get_output_equal_sets(), get_output_const_exprs(), is_first_left_prefix, is_first_right_prefix))) { LOG_WARN("failed to compute prefix ordering relationship", K(stmt->get_order_items()), K(first_path.ordering_), K(ret)); } else if (OB_FAIL(ObOptimizerUtil::is_prefix_ordering(stmt->get_order_items(), second_path.ordering_, get_output_equal_sets(), get_output_const_exprs(), is_second_left_prefix, is_second_right_prefix))) { LOG_WARN("failed to compute prefix ordering relationship", K(stmt->get_order_items()), K(second_path.ordering_), K(ret)); } else if (!is_first_left_prefix && !is_second_left_prefix) { relation = DominateRelation::OBJ_EQUAL; } else if (is_first_left_prefix && !is_second_left_prefix) { relation = DominateRelation::OBJ_LEFT_DOMINATE; } else if (!is_first_left_prefix && is_second_left_prefix) { relation = DominateRelation::OBJ_RIGHT_DOMINATE; } else { /*do nothing*/ } } if (OB_SUCC(ret) && DominateRelation::OBJ_UNCOMPARABLE == relation) { bool first_is_pipelined = first_path.is_pipelined_path(); bool second_is_pipelined = second_path.is_pipelined_path(); bool first_is_nl_pipelined = first_path.is_nl_style_pipelined_path(); bool second_is_nl_pipelined = second_path.is_nl_style_pipelined_path(); if (!first_path.is_join_path() && !second_path.is_join_path()) { relation = DominateRelation::OBJ_UNCOMPARABLE; } else if (first_is_pipelined && !second_is_pipelined) { relation = DominateRelation::OBJ_LEFT_DOMINATE; } else if (!first_is_pipelined && second_is_pipelined) { relation = DominateRelation::OBJ_RIGHT_DOMINATE; } else if (first_is_pipelined && second_is_pipelined && first_is_nl_pipelined && second_is_nl_pipelined) { relation = DominateRelation::OBJ_EQUAL; } else if (first_is_pipelined && second_is_pipelined && !first_is_nl_pipelined && !second_is_nl_pipelined) { relation = DominateRelation::OBJ_EQUAL; } else if (first_is_pipelined && second_is_pipelined) { relation = DominateRelation::OBJ_UNCOMPARABLE; } else { //Both plans are non-pipeline and use cost competition relation = DominateRelation::OBJ_EQUAL; } } } return ret; } int oceanbase::sql::Path::assign(const Path &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; UNUSED(allocator); parent_ = other.parent_; is_local_order_ = other.is_local_order_; is_range_order_ = other.is_range_order_; cost_ = other.cost_; op_cost_ = other.op_cost_; log_op_ = other.log_op_; is_inner_path_ = other.is_inner_path_; inner_row_count_ = other.inner_row_count_; strong_sharding_ = other.strong_sharding_; exchange_allocated_ = other.exchange_allocated_; phy_plan_type_ = other.phy_plan_type_; location_type_ = other.location_type_; contain_fake_cte_ = other.contain_fake_cte_; contain_pw_merge_op_ = other.contain_pw_merge_op_; contain_match_all_fake_cte_ = other.contain_match_all_fake_cte_; contain_das_op_ = other.contain_das_op_; parallel_ = other.parallel_; op_parallel_rule_ = other.op_parallel_rule_; available_parallel_ = other.available_parallel_; server_cnt_ = other.server_cnt_; is_pipelined_path_ = other.is_pipelined_path_; is_nl_style_pipelined_path_ = other.is_nl_style_pipelined_path_; if (OB_FAIL(ordering_.assign(other.ordering_))) { LOG_WARN("failed to assign nested loop params", K(ret)); } else if (OB_FAIL(server_list_.assign(other.server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } else if (OB_FAIL(filter_.assign(other.filter_))) { LOG_WARN("failed to assign nested loop params", K(ret)); } else if (OB_FAIL(pushdown_filters_.assign(other.pushdown_filters_))) { LOG_WARN("failed to assign pushdown filters", K(ret)); } else if (OB_FAIL(nl_params_.assign(other.nl_params_))) { LOG_WARN("failed to assign nested loop params", K(ret)); } else if (OB_FAIL(subquery_exprs_.assign(other.subquery_exprs_))) { LOG_WARN("failed to assign nested loop params", K(ret)); } else if (OB_FAIL(weak_sharding_.assign(other.weak_sharding_))) { LOG_WARN("failed to assign nested loop params", K(ret)); } return ret; } bool oceanbase::sql::Path::is_cte_path() const { return NULL != parent_ && parent_->get_type() == FAKE_CTE_TABLE_ACCESS; } bool oceanbase::sql::Path::is_function_table_path() const { return NULL != parent_ && parent_->get_type() == FUNCTION_TABLE_ACCESS; } bool oceanbase::sql::Path::is_json_table_path() const { return NULL != parent_ && parent_->get_type() == JSON_TABLE_ACCESS; } bool oceanbase::sql::Path::is_temp_table_path() const { return NULL != parent_ && parent_->get_type() == TEMP_TABLE_ACCESS; } bool oceanbase::sql::Path::is_access_path() const { return NULL != parent_ && parent_->get_type() == ACCESS; } bool oceanbase::sql::Path::is_values_table_path() const { return NULL != parent_ && parent_->get_type() == VALUES_TABLE_ACCESS; } bool oceanbase::sql::Path::is_join_path() const { return NULL != parent_ && parent_->get_type() == JOIN; } bool oceanbase::sql::Path::is_subquery_path() const { return NULL != parent_ && parent_->get_type() == SUBQUERY; } int oceanbase::sql::Path::check_is_base_table(bool &is_base_table) { int ret = OB_SUCCESS; is_base_table = false; if (!subquery_exprs_.empty()) { is_base_table = false; } else if (is_access_path()) { is_base_table = true; } else if (is_subquery_path()) { ObLogicalOperator *root = NULL; if (OB_ISNULL(root = static_cast(this)->root_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(ObLogicalOperator::check_is_table_scan(*root, is_base_table))) { LOG_WARN("failed to check whether is table scan", K(ret)); } else { /*do nothing*/ } } else { is_base_table = false; } return ret; } int oceanbase::sql::Path::re_estimate_cost(EstimateCostInfo &info, double &card, double &cost) { int ret = OB_SUCCESS; UNUSED(info); card = get_path_output_rows(); cost = get_cost(); return ret; } int oceanbase::sql::Path::compute_pipeline_info() { int ret = OB_SUCCESS; is_pipelined_path_ = true; is_nl_style_pipelined_path_ = true; return ret; } int oceanbase::sql::Path::compute_path_property_from_log_op() { int ret = OB_SUCCESS; int64_t interesting_order_info; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(log_op_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan()) || OB_ISNULL(stmt=parent_->get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null log op", K(ret)); } else if (OB_FAIL(get_ordering().assign(log_op_->get_op_ordering()))) { LOG_WARN("failed to assign ordering", K(ret)); } else if (OB_FAIL(weak_sharding_.assign(log_op_->get_weak_sharding()))) { LOG_WARN("failed to assign weak sharding", K(ret)); } else if (OB_FAIL(parent_->check_all_interesting_order(get_ordering(), stmt, interesting_order_info))) { LOG_WARN("failed to check all interesting order", K(ret)); } else if (OB_FAIL(server_list_.assign(log_op_->get_server_list()))) { LOG_WARN("failed to assign server list", K(ret)); } else { strong_sharding_ = log_op_->get_strong_sharding(); set_interesting_order_info(interesting_order_info); is_local_order_ = log_op_->get_is_local_order(); is_range_order_ = log_op_->get_is_range_order(); exchange_allocated_ = log_op_->is_exchange_allocated(); phy_plan_type_ = log_op_->get_phy_plan_type(); location_type_ = log_op_->get_location_type(); contain_fake_cte_ = log_op_->get_contains_fake_cte(); contain_pw_merge_op_ = log_op_->get_contains_pw_merge_op(); contain_match_all_fake_cte_ = log_op_->get_contains_match_all_fake_cte(); contain_das_op_ = log_op_->get_contains_das_op(); parallel_ = log_op_->get_parallel(); op_parallel_rule_ = log_op_->get_op_parallel_rule(); available_parallel_ = log_op_->get_available_parallel(); server_cnt_ = log_op_->get_server_cnt(); is_pipelined_path_ = log_op_->is_pipelined_plan(); is_nl_style_pipelined_path_ = log_op_->is_nl_style_pipelined_plan(); cost_ = log_op_->get_cost(); op_cost_ = log_op_->get_op_cost(); contain_pw_merge_op_ = log_op_->get_contains_pw_merge_op(); inner_row_count_ = log_op_->get_card(); } return ret; } int oceanbase::sql::Path::set_parallel_and_server_info_for_match_all() { int ret = OB_SUCCESS; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null log plan", K(ret), K(parent_)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); parallel_ = ObGlobalHint::DEFAULT_PARALLEL; op_parallel_rule_ = OpParallelRule::OP_DAS_DOP; available_parallel_ = ObGlobalHint::DEFAULT_PARALLEL; server_cnt_ = 1; server_list_.reuse(); if (OB_FAIL(server_list_.push_back(opt_ctx.get_local_server_addr()))) { LOG_WARN("failed to assign das path server list", K(ret)); } } return ret; } int AccessPath::assign(const AccessPath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; table_id_ = other.table_id_; ref_table_id_ = other.ref_table_id_; index_id_ = other.index_id_; is_global_index_ = other.is_global_index_; use_das_ = other.use_das_; table_partition_info_ = other.table_partition_info_; is_get_ = other.is_get_; order_direction_ = other.order_direction_; is_hash_index_ = other.is_hash_index_; sample_info_ = other.sample_info_; range_prefix_count_ = other.range_prefix_count_; table_opt_info_ = other.table_opt_info_; for_update_ = other.for_update_; use_skip_scan_ = other.use_skip_scan_; use_column_store_ = other.use_column_store_; is_valid_inner_path_ = other.is_valid_inner_path_; if (OB_ISNULL(allocator)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(allocator), K(ret)); } else if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("copy path error", K(ret)); } else if (OB_FAIL(index_keys_.assign(other.index_keys_))) { LOG_WARN("Failed to assign re_est_param", K(ret)); } else if (OB_FAIL(est_cost_info_.assign(other.est_cost_info_))) { LOG_WARN("Failed to assign re_est_param", K(ret)); } else if (OB_FAIL(est_records_.assign(other.est_records_))) { LOG_WARN("Failed to assign re_est_param", K(ret)); } else if (NULL == other.pre_query_range_) { pre_query_range_ = NULL; } else { ObQueryRange *query_range = static_cast(allocator->alloc(sizeof(ObQueryRange))); if (OB_ISNULL(query_range)) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate memory for query range"); } else { query_range = new(query_range)ObQueryRange(*allocator); if (OB_FAIL(query_range->deep_copy(*other.pre_query_range_, true))) { query_range->~ObQueryRange(); query_range = NULL; } else { pre_query_range_ = query_range; } } } return ret; } // compute auto dop for access path int AccessPath::compute_parallel_degree(const int64_t cur_min_parallel_degree, int64_t ¶llel) { int ret = OB_SUCCESS; parallel = ObGlobalHint::UNSET_PARALLEL; const ObSimpleBatch::ObBatchType type = est_cost_info_.batch_type_; int64_t px_part_gi_min_part_per_dop = 0; double cost_threshold_us = 0.0; int64_t cur_parallel_degree_limit = ObGlobalHint::UNSET_PARALLEL; int64_t server_cnt = 0; if (use_das_ || is_virtual_table(est_cost_info_.ref_table_id_) || est_cost_info_.is_unique_) { parallel = ObGlobalHint::DEFAULT_PARALLEL; } else if (OB_FAIL(check_and_prepare_estimate_parallel_params(cur_min_parallel_degree, px_part_gi_min_part_per_dop, cost_threshold_us, server_cnt, cur_parallel_degree_limit))) { LOG_WARN("failed to check and prepare estimate parallel params", K(ret)); } else { double pre_cost = -1.0; double cost = 0.0; double px_cost = 0.0; int64_t pre_parallel = ObGlobalHint::UNSET_PARALLEL; int64_t cur_parallel = ObGlobalHint::UNSET_PARALLEL; double part_cnt_per_dop = 0.0; while (OB_SUCC(ret) && ObGlobalHint::UNSET_PARALLEL == parallel) { if (OB_FAIL(prepare_estimate_parallel(pre_parallel, cur_parallel_degree_limit, cost_threshold_us, server_cnt, px_part_gi_min_part_per_dop, px_cost, cost, cur_parallel, part_cnt_per_dop))) { LOG_WARN("failed to prepare estimate next parallel", K(ret), K(pre_parallel), K(cur_parallel_degree_limit), K(cost_threshold_us), K(cost), K(cur_parallel)); } else if (pre_parallel == cur_parallel || cur_parallel >= cur_parallel_degree_limit) { parallel = cur_parallel; } else if (OB_FAIL(estimate_cost_for_parallel(cur_parallel, part_cnt_per_dop, px_cost, cost))) { LOG_WARN("failed to estimate cost for parallel", K(ret), K(cur_parallel), K(part_cnt_per_dop)); } else if (pre_parallel >= ObGlobalHint::DEFAULT_PARALLEL && pre_cost <= cost) { parallel = pre_parallel; } else if (cost - px_cost <= cost_threshold_us || px_cost >= cost - px_cost) { parallel = cur_parallel; } else { pre_cost = cost; pre_parallel = cur_parallel; } } if (OB_FAIL(ret)) { } else if (OB_UNLIKELY(ObGlobalHint::DEFAULT_PARALLEL > parallel || cur_parallel_degree_limit < parallel)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected parallel result", K(ret), K(cur_parallel_degree_limit), K(parallel)); } else { OPT_TRACE("finish compute one path parallel degree:", parallel); LOG_TRACE("finish compute parallel degree", K(est_cost_info_.phy_query_range_row_count_), K(est_cost_info_.logical_query_range_row_count_), K(parallel), K(cur_parallel_degree_limit), K(cost_threshold_us), K(px_cost), K(cost), K(pre_cost)); } } return ret; } int AccessPath::check_and_prepare_estimate_parallel_params(const int64_t cur_min_parallel_degree, int64_t &px_part_gi_min_part_per_dop, double &cost_threshold_us, int64_t &server_cnt, int64_t &cur_parallel_degree_limit) const { int ret = OB_SUCCESS; px_part_gi_min_part_per_dop = 0; cost_threshold_us = 0.0; server_cnt = 0; cur_parallel_degree_limit = ObGlobalHint::UNSET_PARALLEL; ObOptimizerContext *opt_ctx = NULL; ObSQLSessionInfo *session_info = NULL; ObSEArray server_list; if (OB_ISNULL(table_partition_info_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan()) || OB_ISNULL(opt_ctx = &parent_->get_plan()->get_optimizer_context()) || OB_ISNULL(session_info = opt_ctx->get_session_info())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(ret), K(table_partition_info_), K(parent_), K(session_info)); } else if (OB_FAIL(session_info->get_sys_variable(share::SYS_VAR__PX_MIN_GRANULES_PER_SLAVE, px_part_gi_min_part_per_dop))) { LOG_WARN("failed to get sys variable px min granule per slave", K(ret)); } else if (OB_FAIL(table_partition_info_->get_all_servers(server_list))) { LOG_WARN("failed to get all servers", K(ret)); } else { px_part_gi_min_part_per_dop = std::max(1L, px_part_gi_min_part_per_dop); cost_threshold_us = 1000.0 * std::max(10L, opt_ctx->get_parallel_min_scan_time_threshold()); server_cnt = server_list.count(); cur_parallel_degree_limit = opt_ctx->get_parallel_degree_limit(server_cnt); const int64_t row_parallel_limit = std::floor(get_phy_query_range_row_count() / ROW_COUNT_THRESHOLD_PER_DOP); const int64_t ss_scan_parallel_limit = std::floor(est_cost_info_.ss_prefix_ndv_); if (cur_min_parallel_degree > ObGlobalHint::DEFAULT_PARALLEL && cur_min_parallel_degree < cur_parallel_degree_limit) { cur_parallel_degree_limit = cur_min_parallel_degree; } if (row_parallel_limit > ObGlobalHint::DEFAULT_PARALLEL && row_parallel_limit < cur_parallel_degree_limit) { cur_parallel_degree_limit = row_parallel_limit; } if (ss_scan_parallel_limit > ObGlobalHint::DEFAULT_PARALLEL && ss_scan_parallel_limit < cur_parallel_degree_limit) { cur_parallel_degree_limit = ss_scan_parallel_limit; } } return ret; } int AccessPath::prepare_estimate_parallel(const int64_t pre_parallel, const int64_t parallel_degree_limit, const double cost_threshold_us, const int64_t server_cnt, const int64_t px_part_gi_min_part_per_dop, const double px_cost, const double cost, int64_t ¶llel, double &part_cnt_per_dop) const { int ret = OB_SUCCESS; parallel = ObGlobalHint::UNSET_PARALLEL; part_cnt_per_dop = 0.0; bool is_part_gi = false; const int64_t part_cnt = est_cost_info_.index_meta_info_.index_part_count_; const double part_cnt_double = static_cast(part_cnt); #define IS_PART_GI(check_dop) (ObGranuleUtil::is_partition_granule(part_cnt, check_dop, 0, px_part_gi_min_part_per_dop, true)) if (ObGlobalHint::DEFAULT_PARALLEL > pre_parallel) { parallel = std::min(parallel_degree_limit, server_cnt); } else if (OB_UNLIKELY(cost_threshold_us < 1000.0)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(ret), K(cost_threshold_us)); } else { int64_t cur_parallel = pre_parallel; int64_t step = std::ceil(cost / cost_threshold_us); if (px_cost / cost < 0.1 && step > 1) { // zhanyuetodo: optimize this step = std::max(server_cnt, step); cur_parallel += std::min(step, 32L); } else { cur_parallel += server_cnt; } bool is_part_gi = IS_PART_GI(cur_parallel); if (is_part_gi) { const int64_t pre_part_cnt_per_dop = std::ceil(part_cnt_double / pre_parallel); if (OB_UNLIKELY(1 >= pre_part_cnt_per_dop)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(ret), K(cur_parallel), K(px_part_gi_min_part_per_dop), K(part_cnt_double), K(pre_parallel), K(pre_part_cnt_per_dop)); } else { const int64_t tmp_parallel = std::ceil(part_cnt_double / (pre_part_cnt_per_dop - 1)); while (is_part_gi && std::ceil(part_cnt_double / cur_parallel) == pre_part_cnt_per_dop) { cur_parallel = std::max(tmp_parallel, cur_parallel + 1); is_part_gi = IS_PART_GI(cur_parallel); } } } if (OB_SUCC(ret)) { parallel = std::min(cur_parallel, parallel_degree_limit); } } if (OB_FAIL(ret)) { } else if (OB_UNLIKELY(ObGlobalHint::DEFAULT_PARALLEL > parallel || pre_parallel > parallel || 0.0 >= part_cnt_double)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to prepare estimate parallel", K(ret), K(part_cnt), K(pre_parallel), K(parallel), K(part_cnt_double)); } else { /* treate as use block gi, use parallel directly. treate as use partition gi, consider some worker may deal one more part. */ part_cnt_per_dop = IS_PART_GI(parallel) ? std::ceil(part_cnt_double / parallel) : part_cnt_double / parallel; LOG_DEBUG("finish prepare estimate parallel", K(part_cnt), K(parallel), K(part_cnt_per_dop)); } return ret; } int AccessPath::estimate_cost_for_parallel(const int64_t cur_parallel, const double part_cnt_per_dop, double &px_cost, double &cost) { int ret = OB_SUCCESS; px_cost = 0.0; cost = 0.0; double stats_phy_query_range_row_count = 0; double stats_logical_query_range_row_count = 0; int64_t opt_stats_cost_percent = 0; bool adj_cost_is_valid = false; double storage_est_cost = 0.0; double stats_est_cost = 0.0; double storage_est_px_cost = 0.0; double stats_est_px_cost = 0.0; double opt_phy_query_range_row_count = est_cost_info_.phy_query_range_row_count_; double opt_logical_query_range_row_count = est_cost_info_.logical_query_range_row_count_; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else if (OB_FAIL(check_adj_index_cost_valid(stats_phy_query_range_row_count, stats_logical_query_range_row_count, opt_stats_cost_percent, adj_cost_is_valid))) { LOG_WARN("failed to check adj index cost valid", K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); if (OB_FAIL(ObOptEstCost::cost_table_for_parallel(est_cost_info_, cur_parallel, part_cnt_per_dop, storage_est_px_cost, storage_est_cost, opt_ctx))) { LOG_WARN("failed to calculated cost for parallel", K(ret)); } else if (!adj_cost_is_valid) { cost = storage_est_cost; px_cost = storage_est_px_cost; } else if (OB_FALSE_IT(est_cost_info_.phy_query_range_row_count_ = stats_phy_query_range_row_count)) { } else if (OB_FALSE_IT(est_cost_info_.logical_query_range_row_count_ = stats_logical_query_range_row_count)) { } else if (OB_FAIL(ObOptEstCost::cost_table_for_parallel(est_cost_info_, cur_parallel, part_cnt_per_dop, stats_est_px_cost, stats_est_cost, opt_ctx))) { LOG_WARN("failed to calculated cost for parallel", K(ret)); } else { double rate = opt_stats_cost_percent * 1.0 / 100.0; cost = storage_est_cost * (1-rate) + stats_est_cost * rate; px_cost = storage_est_px_cost * (1-rate) + stats_est_px_cost * rate; est_cost_info_.phy_query_range_row_count_ = opt_phy_query_range_row_count; est_cost_info_.logical_query_range_row_count_ = opt_logical_query_range_row_count; } } return ret; } int AccessPath::estimate_cost() { int ret = OB_SUCCESS; double stats_phy_query_range_row_count = 0; double stats_logical_query_range_row_count = 0; int64_t opt_stats_cost_percent = 0; bool adj_cost_is_valid = false; double storage_est_cost = 0.0; double stats_est_cost = 0.0; double opt_phy_query_range_row_count = est_cost_info_.phy_query_range_row_count_; double opt_logical_query_range_row_count = est_cost_info_.logical_query_range_row_count_; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else if (OB_FAIL(check_adj_index_cost_valid(stats_phy_query_range_row_count, stats_logical_query_range_row_count, opt_stats_cost_percent, adj_cost_is_valid))) { LOG_WARN("failed to check adj index cost valid", K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); if (OB_FAIL(ObOptEstCost::cost_table(est_cost_info_, parallel_, storage_est_cost, opt_ctx))) { LOG_WARN("failed to get index access info", K(ret)); } else if (!adj_cost_is_valid) { cost_ = storage_est_cost; } else if (OB_FALSE_IT(est_cost_info_.phy_query_range_row_count_ = stats_phy_query_range_row_count)) { } else if (OB_FALSE_IT(est_cost_info_.logical_query_range_row_count_ = stats_logical_query_range_row_count)) { } else if (OB_FAIL(ObOptEstCost::cost_table(est_cost_info_, parallel_, stats_est_cost, opt_ctx))) { LOG_WARN("failed to get index access info", K(ret)); } else { double rate = opt_stats_cost_percent * 1.0 / 100.0; cost_ = storage_est_cost * (1-rate) + stats_est_cost * rate; est_cost_info_.phy_query_range_row_count_ = opt_phy_query_range_row_count; est_cost_info_.logical_query_range_row_count_ = opt_logical_query_range_row_count; } } return ret; } int AccessPath::re_estimate_cost(EstimateCostInfo ¶m, double &card, double &cost) { int ret = OB_SUCCESS; card = get_path_output_rows(); ObOptimizerContext *opt_ctx = NULL; double stats_phy_query_range_row_count = 0; double stats_logical_query_range_row_count = 0; int64_t opt_stats_cost_percent = 0; bool adj_cost_is_valid = false; double storage_est_cost = 0.0; double stats_est_cost = 0.0; double storage_est_card = card; double stats_est_card = card; double opt_phy_query_range_row_count = est_cost_info_.phy_query_range_row_count_; double opt_logical_query_range_row_count = est_cost_info_.logical_query_range_row_count_; param.need_parallel_ = (ObGlobalHint::UNSET_PARALLEL == param.need_parallel_ || is_match_all()) ? parallel_ : param.need_parallel_; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan()) || OB_ISNULL(opt_ctx = &parent_->get_plan()->get_optimizer_context())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(opt_ctx), K(ret)); } else if (OB_FAIL(check_adj_index_cost_valid(stats_phy_query_range_row_count, stats_logical_query_range_row_count, opt_stats_cost_percent, adj_cost_is_valid))) { LOG_WARN("failed to check adj index cost valid", K(ret)); } else if (OB_FAIL(re_estimate_cost(param, est_cost_info_, sample_info_, *opt_ctx, storage_est_card, storage_est_cost))) { LOG_WARN("failed to re estimate cost", K(ret)); } else if (!adj_cost_is_valid) { cost = storage_est_cost; card = storage_est_card; if (param.override_) { cost_ = cost; } } else if (OB_FALSE_IT(est_cost_info_.phy_query_range_row_count_ = stats_phy_query_range_row_count)) { } else if (OB_FALSE_IT(est_cost_info_.logical_query_range_row_count_ = stats_logical_query_range_row_count)) { } else if (OB_FAIL(re_estimate_cost(param, est_cost_info_, sample_info_, *opt_ctx, stats_est_card, stats_est_cost))) { LOG_WARN("failed to re estimate cost", K(ret)); } else { double rate = opt_stats_cost_percent * 1.0 / 100.0; cost = storage_est_cost * (1-rate) + stats_est_cost * rate; card = storage_est_card * (1-rate) + stats_est_card * rate; est_cost_info_.phy_query_range_row_count_ = opt_phy_query_range_row_count; est_cost_info_.logical_query_range_row_count_ = opt_logical_query_range_row_count; if (param.override_) { cost_ = cost; } } return ret; } int AccessPath::re_estimate_cost(const EstimateCostInfo ¶m, ObCostTableScanInfo &est_cost_info, const SampleInfo &sample_info, const ObOptimizerContext &opt_ctx, double &card, double &cost) { int ret = OB_SUCCESS; const double orign_card = card; cost = 0; est_cost_info.join_filter_sel_ = 1.0; double table_filter_sel = est_cost_info.table_filter_sel_; if (OB_UNLIKELY(param.need_parallel_ < ObGlobalHint::DEFAULT_PARALLEL || orign_card < 0)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(ret), K(param), K(orign_card)); } else { //bloom filter selectivity for (int64_t i = 0; i < param.join_filter_infos_.count(); ++i) { const JoinFilterInfo &info = param.join_filter_infos_.at(i); if (info.table_id_ == est_cost_info.table_id_) { table_filter_sel *= info.join_filter_selectivity_; est_cost_info.join_filter_sel_ *= info.join_filter_selectivity_; card *= info.join_filter_selectivity_; } } //refine row count double orign_phy_query_range_row_count = est_cost_info.phy_query_range_row_count_; double orign_logical_query_range_row_count = est_cost_info.logical_query_range_row_count_; double phy_query_range_row_count = orign_phy_query_range_row_count; double logical_query_range_row_count = orign_logical_query_range_row_count; if (param.need_row_count_ >= 0) { if (OB_UNLIKELY(table_filter_sel <= 0.0)) { //do nothing } else if (is_virtual_table(est_cost_info.ref_table_id_)) { logical_query_range_row_count = static_cast(param.need_row_count_) / table_filter_sel; } else { logical_query_range_row_count = static_cast(param.need_row_count_) / table_filter_sel; if (sample_info.is_row_sample() && sample_info.percent_ > 0.0) { logical_query_range_row_count = static_cast(logical_query_range_row_count) / sample_info.percent_; } if (est_cost_info.postfix_filter_sel_ > 0.0) { logical_query_range_row_count = static_cast(logical_query_range_row_count) / est_cost_info.postfix_filter_sel_; } if (sample_info.is_row_sample() && sample_info.percent_ > 0.0) { logical_query_range_row_count = static_cast(logical_query_range_row_count) / sample_info.percent_; } if (orign_logical_query_range_row_count >= OB_DOUBLE_EPSINON) { phy_query_range_row_count = logical_query_range_row_count * orign_phy_query_range_row_count / orign_logical_query_range_row_count; } phy_query_range_row_count = std::min(orign_phy_query_range_row_count, phy_query_range_row_count); logical_query_range_row_count = std::min(orign_logical_query_range_row_count, logical_query_range_row_count); card = std::min(param.need_row_count_, card); } } est_cost_info.phy_query_range_row_count_ = phy_query_range_row_count; est_cost_info.logical_query_range_row_count_ = logical_query_range_row_count; LOG_DEBUG("access path re estimate cost", K(param), K(orign_card), K(card), K(orign_phy_query_range_row_count), K(orign_logical_query_range_row_count), K(phy_query_range_row_count), K(logical_query_range_row_count)); if (OB_FAIL(ObOptEstCost::cost_table(est_cost_info, param.need_parallel_, cost, opt_ctx))) { LOG_WARN("failed to get index access info", K(ret)); } else { //restore query range row count est_cost_info.phy_query_range_row_count_ = orign_phy_query_range_row_count; est_cost_info.logical_query_range_row_count_ = orign_logical_query_range_row_count; } } return ret; } int AccessPath::check_adj_index_cost_valid(double &stats_phy_query_range_row_count, double &stats_logical_query_range_row_count, int64_t &opt_stats_cost_percent, bool &is_valid)const { int ret = OB_SUCCESS; ObLogPlan *plan = NULL; ObOptimizerContext *opt_ctx = NULL; ObSQLSessionInfo *session_info = NULL; const OptTableMeta* table_meta = NULL; bool enable_adj_index_cost = false; opt_stats_cost_percent = 0; double selectivity = 0.0; if (OB_ISNULL(parent_) || OB_ISNULL(plan = parent_->get_plan()) || OB_ISNULL(opt_ctx = &plan->get_optimizer_context()) || OB_ISNULL(session_info = opt_ctx->get_session_info()) || OB_ISNULL(table_meta = plan->get_basic_table_metas().get_table_meta_by_table_id(table_id_))) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(plan), K(opt_ctx), K(ret)); } else if (session_info->is_adj_index_cost_enabled(enable_adj_index_cost, opt_stats_cost_percent)) { LOG_WARN("failed to check adjust scan enabled", K(ret)); } else if (!enable_adj_index_cost || //session disable adjust est_cost_info_.prefix_filters_.empty() || //not have query range !est_cost_info_.pushdown_prefix_filters_.empty() || //can not use storage estimate table_meta->use_default_stat()) { //not have optimzier stats is_valid = false; LOG_TRACE("disable adjust index cost", K(enable_adj_index_cost), K(est_cost_info_.prefix_filters_.empty()), K(est_cost_info_.pushdown_prefix_filters_.empty()), K(table_meta->use_default_stat())); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_basic_table_metas(), plan->get_selectivity_ctx(), est_cost_info_.prefix_filters_, selectivity, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret)); } else { stats_logical_query_range_row_count = get_table_row_count() * selectivity; stats_phy_query_range_row_count = stats_logical_query_range_row_count; is_valid = true; LOG_TRACE("enable adjust index cost, ", K(opt_stats_cost_percent), K(stats_logical_query_range_row_count)); } return ret; } const ObIArray& AccessPath::get_query_ranges() const { return est_cost_info_.ranges_; } int AccessPath::compute_valid_inner_path() { int ret = OB_SUCCESS; is_valid_inner_path_ = false; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else { const ObIArray &filters = est_cost_info_.pushdown_prefix_filters_; for (int64_t i = 0; OB_SUCC(ret) && !is_valid_inner_path_ && i < filters.count(); i ++) { const ObRawExpr *expr = filters.at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret)); } else if (!expr->has_flag(CNT_DYNAMIC_PARAM) || expr->has_flag(CNT_ONETIME)) { // do nothing } else if (ObOptimizerUtil::find_item(parent_->get_plan()->get_pushdown_filters(), expr)) { is_valid_inner_path_ = true; } } } return ret; } int FunctionTablePath::assign(const FunctionTablePath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to deep copy path", K(ret)); } else { table_id_ = other.table_id_; value_expr_ = other.value_expr_; } return ret; } int FunctionTablePath::estimate_cost() { int ret = OB_SUCCESS; op_cost_ = 1.0; cost_ = 1.0; return ret; } int JsonTablePath::assign(const JsonTablePath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to deep copy path", K(ret)); } else { table_id_ = other.table_id_; value_expr_ = other.value_expr_; } return ret; } int JsonTablePath::estimate_cost() { int ret = OB_SUCCESS; op_cost_ = 1.0; cost_ = 1.0; return ret; } int TempTablePath::assign(const TempTablePath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to deep copy path", K(ret)); } else { table_id_ = other.table_id_; temp_table_id_ = other.temp_table_id_; root_ = other.root_; } return ret; } int TempTablePath::estimate_cost() { int ret = OB_SUCCESS; if (OB_ISNULL(root_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); double per_dop_card = root_->get_card() / parallel_; op_cost_ = ObOptEstCost::cost_read_materialized(per_dop_card, opt_ctx) + ObOptEstCost::cost_quals(per_dop_card, filter_, opt_ctx); cost_ = op_cost_; } return ret; } int TempTablePath::re_estimate_cost(EstimateCostInfo ¶m, double &card, double &cost) { int ret = OB_SUCCESS; card = get_path_output_rows(); cost = cost_; const int64_t parallel = ObGlobalHint::UNSET_PARALLEL == param.need_parallel_ ? parallel_ : param.need_parallel_; if (OB_ISNULL(root_) || OB_ISNULL(parent_) || OB_UNLIKELY(parallel < 1) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected params", K(root_), K(parent_), K(parallel), K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); double read_card = root_->get_card(); //bloom filter selectivity for (int64_t i = 0; i < param.join_filter_infos_.count(); ++i) { const JoinFilterInfo &info = param.join_filter_infos_.at(i); if (info.table_id_ == table_id_) { card *= info.join_filter_selectivity_; } } //refine row count if (param.need_row_count_ >= 0) { if (param.need_row_count_ >= get_path_output_rows()) { //do nothing } else { read_card = read_card / card * param.need_row_count_; card = param.need_row_count_; } } double per_dop_card = read_card / parallel; cost = ObOptEstCost::cost_read_materialized(per_dop_card, opt_ctx) + ObOptEstCost::cost_quals(per_dop_card, filter_, opt_ctx); if (param.override_) { cost_ = cost; op_cost_ = cost; } } return ret; } int TempTablePath::compute_sharding_info() { int ret = OB_SUCCESS; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else if (is_distributed()) { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); strong_sharding_ = opt_ctx.get_distributed_sharding(); weak_sharding_.reset(); } else if (is_match_all()) { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); strong_sharding_ = opt_ctx.get_local_sharding(); weak_sharding_.reset(); } return ret; } int TempTablePath::compute_path_ordering() { int ret = OB_SUCCESS; if (!ordering_.empty()) { is_local_order_ = true; is_range_order_ = false; } return ret; } int CteTablePath::assign(const CteTablePath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to deep copy path", K(ret)); } else { table_id_ = other.table_id_; ref_table_id_ = other.ref_table_id_; } return ret; } int CteTablePath::estimate_cost() { int ret = OB_SUCCESS; op_cost_ = 1.0; cost_ = 1.0; return ret; } int JoinPath::assign(const JoinPath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; left_path_ = other.left_path_; right_path_ = other.right_path_; join_algo_ = other.join_algo_; join_dist_algo_ = other.join_dist_algo_; is_slave_mapping_ = other.is_slave_mapping_; join_type_ = other.join_type_; need_mat_ = other.need_mat_; left_need_sort_ = other.left_need_sort_; left_prefix_pos_ = other.left_prefix_pos_; right_need_sort_ = other.right_need_sort_; right_prefix_pos_ = other.right_prefix_pos_; equal_cond_sel_ = other.equal_cond_sel_; other_cond_sel_ = other.other_cond_sel_; contain_normal_nl_ = other.contain_normal_nl_; can_use_batch_nlj_ = other.can_use_batch_nlj_; is_naaj_ = other.is_naaj_; is_sna_ = other.is_sna_; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to deep copy path", K(ret)); } else if (OB_FAIL(left_sort_keys_.assign(other.left_sort_keys_))) { LOG_WARN("failed to assign array", K(ret)); } else if (OB_FAIL(right_sort_keys_.assign(other.right_sort_keys_))) { LOG_WARN("failed to assign array", K(ret)); } else if (OB_FAIL(merge_directions_.assign(other.merge_directions_))) { LOG_WARN("failed to assign array", K(ret)); } else if (OB_FAIL(equal_join_conditions_.assign(other.equal_join_conditions_))) { LOG_WARN("failed to assign array", K(ret)); } else if (OB_FAIL(other_join_conditions_.assign(other.other_join_conditions_))) { LOG_WARN("failed to assign array", K(ret)); } else if (OB_FAIL(join_filter_infos_.assign(other.join_filter_infos_))) { LOG_WARN("failed to assign array", K(ret)); } return ret; } int JoinPath::compute_join_path_sharding() { int ret = OB_SUCCESS; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_allocator()) || OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(parent_), K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); if (is_slave_mapping_) { if (DistAlgo::DIST_PARTITION_WISE == join_dist_algo_) { if (OB_FAIL(compute_hash_hash_sharding_info())) { LOG_WARN("failed to generate hash-hash sharding info", K(ret)); } else { /*do nothing*/ } } else { strong_sharding_ = opt_ctx.get_distributed_sharding(); } } else if (DistAlgo::DIST_BASIC_METHOD == join_dist_algo_) { ObSEArray input_shardings; if (OB_ISNULL(left_path_->strong_sharding_) || OB_ISNULL(right_path_->strong_sharding_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_->strong_sharding_), K(right_path_->strong_sharding_), K(ret)); } else if (OB_FAIL(input_shardings.push_back(left_path_->strong_sharding_)) || OB_FAIL(input_shardings.push_back(right_path_->strong_sharding_))) { LOG_WARN("failed to input shardings", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::compute_basic_sharding_info( opt_ctx.get_local_server_addr(), input_shardings, *parent_->get_allocator(), strong_sharding_, inherit_sharding_index_))) { LOG_WARN("failed to compute basic sharding info", K(ret)); } } else if (DistAlgo::DIST_PULL_TO_LOCAL == join_dist_algo_) { strong_sharding_ = opt_ctx.get_local_sharding(); } else if (DistAlgo::DIST_NONE_ALL == join_dist_algo_) { strong_sharding_ = left_path_->strong_sharding_; inherit_sharding_index_ = 0; if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } else if (DistAlgo::DIST_ALL_NONE == join_dist_algo_) { strong_sharding_ = right_path_->strong_sharding_; inherit_sharding_index_ = 1; if (OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } else if (DistAlgo::DIST_PARTITION_WISE == join_dist_algo_ || DistAlgo::DIST_EXT_PARTITION_WISE == join_dist_algo_) { if (LEFT_OUTER_JOIN == join_type_) { strong_sharding_ = left_path_->strong_sharding_; inherit_sharding_index_ = 0; if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_)) || OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else if (NULL != right_path_->strong_sharding_ && OB_FAIL(weak_sharding_.push_back(right_path_->strong_sharding_))) { LOG_WARN("failed to push back sharding", K(ret)); } else { /*do nothing*/ } } else if (RIGHT_OUTER_JOIN == join_type_) { strong_sharding_ = right_path_->strong_sharding_; inherit_sharding_index_ = 1; if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_)) || OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else if (NULL != left_path_->strong_sharding_ && OB_FAIL(weak_sharding_.push_back(left_path_->strong_sharding_))) { LOG_WARN("failed to push back sharding", K(ret)); } else { /*do nothing*/ } } else if (FULL_OUTER_JOIN == join_type_) { if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_)) || OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else if (NULL != left_path_->strong_sharding_ && OB_FAIL(weak_sharding_.push_back(left_path_->strong_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else if (NULL != right_path_->strong_sharding_ && OB_FAIL(weak_sharding_.push_back(right_path_->strong_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } else if (LEFT_SEMI_JOIN == join_type_ || LEFT_ANTI_JOIN == join_type_ || INNER_JOIN == join_type_) { strong_sharding_ = left_path_->strong_sharding_; inherit_sharding_index_ = 0; if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } else { strong_sharding_ = right_path_->strong_sharding_; inherit_sharding_index_ = 1; if (OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } } else if (DistAlgo::DIST_PARTITION_NONE == join_dist_algo_ || DistAlgo::DIST_HASH_NONE == join_dist_algo_) { if (LEFT_OUTER_JOIN == join_type_ || FULL_OUTER_JOIN == join_type_) { if (OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append append weak sharding", K(ret)); } else if (NULL != right_path_->strong_sharding_ && OB_FAIL(weak_sharding_.push_back(right_path_->strong_sharding_))) { LOG_WARN("failed to push back sharding", K(ret)); } else { /*do nothing*/ } } else { strong_sharding_ = right_path_->strong_sharding_; inherit_sharding_index_ = 1; if (OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } } else if (DistAlgo::DIST_BROADCAST_NONE == join_dist_algo_ || (DistAlgo::DIST_BC2HOST_NONE == join_dist_algo_ && JoinAlgo::HASH_JOIN == join_algo_)) { if (right_path_->parallel_more_than_part_cnt()) { //If the degree of parallelism is greater than the number of partitions, //sharding will not be inherited to avoid thread waste. strong_sharding_ = opt_ctx.get_distributed_sharding(); } else { strong_sharding_ = right_path_->strong_sharding_; inherit_sharding_index_ = 1; if (OB_FAIL(append(weak_sharding_, right_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } } else if (DistAlgo::DIST_NONE_PARTITION == join_dist_algo_ || DistAlgo::DIST_NONE_HASH == join_dist_algo_) { if (RIGHT_OUTER_JOIN == join_type_ || FULL_OUTER_JOIN == join_type_) { if (OB_FAIL(append(weak_sharding_, left_path_->get_weak_sharding()))) { LOG_WARN("failed to push back weak sharding", K(ret)); } else if (NULL != left_path_->strong_sharding_ && OB_FAIL(weak_sharding_.push_back(left_path_->strong_sharding_))) { LOG_WARN("failed to push back sharding info", K(ret)); } else { /*do nothing*/ } } else { strong_sharding_ = left_path_->strong_sharding_; inherit_sharding_index_ = 0; if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } } else if (DistAlgo::DIST_NONE_BROADCAST == join_dist_algo_) { if (left_path_->parallel_more_than_part_cnt()) { //If the degree of parallelism is greater than the number of partitions, //sharding will not be inherited to avoid thread waste. strong_sharding_ = opt_ctx.get_distributed_sharding(); } else { strong_sharding_ = left_path_->strong_sharding_; inherit_sharding_index_ = 0; if (OB_FAIL(append(weak_sharding_, left_path_->weak_sharding_))) { LOG_WARN("failed to append weak sharding", K(ret)); } else { /*do nothing*/ } } } else if (DistAlgo::DIST_HASH_HASH == join_dist_algo_) { if (OB_FAIL(compute_hash_hash_sharding_info())) { LOG_WARN("failed to generate hash-hash sharding info", K(ret)); } else { /*do nothing*/ } } else if (DistAlgo::DIST_BC2HOST_NONE == join_dist_algo_) { if (right_path_->is_single()) { strong_sharding_ = right_path_->strong_sharding_; inherit_sharding_index_ = 1; } else { strong_sharding_ = opt_ctx.get_distributed_sharding(); } } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(join_dist_algo_), K(ret)); } } return ret; } int JoinPath::compute_join_path_property() { int ret = OB_SUCCESS; if (OB_FAIL(compute_join_path_sharding())) { LOG_WARN("failed to compute sharding info", K(ret)); } else if (OB_FAIL(compute_join_path_plan_type())) { LOG_WARN("failed to compute plan type", K(ret)); } else if (OB_FAIL(compute_join_path_info())) { LOG_WARN("failed to check and replace aggr exprs", K(ret)); } else if (OB_FAIL(compute_join_path_ordering())) { LOG_WARN("failed to compute op ordering", K(ret)); } else if (OB_FAIL(compute_join_path_parallel_and_server_info())) { LOG_WARN("failed to compute server info", K(ret)); } else if OB_FAIL(can_use_batch_nlj(can_use_batch_nlj_)) { LOG_WARN("failed to check can use batch nlj", K(ret)); } else if (OB_FAIL(estimate_cost())) { LOG_WARN("failed to calculate cost in create_ml_path", K(ret)); } else if (OB_FAIL(compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(check_is_contain_normal_nl())) { LOG_WARN("failed to check is contain normal nl", K(ret)); } else { LOG_TRACE("succeed to compute join path property"); } return ret; } int JoinPath::compute_join_path_ordering() { int ret = OB_SUCCESS; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(parent_), K(ret)); } else if (JoinAlgo::MERGE_JOIN == join_algo_) { if (FULL_OUTER_JOIN != join_type_ && RIGHT_OUTER_JOIN != join_type_) { // 目前 ObMergeJoin 的实现只能继承左支的序 if (!is_left_need_sort()) { set_interesting_order_info(left_path_->get_interesting_order_info()); if(OB_FAIL(append(ordering_, left_path_->ordering_))) { LOG_WARN("failed to append join ordering", K(ret)); } else if (OB_FAIL(parent_->check_join_interesting_order(this))) { LOG_WARN("failed to update join interesting order info", K(ret)); } else { is_range_order_ = is_fully_partition_wise() && left_path_->is_range_order_; is_local_order_ = is_fully_partition_wise() && !left_path_->is_range_order_; } } else { int64_t interesting_order_info = OrderingFlag::NOT_MATCH; if (OB_FAIL(append(ordering_, left_sort_keys_))) { LOG_WARN("failed to append join ordering", K(ret)); } else if (OB_FAIL(parent_->check_all_interesting_order(get_ordering(), parent_->get_plan()->get_stmt(), interesting_order_info))) { LOG_WARN("failed to check all interesting order", K(ret)); } else { add_interesting_order_flag(interesting_order_info); is_local_order_ = is_fully_partition_wise(); } } } else { /*do nothing*/ } } else if (JoinAlgo::NESTED_LOOP_JOIN == join_algo_ && !left_path_->ordering_.empty() && CONNECT_BY_JOIN != join_type_) { set_interesting_order_info(left_path_->get_interesting_order_info()); if (OB_FAIL(append(ordering_, left_path_->ordering_))) { LOG_WARN("failed to append ordering", K(ret)); } else if (OB_FAIL(parent_->check_join_interesting_order(this))) { LOG_WARN("failed to update join interesting order info", K(ret)); } else if (!is_left_need_exchange() || left_path_->is_single() || left_path_->is_local_order_) { is_range_order_ = left_path_->is_range_order_; is_local_order_ = left_path_->is_local_order_; } else { is_local_order_ = true; is_range_order_ = false; } } else { /*do nothing*/ } return ret; } int JoinPath::compute_join_path_plan_type() { int ret = OB_SUCCESS; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(ret)); } else if (NULL != strong_sharding_ && strong_sharding_->get_can_reselect_replica()) { phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_UNINITIALIZED; } else if (is_local()) { phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_LOCAL; } else if (is_remote()) { phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_REMOTE; } else if (is_distributed()) { phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_DISTRIBUTED; } else { phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_UNINITIALIZED; } if (OB_SUCC(ret)) { if (is_left_need_exchange() || is_right_need_exchange() || left_path_->exchange_allocated_ || right_path_->exchange_allocated_) { exchange_allocated_ = true; phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_DISTRIBUTED; } if (ObPhyPlanType::OB_PHY_PLAN_DISTRIBUTED == left_path_->phy_plan_type_ || ObPhyPlanType::OB_PHY_PLAN_DISTRIBUTED == right_path_->phy_plan_type_) { phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_DISTRIBUTED; } if (ObPhyPlanType::OB_PHY_PLAN_UNCERTAIN == left_path_->location_type_ || ObPhyPlanType::OB_PHY_PLAN_UNCERTAIN == right_path_->location_type_) { location_type_ = ObPhyPlanType::OB_PHY_PLAN_UNCERTAIN; } LOG_TRACE("succeed to compute join path type", K(phy_plan_type_), K(location_type_)); } return ret; } int JoinPath::compute_hash_hash_sharding_info() { int ret = OB_SUCCESS; ObLogPlan *log_plan = NULL; ObIAllocator *allocator = NULL; if (OB_ISNULL(left_path_) || OB_ISNULL(left_path_->parent_) || OB_ISNULL(parent_) || OB_ISNULL(allocator = left_path_->parent_->get_allocator()) || OB_ISNULL(log_plan = left_path_->parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(allocator), K(log_plan), K(ret)); } else if (OB_UNLIKELY(JoinAlgo::NESTED_LOOP_JOIN == join_algo_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(ret)); } else { bool use_left = true; bool use_right = true; ObSEArray left_join_exprs; ObSEArray right_join_exprs; for (int64_t i = 0; OB_SUCC(ret) && i < equal_join_conditions_.count(); i++) { ObRawExpr *join_expr = NULL; ObRawExpr *left_expr = NULL; ObRawExpr *right_expr = NULL; if (OB_ISNULL(join_expr = equal_join_conditions_.at(i)) || OB_ISNULL(left_expr = join_expr->get_param_expr(0)) || OB_ISNULL(right_expr = join_expr->get_param_expr(1))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(join_expr), K(left_expr), K(right_expr), K(ret)); } else { if (!left_expr->get_relation_ids().is_subset(left_path_->parent_->get_tables())) { std::swap(left_expr, right_expr); } if (OB_FAIL(left_join_exprs.push_back(left_expr)) || OB_FAIL(right_join_exprs.push_back(right_expr))) { LOG_WARN("failed to push back expr", K(ret)); } else { ObExprCalcType result_type = join_expr->get_result_type().get_calc_meta(); if (!ObSQLUtils::is_same_type_for_compare(left_expr->get_result_type(), result_type)) { use_left = false; } if (!ObSQLUtils::is_same_type_for_compare(right_expr->get_result_type(), result_type)) { use_right = false; } } } // determine if hybrid hash dm can be enabled // should check is_naaj - #issue/46230785 if (OB_SUCC(ret) && !is_naaj_ && 1 == equal_join_conditions_.count()) { ObArray popular_values; if (OB_FAIL(log_plan->check_if_use_hybrid_hash_distribution( log_plan->get_optimizer_context(), log_plan->get_stmt(), join_type_, *right_expr, popular_values))) { LOG_WARN("fail check if use hybrid hash distribution", K(ret)); } else if (popular_values.count() > 0) { use_hybrid_hash_dm_ = true; } } } if (OB_SUCC(ret)) { if (use_hybrid_hash_dm_) { // fix issue/45941566 strong_sharding_ = log_plan->get_optimizer_context().get_distributed_sharding(); } else if ((use_left && FULL_OUTER_JOIN != join_type_ && RIGHT_OUTER_JOIN != join_type_) || (use_right && FULL_OUTER_JOIN != join_type_ && LEFT_OUTER_JOIN != join_type_)) { ObShardingInfo *target_sharding = NULL; if (use_left && OB_FAIL(log_plan->get_cached_hash_sharding_info(left_join_exprs, parent_->get_output_equal_sets(), target_sharding))) { LOG_WARN("failed to get cached sharding info", K(ret)); } else if (use_right && NULL == target_sharding && OB_FAIL(log_plan->get_cached_hash_sharding_info(right_join_exprs, parent_->get_output_equal_sets(), target_sharding))) { LOG_WARN("failed to get cached sharding info", K(ret)); } else if (NULL != target_sharding) { strong_sharding_ = target_sharding; } else if (OB_ISNULL(target_sharding = reinterpret_cast( allocator->alloc(sizeof(ObShardingInfo))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate memory", K(ret)); } else { target_sharding = new (target_sharding) ObShardingInfo(); target_sharding->set_distributed(); if (use_left && FULL_OUTER_JOIN != join_type_ && RIGHT_OUTER_JOIN != join_type_) { ret = target_sharding->get_partition_keys().assign(left_join_exprs); } else if (use_right && FULL_OUTER_JOIN != join_type_ && LEFT_OUTER_JOIN != join_type_) { ret = target_sharding->get_partition_keys().assign(right_join_exprs); } else { /*do nothing*/ } if (OB_FAIL(ret)) { /*do nothing*/ } else if (OB_FAIL(log_plan->get_hash_dist_info().push_back(target_sharding))) { LOG_WARN("failed to push back sharding info", K(ret)); } else { strong_sharding_ = target_sharding; } } } else { strong_sharding_ = log_plan->get_optimizer_context().get_distributed_sharding(); } } } return ret; } int JoinPath::compute_join_path_parallel_and_server_info() { int ret = OB_SUCCESS; ObOptimizerContext *opt_ctx = NULL; if (OB_ISNULL(parent_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else if (OB_FALSE_IT(opt_ctx = &parent_->get_plan()->get_optimizer_context())) { } else if (OB_FAIL(compute_join_path_parallel_and_server_info(opt_ctx->get_local_server_addr(), left_path_, right_path_, join_dist_algo_, is_slave_mapping_, parallel_, available_parallel_, server_cnt_, server_list_))) { LOG_WARN("failed to compute server info", K(ret)); } return ret; } int JoinPath::compute_join_path_parallel_and_server_info(const common::ObAddr &local_server_addr, const Path *left_path, const Path *right_path, const DistAlgo join_dist_algo, bool const is_slave_mapping, int64_t ¶llel, int64_t &available_parallel, int64_t &server_cnt, ObIArray &server_list) { int ret = OB_SUCCESS; parallel = ObGlobalHint::DEFAULT_PARALLEL; available_parallel = ObGlobalHint::DEFAULT_PARALLEL; server_cnt = 0; server_list.reuse(); if (OB_ISNULL(left_path) || OB_ISNULL(right_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(right_path), K(right_path), K(ret)); } else { LOG_TRACE("compute join path parallel and server info", K(join_dist_algo), K(left_path->parallel_), K(right_path->parallel_), K(left_path->is_single()), K(right_path->is_single())); const bool has_nl_param = right_path->is_inner_path() && !right_path->nl_params_.empty(); if (is_slave_mapping) { const Path *inherit_child = (has_nl_param || left_path->parallel_ > right_path->parallel_) ? left_path : right_path; parallel = inherit_child->parallel_; server_cnt = inherit_child->server_cnt_; if (OB_FAIL(server_list.assign(inherit_child->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_BASIC_METHOD == join_dist_algo) { parallel = 1; server_cnt = 1; available_parallel = std::max(left_path->available_parallel_, right_path->available_parallel_); if (OB_FAIL(server_list.assign(left_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_PULL_TO_LOCAL == join_dist_algo) { parallel = 1; server_cnt = 1; const int64_t left_parallel = std::max(left_path->parallel_, left_path->available_parallel_); const int64_t right_parallel = std::max(right_path->parallel_, right_path->available_parallel_); available_parallel = std::max(left_parallel, right_parallel); if (OB_FAIL(server_list.push_back(local_server_addr))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_NONE_ALL == join_dist_algo) { parallel = left_path->parallel_; server_cnt = left_path->server_cnt_; if (OB_FAIL(server_list.assign(left_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_ALL_NONE == join_dist_algo) { parallel = right_path->parallel_; server_cnt = right_path->server_cnt_; if (OB_FAIL(server_list.assign(right_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_PARTITION_WISE == join_dist_algo) { const Path *inherit_child = (has_nl_param || left_path->parallel_ >= right_path->parallel_) ? left_path : right_path; parallel = inherit_child->parallel_; server_cnt = inherit_child->server_cnt_; const ObShardingInfo *sharding = NULL; int64_t part_cnt = 0; if (OB_ISNULL(sharding = inherit_child->try_get_sharding_with_table_location()) || OB_UNLIKELY((part_cnt = sharding->get_part_cnt()) <= 0)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected partition wise", K(ret), K(parallel), KPC(sharding), K(part_cnt)); } else if (OB_FAIL(server_list.assign(inherit_child->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } else { parallel = parallel > part_cnt ? part_cnt : parallel; } } else if (DistAlgo::DIST_EXT_PARTITION_WISE == join_dist_algo) { const Path *inherit_child = (has_nl_param || left_path->parallel_ >= right_path->parallel_) ? left_path : right_path; parallel = inherit_child->parallel_; server_cnt = inherit_child->server_cnt_; if (OB_FAIL(server_list.assign(inherit_child->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_BROADCAST_NONE == join_dist_algo || DistAlgo::DIST_BC2HOST_NONE == join_dist_algo) { parallel = right_path->parallel_; server_cnt = right_path->server_cnt_; if (OB_FAIL(server_list.assign(right_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_NONE_BROADCAST == join_dist_algo) { parallel = left_path->parallel_; server_cnt = left_path->server_cnt_; if (OB_FAIL(server_list.assign(left_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_HASH_HASH == join_dist_algo) { common::ObAddr all_server_list; // a special ALL server list indicating hash-hash data distribution all_server_list.set_max(); if (OB_FAIL(server_list.push_back(all_server_list))) { LOG_WARN("failed to assign all server list", K(ret)); } else if (left_path->parallel_ >= right_path->parallel_) { parallel = left_path->parallel_; server_cnt = left_path->server_cnt_; } else { parallel = right_path->parallel_; server_cnt = right_path->server_cnt_; } } else if (DistAlgo::DIST_PARTITION_NONE == join_dist_algo) { parallel = right_path->parallel_; server_cnt = right_path->server_cnt_; if (OB_FAIL(server_list.assign(right_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } else if (OB_ISNULL(right_path->strong_sharding_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(right_path->strong_sharding_)); } else { int64_t part_cnt = right_path->strong_sharding_->get_part_cnt(); parallel = parallel > part_cnt ? part_cnt : parallel; } } else if (DistAlgo::DIST_HASH_NONE == join_dist_algo) { parallel = right_path->parallel_; server_cnt = right_path->server_cnt_; if (OB_FAIL(server_list.assign(right_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else if (DistAlgo::DIST_NONE_PARTITION == join_dist_algo) { parallel = left_path->parallel_; server_cnt = left_path->server_cnt_; if (OB_FAIL(server_list.assign(left_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } else if (OB_ISNULL(left_path->strong_sharding_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(left_path->strong_sharding_)); } else { int64_t part_cnt = left_path->strong_sharding_->get_part_cnt(); parallel = parallel > part_cnt ? part_cnt : parallel; } } else if (DistAlgo::DIST_NONE_HASH == join_dist_algo) { parallel = left_path->parallel_; server_cnt = left_path->server_cnt_; if (OB_FAIL(server_list.assign(left_path->server_list_))) { LOG_WARN("failed to assign server list", K(ret)); } } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(join_dist_algo), K(ret)); } } return ret; } int JoinPath::can_use_batch_nlj(ObLogPlan *plan, const AccessPath *access_path, bool &use_batch_nlj) { int ret = OB_SUCCESS; const TableItem *table_item = NULL; use_batch_nlj = false; if (OB_ISNULL(access_path) || OB_ISNULL(plan) || OB_ISNULL(plan->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid input", K(ret)); } else if (OB_ISNULL(table_item = plan->get_stmt()->get_table_item_by_id(access_path->table_id_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("Failed to get table item", K(ret)); } else { bool is_global_index_back = access_path->est_cost_info_.index_meta_info_.is_global_index_ && access_path->est_cost_info_.index_meta_info_.is_index_back_; use_batch_nlj = !(is_virtual_table(access_path->ref_table_id_) || table_item->is_link_table() || access_path->is_cte_path() || access_path->is_function_table_path() || access_path->is_temp_table_path() || access_path->is_json_table_path() || table_item->for_update_ || !access_path->subquery_exprs_.empty() || EXTERNAL_TABLE == table_item->table_type_ ); if (use_batch_nlj) { bool found_query_range = false; for (int64_t i = 0; OB_SUCC(ret) && i < access_path->filter_.count() && !found_query_range; ++i) { const ObRawExpr *expr = access_path->filter_.at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("table filter is null", K(ret)); } else if (OB_NOT_NULL(access_path->pre_query_range_) && ObOptimizerUtil::find_item(access_path->pre_query_range_->get_range_exprs(), expr)) { found_query_range = true; } else { //do nothing //dynamic filter will keep in tsc operator //static filter will pushdown to storage } } use_batch_nlj = use_batch_nlj && found_query_range; } } return ret; } int JoinPath::can_use_batch_nlj(bool &use_batch_nlj) { int ret = OB_SUCCESS; const ParamStore *params = NULL; ObSQLSessionInfo *session_info = NULL; bool enable_use_batch_nlj = false; const AccessPath *access_path = NULL; const SubQueryPath *subq_path = NULL; ObLogPlan *plan = NULL; use_batch_nlj = false; if (OB_ISNULL(parent_) || OB_ISNULL(plan = parent_->get_plan()) || OB_ISNULL(right_path_) || OB_ISNULL(session_info = plan->get_optimizer_context().get_session_info()) || OB_ISNULL(params = plan->get_optimizer_context().get_params())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid argument", K(session_info), K(ret)); } else if (NESTED_LOOP_JOIN == join_algo_ && CONNECT_BY_JOIN != join_type_ && (!IS_SEMI_ANTI_JOIN(join_type_)) && right_path_->is_inner_path() && !right_path_->nl_params_.empty()) { ObLogTableScan *ts = NULL; bool right_has_gi_or_exchange = false; if (DistAlgo::DIST_BASIC_METHOD == join_dist_algo_ || DistAlgo::DIST_NONE_ALL == join_dist_algo_ || (DistAlgo::DIST_PARTITION_WISE == join_dist_algo_ && !is_slave_mapping_ && !left_path_->exchange_allocated_ && !right_path_->exchange_allocated_)) { right_has_gi_or_exchange = false; } else if (DistAlgo::DIST_PULL_TO_LOCAL == join_dist_algo_ && !is_right_need_exchange()) { right_has_gi_or_exchange = false; } else { right_has_gi_or_exchange = true; } if (OB_FAIL(session_info->get_nlj_batching_enabled(enable_use_batch_nlj))) { LOG_WARN("failed to get join cache size variable", K(ret)); } else if (!enable_use_batch_nlj) { //do nothing } else if ((!right_path_->is_access_path() && !right_path_->is_subquery_path()) || right_has_gi_or_exchange) { //do nothing } else if (right_path_->is_access_path()) { if (OB_FAIL(can_use_batch_nlj(plan, static_cast(right_path_), use_batch_nlj))) { LOG_WARN("failed to check use batch nlj", K(ret)); } } else if (right_path_->is_subquery_path()) { subq_path = static_cast(right_path_); ObLogicalOperator *root = subq_path->root_; if (OB_ISNULL(root)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("root is null", K(ret)); } else if (OB_FAIL(can_use_das_batch_nlj(root, use_batch_nlj))) { LOG_WARN("failed to check use batch nlj", K(ret)); } } } return ret; } int JoinPath::can_use_das_batch_nlj(ObLogicalOperator* root, bool &use_batch_nlj) { int ret = OB_SUCCESS; use_batch_nlj = false; if (OB_ISNULL(root)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("root is null", K(ret)); } else if (root->is_table_scan()) { ObLogTableScan *ts = static_cast(root); const AccessPath *access_path = ts->get_access_path(); if (OB_ISNULL(access_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("ap is null", K(ret)); } else if (!ts->use_das()) { use_batch_nlj = false; } else if (OB_FAIL(can_use_batch_nlj(ts->get_plan(), access_path, use_batch_nlj))) { LOG_WARN("failed to check batch nlj", K(ret)); } } else if (root->get_num_of_child() == 1) { if (OB_FAIL(SMART_CALL(can_use_das_batch_nlj(root->get_child(0), use_batch_nlj)))) { LOG_WARN("failed to check das batch nlj", K(ret)); } } else if (log_op_def::LOG_SET == root->get_type() || log_op_def::LOG_JOIN == root->get_type()) { use_batch_nlj = true; for (int64_t i = 0; OB_SUCC(ret) && use_batch_nlj && i < root->get_num_of_child(); ++i) { ObLogicalOperator *child = root->get_child(i); if (OB_ISNULL(child)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid child", K(ret)); } else if (OB_FAIL(SMART_CALL(can_use_das_batch_nlj(child, use_batch_nlj)))) { LOG_WARN("failed to check batch nlj", K(ret)); } else {/* do nothing */} } } return ret; } int JoinPath::estimate_cost() { int ret = OB_SUCCESS; double card = 0.0; double op_cost = 0.0; double cost = 0.0; EstimateCostInfo info; info.need_parallel_ = parallel_; if (OB_FAIL(do_re_estimate_cost(info, card, op_cost, cost))) { LOG_WARN("failed to do re estimate cost", K(ret)); } else { op_cost_ = op_cost; cost_ = cost; } return ret; } int JoinPath::compute_join_path_info() { int ret = OB_SUCCESS; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(ret)); } else { contain_fake_cte_ = left_path_->contain_fake_cte_ || right_path_->contain_fake_cte_; contain_pw_merge_op_ = (left_path_->contain_pw_merge_op_ && !is_left_need_exchange()) || (right_path_->contain_pw_merge_op_ && !is_right_need_exchange()) || (join_algo_ == JoinAlgo::MERGE_JOIN && is_partition_wise()); contain_match_all_fake_cte_ = left_path_->contain_match_all_fake_cte_ || right_path_->contain_match_all_fake_cte_; contain_das_op_ = left_path_->contain_das_op_ || right_path_->contain_das_op_; } return ret; } int JoinPath::re_estimate_cost(EstimateCostInfo &info, double &card, double &cost) { int ret = OB_SUCCESS; const int64_t join_parallel = ObGlobalHint::UNSET_PARALLEL == info.need_parallel_ ? parallel_ : info.need_parallel_; info.need_parallel_ = join_parallel; double op_cost = 0.0; if (!info.need_re_est(parallel_, get_path_output_rows())) { // no need to re est cost card = get_path_output_rows(); op_cost = op_cost_; cost = get_cost(); } else if (OB_FAIL(do_re_estimate_cost(info, card, op_cost, cost))) { LOG_WARN("failed to do re estimate cost", K(ret)); } else if (info.override_) { parallel_ = join_parallel; op_cost_ = op_cost; cost_ = cost; } return ret; } int JoinPath::do_re_estimate_cost(EstimateCostInfo &info, double &card, double &op_cost, double &cost) { int ret = OB_SUCCESS; EstimateCostInfo left_param; EstimateCostInfo right_param; double left_output_rows = 0.0; double right_output_rows = 0.0; double left_cost = 0.0; double right_cost = 0.0; Path *left_path = const_cast(left_path_); Path *right_path = const_cast(right_path_); if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(ret)); } else if (OB_FAIL(get_re_estimate_param(info, left_param, right_param, false))) { LOG_WARN("failed to get re estimate param", K(ret)); } else if (OB_FAIL(left_path->re_estimate_cost(left_param, left_output_rows, left_cost))) { LOG_WARN("failed to re estimate cost", K(ret)); } else if (OB_FAIL(try_set_batch_nlj_for_right_access_path(true))) { LOG_WARN("failed to try set batch nlj for right access path", K(ret)); } else if (NULL != right_path->log_op_ && OB_FAIL(right_path->log_op_->re_est_cost(right_param, right_output_rows, right_cost))) { LOG_WARN("failed to re est cost for right op", K(ret)); } else if (NULL == right_path->log_op_ && OB_FAIL(right_path->re_estimate_cost(right_param, right_output_rows, right_cost))) { LOG_WARN("failed to re estimate cost", K(ret)); } else if (OB_FAIL(try_set_batch_nlj_for_right_access_path(false))) { LOG_WARN("failed to try set batch nlj for right access path", K(ret)); } else if (OB_FAIL(re_estimate_rows(left_output_rows, right_output_rows, card))) { LOG_WARN("failed to re estimate rows", K(ret)); } else if (NESTED_LOOP_JOIN == join_algo_) { if (OB_FAIL(cost_nest_loop_join(info.need_parallel_, left_output_rows, left_cost, right_output_rows, right_cost, false, op_cost, cost))) { LOG_WARN("failed to cost nest loop join", K(*this), K(ret)); } } else if(MERGE_JOIN == join_algo_) { if (OB_FAIL(cost_merge_join(info.need_parallel_, left_output_rows, left_cost, right_output_rows, right_cost, false, op_cost, cost))) { LOG_WARN("failed to cost merge join", K(*this), K(ret)); } } else if(HASH_JOIN == join_algo_) { if ((OB_FAIL(cost_hash_join(info.need_parallel_, left_output_rows, left_cost, right_output_rows, right_cost, false, op_cost, cost)))) { LOG_WARN("failed to cost hash join", K(*this), K(ret)); } } else { ret = OB_INVALID_ARGUMENT; LOG_WARN("unknown join algorithm", K(join_algo_)); } if (OB_SUCC(ret)) { if (info.need_row_count_ >= 0 && info.need_row_count_ < get_path_output_rows()) { card = info.need_row_count_; } } return ret; } int JoinPath::try_set_batch_nlj_for_right_access_path(bool enable) { int ret = OB_SUCCESS; if (OB_ISNULL(right_path_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(right_path_), K(ret)); } else if (!can_use_batch_nlj_ || !right_path_->is_inner_path() || !right_path_->is_access_path()) { /* do nothing */ } else { const AccessPath *access = static_cast(right_path_); AccessPath *ap = const_cast(access); ap->est_cost_info_.can_use_batch_nlj_ = enable; } return ret; } int JoinPath::get_re_estimate_param(EstimateCostInfo ¶m, EstimateCostInfo &left_param, EstimateCostInfo &right_param, bool re_est_for_op) { int ret = OB_SUCCESS; left_param.override_ = param.override_; right_param.override_ = param.override_; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(ret)); } else if (OB_UNLIKELY(param.need_parallel_ < ObGlobalHint::DEFAULT_PARALLEL)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected param", K(param), K(ret)); } else { double card = get_path_output_rows(); if (param.need_row_count_ >= card || param.need_row_count_ < 0) { param.need_row_count_ = card; } else if (JoinAlgo::HASH_JOIN == join_algo_ && LEFT_SEMI_JOIN != join_type_ && LEFT_ANTI_JOIN != join_type_) { right_param.need_row_count_ = right_path_->get_path_output_rows(); right_param.need_row_count_ *= (param.need_row_count_ / card); } else if (JoinAlgo::NESTED_LOOP_JOIN == join_algo_) { left_param.need_row_count_ = left_path_->get_path_output_rows(); left_param.need_row_count_ *= (param.need_row_count_ / card); } else if (JoinAlgo::MERGE_JOIN == join_algo_) { left_param.need_row_count_ = left_path_->get_path_output_rows(); left_param.need_row_count_ *= sqrt(param.need_row_count_ / card); right_param.need_row_count_ = right_path_->get_path_output_rows(); right_param.need_row_count_ *= sqrt(param.need_row_count_ / card); } if (right_path_->is_inner_path() && (right_param.need_row_count_ > 1 || right_param.need_row_count_ < 0) && (LEFT_SEMI_JOIN == join_type_ || LEFT_ANTI_JOIN == join_type_)) { right_param.need_row_count_ = 1; } if (re_est_for_op) { left_param.need_parallel_ = left_path_->is_match_all() ? ObGlobalHint::UNSET_PARALLEL : param.need_parallel_; right_param.need_parallel_ = right_path_->is_match_all() ? ObGlobalHint::UNSET_PARALLEL : param.need_parallel_; } else if (is_partition_wise()) { left_param.need_parallel_ = param.need_parallel_; right_param.need_parallel_ = param.need_parallel_; } } if (OB_SUCC(ret)) { if (OB_FAIL(left_param.join_filter_infos_.assign(param.join_filter_infos_))) { LOG_WARN("failed to assign join filter infos", K(ret)); } else if (OB_FAIL(right_param.join_filter_infos_.assign(param.join_filter_infos_))) { LOG_WARN("failed to assign join filter infos", K(ret)); } else if (OB_FAIL(append(right_param.join_filter_infos_, join_filter_infos_))) { LOG_WARN("failed to append join filter infos", K(ret)); } } return ret; } int JoinPath::re_estimate_rows(double left_output_rows, double right_output_rows, double &row_count) { int ret = OB_SUCCESS; double selectivity = 1.0; ObLogPlan *plan = NULL; ObJoinOrder *left_tree = NULL; ObJoinOrder *right_tree = NULL; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_) || OB_ISNULL(parent_) || OB_ISNULL(plan = parent_->get_plan()) || OB_ISNULL(left_tree = left_path_->parent_) || OB_ISNULL(right_tree = right_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(plan), K(ret)); } else if (HASH_JOIN == join_algo_ && !join_filter_infos_.empty()) { row_count = get_path_output_rows(); } else if (right_path_->is_inner_path()) { if (left_tree->get_output_rows() > 0) { row_count = parent_->get_output_rows() * left_output_rows / left_tree->get_output_rows(); } else { row_count = 0; } } else { JoinInfo join_info; join_info.join_type_ = join_type_; if (IS_OUTER_OR_CONNECT_BY_JOIN(join_type_)) { if (OB_FAIL(join_info.where_conditions_.assign(filter_))) { LOG_WARN("failed to assign join conditions", K(ret)); } else if (OB_FAIL(join_info.on_conditions_.assign(other_join_conditions_))) { LOG_WARN("failed to assign join conditions", K(ret)); } else if (OB_FAIL(append(join_info.on_conditions_, equal_join_conditions_))) { LOG_WARN("failed to append join conditions", K(ret)); } } else { if (OB_FAIL(join_info.where_conditions_.assign(filter_))) { LOG_WARN("failed to assign join conditions", K(ret)); } else if (OB_FAIL(append(join_info.where_conditions_, other_join_conditions_))) { LOG_WARN("failed to assign join conditions", K(ret)); } else if (OB_FAIL(append(join_info.where_conditions_, equal_join_conditions_))) { LOG_WARN("failed to append join conditions", K(ret)); } } EqualSets equal_sets; if (OB_FAIL(ret)) { } else if (OB_FAIL(append(equal_sets, left_tree->get_output_equal_sets())) || OB_FAIL(append(equal_sets, right_tree->get_output_equal_sets()))) { LOG_WARN("failed to append equal sets", K(ret)); /* zhanyuetodo bug fix: case: optimizer.subquery_in_on_condition_oracle filter contain subquery is calculated twice at subplan filter and t2 join t3 select t1.* from t1 left join (t2 join t3 on t2.c1 = t3.c1) on t1.c1 > all(select c1 from t3 where t2.c1+t1.c1 = t3.c1); */ } else if (OB_FAIL(ObJoinOrder::calc_join_output_rows(plan, left_tree->get_tables(), right_tree->get_tables(), left_output_rows, right_output_rows, join_info, row_count, selectivity, equal_sets))) { LOG_WARN("failed to calc join output rows", K(ret)); } } return ret; } int JoinPath::cost_nest_loop_join(int64_t join_parallel, double left_output_rows, double left_cost, double right_output_rows, double right_cost, bool re_est_for_op, double &op_cost, double &cost) { int ret = OB_SUCCESS; ObLogPlan* plan = NULL; int64_t in_parallel = 0; int64_t left_out_parallel = 0; int64_t right_out_parallel = 0; ObJoinOrder *left_join_order = NULL; ObJoinOrder *right_join_order = NULL; if (OB_ISNULL(parent_) || OB_ISNULL(plan = parent_->get_plan()) || OB_ISNULL(right_path_) || OB_ISNULL(right_join_order = right_path_->parent_) || OB_ISNULL(left_path_) || OB_ISNULL(left_join_order = left_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(parent_), K(left_path_), K(left_join_order), K(right_path_), K(right_join_order)); } else if (OB_UNLIKELY((in_parallel = join_parallel) < 1) || OB_UNLIKELY((left_out_parallel = left_path_->parallel_) < 1) || OB_UNLIKELY((right_out_parallel = right_path_->parallel_) < 1)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected parallel degree", K(in_parallel), K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); bool with_nl_param = right_path_->is_inner_path(); double left_rows = left_output_rows; double right_rows = right_output_rows; int64_t right_part_cnt = 1; double left_ex_cost = 0.0; double right_ex_cost = 0.0; if (NULL != right_path_->get_sharding() && NULL != right_path_->get_sharding()->get_phy_table_location_info()) { right_part_cnt = right_path_->get_sharding()->get_part_cnt(); } if (DistAlgo::DIST_BC2HOST_NONE == join_dist_algo_) { left_rows = ObJoinOrder::calc_single_parallel_rows(left_rows, in_parallel/server_cnt_); right_cost = right_cost * right_out_parallel / server_cnt_; right_rows /= server_cnt_; } else if (DistAlgo::DIST_BROADCAST_NONE == join_dist_algo_ || DistAlgo::DIST_ALL_NONE == join_dist_algo_) { right_rows /= in_parallel; left_rows = ObJoinOrder::calc_single_parallel_rows(left_rows, 1); } else if (DistAlgo::DIST_NONE_BROADCAST == join_dist_algo_ || DistAlgo::DIST_NONE_ALL == join_dist_algo_) { left_rows = ObJoinOrder::calc_single_parallel_rows(left_rows, in_parallel); } else if (DistAlgo::DIST_PULL_TO_LOCAL == join_dist_algo_) { left_rows = ObJoinOrder::calc_single_parallel_rows(left_rows, in_parallel); } else { left_rows = ObJoinOrder::calc_single_parallel_rows(left_rows, in_parallel); right_rows /= right_part_cnt; const int64_t right_real_parallel = is_partition_wise() ? in_parallel : right_out_parallel; right_cost = right_cost * right_real_parallel / right_part_cnt; } ObCostNLJoinInfo est_join_info(left_rows, left_cost, left_join_order->get_output_row_size(), right_rows, right_cost, right_join_order->get_output_row_size(), left_join_order->get_tables(), right_join_order->get_tables(), join_type_, parent_->get_anti_or_semi_match_sel(), with_nl_param, need_mat_, is_right_need_exchange() || right_path_->exchange_allocated_, in_parallel, equal_join_conditions_, other_join_conditions_, filter_, &plan->get_update_table_metas(), &plan->get_selectivity_ctx()); ObExchCostInfo left_exch_info(left_output_rows, left_join_order->get_output_row_size(), get_left_dist_method(), left_out_parallel, in_parallel, false, left_sort_keys_, server_cnt_); ObExchCostInfo right_exch_info(right_output_rows, right_join_order->get_output_row_size(), get_right_dist_method(), right_out_parallel, in_parallel, false, right_sort_keys_, server_cnt_); if (OB_FAIL(ObOptEstCost::cost_nestloop(est_join_info, op_cost, plan->get_predicate_selectivities(), opt_ctx))) { LOG_WARN("failed to estimate nest loop join cost", K(est_join_info), K(ret)); } else if (!re_est_for_op && is_left_need_exchange() && OB_FAIL(ObOptEstCost::cost_exchange(left_exch_info, left_ex_cost, opt_ctx))) { LOG_WARN("failed to cost exchange", K(ret)); } else if (!re_est_for_op && is_right_need_exchange() && OB_FAIL(ObOptEstCost::cost_exchange(right_exch_info, right_ex_cost, opt_ctx))) { LOG_WARN("failed to cost exchange", K(ret)); } else { cost = op_cost + left_cost + ObOptEstCost::cost_get_rows(left_rows, opt_ctx) + left_ex_cost + right_ex_cost; if (need_mat_ && !re_est_for_op) { cost += ObOptEstCost::cost_get_rows(right_rows, opt_ctx) + right_path_->get_cost(); cost += ObOptEstCost::cost_material(right_rows, right_join_order->get_output_row_size(), opt_ctx); } LOG_TRACE("succeed to compute nested loop join cost", K(cost), K(op_cost), K(re_est_for_op), K(in_parallel), K(left_out_parallel), K(right_out_parallel), K(left_ex_cost), K(right_ex_cost), K(left_output_rows), K(left_cost), K(right_output_rows), K(right_cost)); } } return ret; } int JoinPath::cost_merge_join(int64_t join_parallel, double left_output_rows, double left_cost, double right_output_rows, double right_cost, bool re_est_for_op, double &op_cost, double &cost) { int ret = OB_SUCCESS; ObLogPlan* plan = NULL; int64_t in_parallel = 0; int64_t left_out_parallel = 0; int64_t right_out_parallel = 0; ObJoinOrder *left_join_order = NULL; ObJoinOrder *right_join_order = NULL; if (OB_ISNULL(parent_) || OB_ISNULL(plan = parent_->get_plan()) || OB_ISNULL(right_path_) || OB_ISNULL(right_join_order = right_path_->parent_) || OB_ISNULL(left_path_) || OB_ISNULL(left_join_order = left_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(parent_), K(left_path_), K(left_join_order), K(right_path_), K(right_join_order)); } else if (OB_UNLIKELY((in_parallel = join_parallel) < 1) || OB_UNLIKELY((left_out_parallel = left_path_->parallel_) < 1) || OB_UNLIKELY((right_out_parallel = right_path_->parallel_) < 1)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected parallel degree", K(in_parallel), K(left_out_parallel), K(right_out_parallel), K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); double left_child_cost = left_cost; double right_child_cost = right_cost; double left_rows = left_output_rows; double right_rows = right_output_rows; if (DistAlgo::DIST_BROADCAST_NONE == join_dist_algo_ || DistAlgo::DIST_ALL_NONE == join_dist_algo_) { right_rows /= in_parallel; } else if (DistAlgo::DIST_NONE_BROADCAST == join_dist_algo_ || DistAlgo::DIST_NONE_ALL == join_dist_algo_) { left_rows /= in_parallel; } else { left_rows /= in_parallel; right_rows /= in_parallel; } ObCostMergeJoinInfo est_join_info(left_rows, left_join_order->get_output_row_size(), right_rows, right_join_order->get_output_row_size(), left_join_order->get_tables(), right_join_order->get_tables(), join_type_, equal_join_conditions_, other_join_conditions_, filter_, equal_cond_sel_, other_cond_sel_, &plan->get_update_table_metas(), &plan->get_selectivity_ctx()); if (OB_FAIL(ObOptEstCost::cost_mergejoin(est_join_info, op_cost, opt_ctx))) { LOG_WARN("failed to estimate merge join cost", K(est_join_info), K(ret)); } else if (!re_est_for_op && OB_FAIL(ObOptEstCost::cost_sort_and_exchange(&plan->get_update_table_metas(), &plan->get_selectivity_ctx(), get_left_dist_method(), left_path_->is_distributed(), is_left_local_order(), left_output_rows, left_join_order->get_output_row_size(), left_cost, left_out_parallel, server_cnt_, in_parallel, left_sort_keys_, left_need_sort_, left_prefix_pos_, left_child_cost, opt_ctx))) { LOG_WARN("failed to compute cost for merge style op", K(ret)); } else if (!re_est_for_op && OB_FAIL(ObOptEstCost::cost_sort_and_exchange(&plan->get_update_table_metas(), &plan->get_selectivity_ctx(), get_right_dist_method(), right_path_->is_distributed(), is_right_local_order(), right_output_rows, right_join_order->get_output_row_size(), right_cost, right_out_parallel, server_cnt_, in_parallel, right_sort_keys_, right_need_sort_, right_prefix_pos_, right_child_cost, opt_ctx))) { LOG_WARN("failed to compute cost for merge style op", K(ret)); } else { cost = op_cost + left_child_cost + right_child_cost; LOG_TRACE("succeed to compute merge join cost", K(cost), K(op_cost), K(left_child_cost), K(in_parallel), K(left_out_parallel), K(right_out_parallel), K(right_child_cost), K(left_output_rows), K(left_cost), K(right_output_rows), K(right_cost)); } } return ret; } int JoinPath::cost_hash_join(int64_t join_parallel, double left_output_rows, double left_cost, double right_output_rows, double right_cost, bool re_est_for_op, double &op_cost, double &cost) { int ret = OB_SUCCESS; int64_t in_parallel = 0; int64_t left_out_parallel = 0; int64_t right_out_parallel = 0; double join_filter_selectivity = 1.0; ObLogPlan *plan = NULL; ObJoinOrder *left_join_order = NULL; ObJoinOrder *right_join_order = NULL; Path *right_path = const_cast(right_path_); if (OB_ISNULL(parent_) || OB_ISNULL(plan = parent_->get_plan()) || OB_ISNULL(right_path_) || OB_ISNULL(right_join_order = right_path_->parent_) || OB_ISNULL(left_path_) || OB_ISNULL(left_join_order = left_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(parent_), K(left_path_), K(left_join_order), K(right_path_), K(right_join_order)); } else if (OB_UNLIKELY((in_parallel = join_parallel) < 1) || OB_UNLIKELY((left_out_parallel = left_path_->parallel_) < 1) || OB_UNLIKELY((right_out_parallel = right_path_->parallel_) < 1)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected parallel degree", K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); double left_ex_cost = 0.0; double right_ex_cost = 0.0; double left_rows = left_output_rows; double right_rows = right_output_rows; if (DistAlgo::DIST_BROADCAST_NONE == join_dist_algo_ || DistAlgo::DIST_ALL_NONE == join_dist_algo_) { right_rows /= in_parallel; } else if (DistAlgo::DIST_BC2HOST_NONE == join_dist_algo_) { // only for shared hash join // right_rows is same as the implementation of DIST_BROADCAST_NONE // left_rows is left_rows / parallel * server right_rows /= in_parallel; left_rows = left_rows / in_parallel * server_cnt_; } else if (DistAlgo::DIST_NONE_BROADCAST == join_dist_algo_ || DistAlgo::DIST_NONE_ALL == join_dist_algo_) { left_rows /= in_parallel; } else { left_rows /= in_parallel; right_rows /= in_parallel; } ObCostHashJoinInfo est_join_info(left_rows, left_join_order->get_output_row_size(), right_rows, right_join_order->get_output_row_size(), left_join_order->get_tables(), right_join_order->get_tables(), join_type_, equal_join_conditions_, other_join_conditions_, filter_, join_filter_infos_, equal_cond_sel_, other_cond_sel_, &plan->get_update_table_metas(), &plan->get_selectivity_ctx()); ObExchCostInfo left_exch_info(left_output_rows, left_join_order->get_output_row_size(), get_left_dist_method(), left_out_parallel, in_parallel, false, left_sort_keys_, server_cnt_); ObExchCostInfo right_exch_info(right_output_rows, right_join_order->get_output_row_size(), get_right_dist_method(), right_out_parallel, in_parallel, false, right_sort_keys_, server_cnt_); if (OB_FAIL(ObOptEstCost::cost_hashjoin(est_join_info, op_cost, opt_ctx))) { LOG_WARN("failed to estimate hash join cost", K(est_join_info), K(ret)); } else if (!re_est_for_op && is_left_need_exchange() && OB_FAIL(ObOptEstCost::cost_exchange(left_exch_info, left_ex_cost, opt_ctx))) { LOG_WARN("failed to cost exchange", K(ret)); } else if (!re_est_for_op && is_right_need_exchange() && OB_FAIL(ObOptEstCost::cost_exchange(right_exch_info, right_ex_cost, opt_ctx))) { LOG_WARN("failed to cost exchange", K(ret)); } else { cost = op_cost + left_cost + right_cost + left_ex_cost + right_ex_cost; LOG_TRACE("succeed to compute hash join cost", K(cost), K(op_cost), K(re_est_for_op), K(left_ex_cost), K(right_ex_cost), K(in_parallel), K(left_out_parallel), K(right_out_parallel), K(left_output_rows), K(left_cost), K(right_output_rows), K(right_cost)); } } return ret; } int JoinPath::check_is_contain_normal_nl() { int ret = OB_SUCCESS; const ObJoinOrder *left_tree = NULL; const ObJoinOrder *right_tree = NULL; if (OB_ISNULL(left_path_) || OB_ISNULL(right_path_) || OB_ISNULL(left_tree=left_path_->parent_) || OB_ISNULL(right_tree=right_path_->parent_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(left_path_), K(right_path_), K(ret)); } else { bool contain_normal_nl = false; if (left_path_->is_join_path()) { contain_normal_nl |= static_cast(left_path_)->contain_normal_nl(); } if (right_path_->is_join_path()) { contain_normal_nl |= static_cast(right_path_)->contain_normal_nl(); } set_contain_normal_nl(contain_normal_nl); } return ret; } void JoinPath::reuse() { // base Path related parent_ = NULL; is_local_order_ = false; is_range_order_ = false; ordering_.reuse(); interesting_order_info_ = OrderingFlag::NOT_MATCH; filter_.reuse(); cost_ = 0.0; op_cost_ = 0.0; log_op_ = NULL; is_inner_path_ = false; inner_row_count_ = 0; pushdown_filters_.reuse(); nl_params_.reuse(); strong_sharding_ = NULL; weak_sharding_.reuse(); exchange_allocated_ = false; phy_plan_type_ = ObPhyPlanType::OB_PHY_PLAN_UNINITIALIZED; location_type_ = ObPhyPlanType::OB_PHY_PLAN_UNINITIALIZED; contain_fake_cte_ = false; contain_pw_merge_op_ = false; contain_match_all_fake_cte_ = false; contain_das_op_ = false; parallel_ = 1; op_parallel_rule_ = OpParallelRule::OP_DOP_RULE_MAX; available_parallel_ = ObGlobalHint::DEFAULT_PARALLEL; server_cnt_ = 1; // JoinPath related left_path_ = NULL; right_path_ = NULL; join_algo_ = INVALID_JOIN_ALGO; join_dist_algo_ = DistAlgo::DIST_INVALID_METHOD; is_slave_mapping_ = false; join_type_ = UNKNOWN_JOIN; need_mat_ = false; left_need_sort_ = false; left_prefix_pos_ = 0; right_need_sort_ = false; right_prefix_pos_ = 0; left_sort_keys_.reuse(); right_sort_keys_.reuse(); merge_directions_.reuse(); equal_join_conditions_.reuse(); other_join_conditions_.reuse(); server_list_.reuse(); equal_cond_sel_ = -1.0; other_cond_sel_ = -1.0; contain_normal_nl_ = false; is_naaj_ = false; is_sna_ = false; } int JoinPath::compute_pipeline_info() { int ret = OB_SUCCESS; is_pipelined_path_ = false; is_nl_style_pipelined_path_ = false; if (HASH_JOIN == join_algo_ || left_need_sort_ || right_need_sort_ || need_mat_) { //do nothing } else if (left_path_->is_pipelined_path() && right_path_->is_pipelined_path()) { is_pipelined_path_ = true; is_nl_style_pipelined_path_ = NESTED_LOOP_JOIN == join_algo_ && left_path_->is_nl_style_pipelined_path() && right_path_->is_nl_style_pipelined_path(); } return ret; } int SubQueryPath::assign(const SubQueryPath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to deep copy path", K(ret)); } else { subquery_id_ = other.subquery_id_; root_ = other.root_; } return ret; } int SubQueryPath::estimate_cost() { int ret = OB_SUCCESS; int64_t parallel = 0; if (OB_ISNULL(root_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(root_), K(ret)); } else if (OB_UNLIKELY((parallel = root_->get_parallel()) < 1)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(ret), K(parallel)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); double child_card = root_->get_card(); double child_cost = root_->get_cost(); op_cost_ = ObOptEstCost::cost_filter_rows(child_card / parallel, filter_, opt_ctx); cost_ = child_cost + op_cost_; } return ret; } int SubQueryPath::re_estimate_cost(EstimateCostInfo ¶m, double &card, double &cost) { int ret = OB_SUCCESS; const int64_t parallel = (ObGlobalHint::UNSET_PARALLEL == param.need_parallel_ || is_match_all()) ? parallel_ : param.need_parallel_; card = get_path_output_rows(); if (OB_ISNULL(root_) || OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(root_), K(ret)); } else if (OB_UNLIKELY(parallel < 1)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(ret), K(parallel_), K(param.need_parallel_)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); if (param.need_row_count_ >= 0) { if (param.need_row_count_ < card && card > OB_DOUBLE_EPSINON) { double output_row_count = param.need_row_count_; param.need_row_count_ = (param.need_row_count_ / card) * root_->get_card(); card = output_row_count; } } double child_card = root_->get_card(); double child_cost = root_->get_cost(); double op_cost = 0.0; if (OB_FAIL(root_->re_est_cost(param, child_card, child_cost))) { LOG_WARN("failed to est cost", K(ret)); } else { op_cost = ObOptEstCost::cost_filter_rows(child_card / parallel, filter_, opt_ctx); cost = child_cost + op_cost; if (param.override_) { op_cost_ = op_cost; cost_ = cost; } } } return ret; } int SubQueryPath::compute_pipeline_info() { int ret = OB_SUCCESS; if (OB_ISNULL(root_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null root", K(ret)); } else { is_pipelined_path_ = root_->is_pipelined_plan(); is_nl_style_pipelined_path_ = root_->is_nl_style_pipelined_plan(); } return ret; } int ObJoinOrder::init_base_join_order(const TableItem *table_item) { int ret = OB_SUCCESS; const ObDMLStmt* stmt = NULL; int32_t table_bit_index = OB_INVALID_INDEX; if (OB_ISNULL(table_item) || OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(table_item), K(get_plan()), K(stmt), K(ret)); } else { table_id_ = table_item->table_id_; table_meta_info_.ref_table_id_ = table_item->ref_id_; table_meta_info_.table_type_ = table_item->table_type_; table_bit_index = stmt->get_table_bit_index(table_item->table_id_); if (OB_FAIL(get_tables().add_member(table_bit_index)) || OB_FAIL(get_output_tables().add_member(table_bit_index))) { LOG_WARN("failed to add member", K(table_bit_index), K(ret)); } else if (table_item->is_basic_table()) { set_type(ACCESS); } else if (table_item->is_temp_table()) { set_type(TEMP_TABLE_ACCESS); } else if (table_item->is_generated_table()) { set_type(SUBQUERY); } else if (table_item->is_fake_cte_table()) { set_type(FAKE_CTE_TABLE_ACCESS); } else if (table_item->is_function_table()) { set_type(FUNCTION_TABLE_ACCESS); } else if (table_item->is_json_table()) { set_type(JSON_TABLE_ACCESS); } else if (table_item->is_values_table()) { set_type(VALUES_TABLE_ACCESS); } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid type of table item", K(table_item->type_), K(ret)); } } return ret; } int ObJoinOrder::generate_base_paths() { int ret = OB_SUCCESS; if (FAKE_CTE_TABLE_ACCESS == get_type()) { ret = generate_cte_table_paths(); } else if (FUNCTION_TABLE_ACCESS == get_type()) { ret = generate_function_table_paths(); } else if (JSON_TABLE_ACCESS == get_type()) { ret = generate_json_table_paths(); } else if (TEMP_TABLE_ACCESS == get_type()) { ret = generate_temp_table_paths(); } else if (ACCESS == get_type()) { ret = generate_normal_base_table_paths(); } else if (SUBQUERY == get_type()) { OPT_TRACE_TITLE("begin generate subplan"); ret = generate_normal_subquery_paths(); OPT_TRACE_TITLE("end generate subplan"); } else if (VALUES_TABLE_ACCESS == get_type()) { ret = generate_values_table_paths(); } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected base path type", K(get_type()), K(ret)); } return ret; } int ObJoinOrder::generate_json_table_paths() { int ret = OB_SUCCESS; JsonTablePath *json_path = NULL; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(allocator_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(stmt), K(allocator_), K(ret)); } else if (OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id_)) || OB_ISNULL(table_item->json_table_def_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(table_id_), K(table_item), K(ret)); } else if (OB_ISNULL(json_path = static_cast(allocator_->alloc(sizeof(JsonTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate access path", K(ret)); } else { json_path = new(json_path) JsonTablePath(); json_path->table_id_ = table_id_; json_path->parent_ = this; ObSEArray nl_params; ObRawExpr* json_table_expr = NULL; // magic number ? todo refine this output_rows_ = 199; output_row_size_ = 199; json_path->strong_sharding_ = get_plan()->get_optimizer_context().get_match_all_sharding(); if (OB_FAIL(json_path->set_parallel_and_server_info_for_match_all())) { LOG_WARN("failed set parallel and server info for match all", K(ret)); } else if (OB_FAIL(append(json_path->filter_, get_restrict_infos()))) { LOG_WARN("failed to append filter", K(ret)); } else if (OB_ISNULL(json_table_expr = table_item->json_table_def_->doc_expr_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to extract param for json table expr", K(ret)); } else if (OB_FAIL(param_json_table_expr(json_table_expr, nl_params, json_path->subquery_exprs_))) { LOG_WARN("failed to extract param for json table expr", K(ret)); } else if (OB_FAIL(json_path->nl_params_.assign(nl_params))) { LOG_WARN("failed to assign nl params", K(ret)); } else { json_path->value_expr_ = json_table_expr; } if (OB_SUCC(ret)) { if (OB_FAIL(json_path->estimate_cost())) { LOG_WARN("failed to estimate cost", K(ret)); } else if (OB_FAIL(json_path->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(add_path(json_path))) { LOG_WARN("failed to add path", K(ret)); } else { /*do nothing*/ } } } return ret; } int ObJoinOrder::generate_function_table_paths() { int ret = OB_SUCCESS; FunctionTablePath *func_path = NULL; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(allocator_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(stmt), K(allocator_), K(ret)); } else if (OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id_)) || OB_ISNULL(table_item->function_table_expr_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(table_id_), K(table_item), K(ret)); } else if (OB_ISNULL(func_path = reinterpret_cast( allocator_->alloc(sizeof(FunctionTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate access path", K(ret)); } else { func_path = new(func_path) FunctionTablePath(); func_path->table_id_ = table_id_; func_path->parent_ = this; ObSEArray nl_params; ObRawExpr* function_table_expr = NULL; // magic number ? todo refine this output_rows_ = 199; output_row_size_ = 199; func_path->strong_sharding_ = get_plan()->get_optimizer_context().get_match_all_sharding(); if (OB_FAIL(func_path->set_parallel_and_server_info_for_match_all())) { LOG_WARN("failed set parallel and server info for match all", K(ret)); } else if (OB_FAIL(append(func_path->filter_, get_restrict_infos()))) { LOG_WARN("failed to append filter", K(ret)); } else if (OB_ISNULL(function_table_expr = table_item->function_table_expr_)) { LOG_WARN("unexpected null function table expr", K(ret)); } else if (OB_FAIL(param_funct_table_expr(function_table_expr, nl_params, func_path->subquery_exprs_))) { LOG_WARN("failed to extract param for function table expr", K(ret)); } else if (OB_FAIL(func_path->nl_params_.assign(nl_params))) { LOG_WARN("failed to assign nl params", K(ret)); } else { func_path->value_expr_ = function_table_expr; } if (OB_SUCC(ret)) { if (OB_FAIL(func_path->estimate_cost())) { LOG_WARN("failed to estimate cost", K(ret)); } else if (OB_FAIL(func_path->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(add_path(func_path))) { LOG_WARN("failed to add path", K(ret)); } else { /*do nothing*/ } } } return ret; } int ObJoinOrder::param_funct_table_expr(ObRawExpr* &function_table_expr, ObIArray &nl_params, ObIArray &subquery_exprs) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObLogPlan *plan = get_plan(); ObSEArray old_func_exprs; ObSEArray new_func_exprs; if (OB_ISNULL(plan = get_plan()) || OB_ISNULL(stmt = plan->get_stmt())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(plan), K(ret)); } else if (OB_FAIL(old_func_exprs.push_back(function_table_expr))) { LOG_WARN("failed to push back function table expr", K(ret)); } else if (OB_FAIL(extract_params_for_inner_path(function_table_expr->get_relation_ids(), nl_params, subquery_exprs, old_func_exprs, new_func_exprs))) { LOG_WARN("failed to extract params", K(ret)); } else if (OB_UNLIKELY(new_func_exprs.count() != 1) || OB_ISNULL(new_func_exprs.at(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("new function table expr is invalid", K(ret), K(new_func_exprs)); } else { function_table_expr = new_func_exprs.at(0); } return ret; } int ObJoinOrder::param_json_table_expr(ObRawExpr* &json_table_expr, ObIArray &nl_params, ObIArray &subquery_exprs) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObLogPlan *plan = get_plan(); ObSEArray old_json_exprs; ObSEArray new_json_exprs; if (OB_ISNULL(plan = get_plan()) || OB_ISNULL(stmt = plan->get_stmt()) || OB_ISNULL(json_table_expr)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(plan), K(ret)); } else if (OB_FAIL(old_json_exprs.push_back(json_table_expr))) { LOG_WARN("failed to push back function table expr", K(ret)); } else if (OB_FAIL(extract_params_for_inner_path(json_table_expr->get_relation_ids(), nl_params, subquery_exprs, old_json_exprs, new_json_exprs))) { LOG_WARN("failed to extract params", K(ret)); } else if (OB_UNLIKELY(new_json_exprs.count() != 1) || OB_ISNULL(new_json_exprs.at(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("new function table expr is invalid", K(ret), K(new_json_exprs)); } else { json_table_expr = new_json_exprs.at(0); } return ret; } int ObJoinOrder::create_one_cte_table_path(const TableItem* table_item, ObShardingInfo *sharding) { int ret = OB_SUCCESS; CteTablePath *ap = NULL; if (OB_ISNULL(ap = reinterpret_cast(allocator_->alloc(sizeof(CteTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an AccessPath", K(ret)); } else { ap = new(ap) CteTablePath(); ap->table_id_ = table_id_; ap->ref_table_id_ = table_item->ref_id_; ap->parent_ = this; ap->contain_fake_cte_ = true; ap->strong_sharding_ = sharding; ap->contain_match_all_fake_cte_ = (table_item->is_recursive_union_fake_table_ && sharding->is_match_all()); if (OB_FAIL(ap->set_parallel_and_server_info_for_match_all())) { LOG_WARN("failed set parallel and server info for match all", K(ret)); } else if (OB_FAIL(append(ap->filter_, get_restrict_infos()))) { LOG_WARN("failed to push back expr", K(ret)); } else if (OB_FAIL(ap->estimate_cost())) { LOG_WARN("failed to estimate cost", K(ret)); } else if (OB_FAIL(ap->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(add_path(ap))) { LOG_WARN("failed to add path", K(ret)); } else { /* do nothing */ } } return ret; } int ObJoinOrder::estimate_size_and_width_for_fake_cte(uint64_t table_id, ObSelectLogPlan *nonrecursive_plan) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; ObLogicalOperator *nonrecursive_root = NULL; double selectivity = 0; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(nonrecursive_plan) || OB_ISNULL(nonrecursive_plan->get_stmt()) || OB_UNLIKELY(!nonrecursive_plan->get_stmt()->is_select_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(nonrecursive_plan), K(nonrecursive_root), K(stmt), K(ret)); } else if (OB_FAIL(nonrecursive_plan->get_candidate_plans().get_best_plan(nonrecursive_root))) { LOG_WARN("failed to get best plan", K(ret)); } else if (OB_ISNULL(nonrecursive_root)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(nonrecursive_root)); } else if (FALSE_IT(nonrecursive_plan->get_selectivity_ctx().init_op_ctx( &nonrecursive_root->get_output_equal_sets(), nonrecursive_root->get_card()))) { // do nothing } else if (OB_FAIL(get_plan()->get_basic_table_metas().add_generate_table_meta_info( get_plan()->get_stmt(), static_cast(nonrecursive_plan->get_stmt()), table_id, nonrecursive_plan->get_update_table_metas(), nonrecursive_plan->get_selectivity_ctx(), nonrecursive_root->get_card()))) { LOG_WARN("failed to add generate table meta info", K(ret)); } else if (OB_FAIL(ObOptEstCost::estimate_width_for_table(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), stmt->get_column_items(), table_id, output_row_size_))) { LOG_WARN("estimate width of row failed", K(table_id), K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), get_restrict_infos(), selectivity, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calc filter selectivities", K(get_restrict_infos()), K(ret)); } else { set_output_rows(nonrecursive_root->get_card() * selectivity); if (OB_FAIL(ObOptSelectivity::update_table_meta_info(get_plan()->get_basic_table_metas(), get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), table_id, get_output_rows(), get_restrict_infos(), get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to update table meta info", K(ret)); } LOG_TRACE("estimate rows for fake cte", K(output_rows_), K(get_plan()->get_basic_table_metas())); } return ret; } int ObJoinOrder::generate_cte_table_paths() { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(allocator_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(stmt), K(allocator_), K(ret)); } else if (OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(table_id_)); } else if (OB_FAIL(estimate_size_and_width_for_fake_cte(table_id_, get_plan()->get_nonrecursive_plan_for_fake_cte()))) { LOG_WARN("failed to calc filter selectivities", K(get_restrict_infos()), K(ret)); } else if (OB_FAIL(create_one_cte_table_path(table_item, get_plan()->get_optimizer_context().get_match_all_sharding()))) { LOG_WARN("failed to create one cte table path", K(ret)); } else if (table_item->is_recursive_union_fake_table_ && OB_FAIL(create_one_cte_table_path(table_item, get_plan()->get_optimizer_context().get_local_sharding()))) { LOG_WARN("failed to create one cte table path", K(ret)); } return ret; } int ObJoinOrder::generate_normal_base_table_paths() { int ret = OB_SUCCESS; PathHelper helper; helper.is_inner_path_ = false; helper.table_opt_info_ = &table_opt_info_; if (OB_FAIL(helper.filters_.assign(restrict_info_set_))) { LOG_WARN("failed to assign restrict info set", K(ret)); } else if (OB_FAIL(generate_base_table_paths(helper))) { LOG_WARN("failed to generate access paths", K(ret)); } return ret; } int ObJoinOrder::generate_base_table_paths(PathHelper &helper) { int ret = OB_SUCCESS; ObSEArray access_paths; ObSEArray tbl_part_infos; uint64_t table_id = table_id_; uint64_t ref_table_id = table_meta_info_.ref_table_id_; if (!helper.is_inner_path_ && OB_FAIL(compute_base_table_property(table_id, ref_table_id))) { LOG_WARN("failed to compute base path property", K(ret)); } else if (OB_FAIL(create_access_paths(table_id, ref_table_id, helper, access_paths))) { LOG_WARN("failed to add table to join order(single)", K(ret)); } else if (OB_FAIL(compute_table_location_for_paths(access_paths, tbl_part_infos))) { LOG_WARN("failed to calc table location", K(ret)); } else if (OB_FAIL(estimate_size_for_base_table(helper, access_paths))) { LOG_WARN("failed to estimate_size", K(ret)); } else if (OB_FAIL(pruning_unstable_access_path(helper.table_opt_info_, access_paths))) { LOG_WARN("failed to pruning unstable access path", K(ret)); } else if (OB_FAIL(get_plan()->select_location(tbl_part_infos))) { LOG_WARN("failed to select location", K(ret)); } else if (OB_FAIL(compute_parallel_and_server_info_for_base_paths(access_paths))) { LOG_WARN("failed to compute", K(ret)); } else if (OB_FAIL(compute_sharding_info_for_base_paths(access_paths))) { LOG_WARN("failed to calc sharding info", K(ret)); } else if (OB_FAIL(compute_cost_and_prune_access_path(helper, access_paths))) { LOG_WARN("failed to compute cost and prune access path", K(ret)); } else if (OB_FAIL(revise_output_rows_after_creating_path(helper, access_paths))) { LOG_WARN("failed to revise output rows after creating path", K(ret)); } else if (OB_FAIL(append(available_access_paths_, access_paths))) { LOG_WARN("failed to append access paths", K(ret)); } return ret; } int ObJoinOrder::compute_base_table_property(uint64_t table_id, uint64_t ref_table_id) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null or path type", K(ret), K(get_plan()), K(stmt)); } else if (OB_FAIL(ObOptimizerUtil::compute_const_exprs(restrict_info_set_, output_const_exprs_))) { LOG_WARN("failed to compute const exprs", K(ret)); } else if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, restrict_info_set_, output_equal_sets_))) { LOG_WARN("failed to compute equal set for access path", K(ret)); } else if (OB_FAIL(compute_fd_item_set_for_table_scan(table_id, ref_table_id, get_restrict_infos()))) { LOG_WARN("failed to extract fd item set", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::is_exprs_unique(get_output_const_exprs(), get_fd_item_set(), get_output_equal_sets(), get_output_const_exprs(), is_at_most_one_row_))) { LOG_WARN("failed to compute at most one row", K(ret)); } else if (OB_FAIL(compute_table_location(table_id, ref_table_id, false, table_partition_info_))) { LOG_WARN("failed to calc table location", K(ret)); } else if (OB_FAIL(compute_table_meta_info(table_id, ref_table_id))) { LOG_WARN("failed to compute table meta info", K(ret)); } else if (OB_FAIL(ObOptEstCost::estimate_width_for_table(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), stmt->get_column_items(), table_id_, output_row_size_))) { LOG_WARN("estimate width of row failed", K(table_id_), K(ret)); } else { LOG_TRACE("succeed to compute base table property", K(restrict_info_set_), K(output_const_exprs_), K(output_equal_sets_)); } return ret; } int ObJoinOrder::pruning_unstable_access_path(BaseTableOptInfo *table_opt_info, ObIArray &access_paths) { int ret = OB_SUCCESS; ObSQLSessionInfo *session_info = NULL; ObSEArray unstable_index_id; if (access_paths.count() <= 1) { /* do not pruning access path */ } else if (OB_FAIL(try_pruning_base_table_access_path(access_paths, unstable_index_id))) { LOG_WARN("failed to pruning base table access path", K(ret)); } if (OB_SUCC(ret)) { ObSEArray available_index_id; uint64_t base_table_id = OB_INVALID_ID; uint64_t table_id = OB_INVALID_ID; AccessPath *ap = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); ++i) { if (OB_ISNULL(ap = access_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret)); } else if (OB_FAIL(available_index_id.push_back(ap->index_id_))) { LOG_WARN("failed to push back index id", K(ret)); } else if (0 == i) { base_table_id = ap->ref_table_id_; table_id = ap->table_id_; } } if (OB_SUCC(ret) && OB_FAIL(fill_opt_info_index_name(table_id, base_table_id, available_index_id, unstable_index_id, table_opt_info))) { LOG_WARN("failed to fill opt info index name", K(ret), K(base_table_id), K(available_index_id), K(unstable_index_id)); } } return ret; } int ObJoinOrder::try_pruning_base_table_access_path(ObIArray &access_paths, ObIArray &unstable_index_id) { int ret = OB_SUCCESS; bool need_prune = false; ObSEArray base_path_positions; AccessPath *ap = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); ++i) { if (OB_ISNULL(ap = access_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret)); } else if (ap->ref_table_id_ == ap->index_id_) { if (OB_FAIL(base_path_positions.push_back(i))) { LOG_WARN("failed to push back pos", K(ret)); } } else { need_prune |= ap->range_prefix_count_ > 0 && ap->get_logical_query_range_row_count() < PRUNING_ROW_COUNT_THRESHOLD; need_prune |= ap->range_prefix_count_ > 0 && ap->est_cost_info_.index_meta_info_.is_geo_index_; } } if (OB_SUCC(ret) && need_prune) { for (int64_t i = base_path_positions.count() - 1; OB_SUCC(ret) && i >= 0; --i) { int64_t base_path_pos = base_path_positions.at(i); if (OB_ISNULL(ap = access_paths.at(base_path_pos))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected pos or access path", K(ret), K(base_path_pos), K(access_paths.count()), K(ap)); } else if (ap->range_prefix_count_ > 0) { /* do nothing */ } else if (OB_FAIL(access_paths.remove(base_path_pos))) { LOG_WARN("failed to remove access path", K(ret), K(base_path_pos)); } else if (OB_FAIL(unstable_index_id.push_back(ap->index_id_))) { LOG_WARN("failed to push back index id", K(ret)); } else { LOG_TRACE("pruned base table access paths", K(*ap)); } } } return ret; } int ObJoinOrder::generate_temp_table_paths() { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; TempTablePath *temp_table_path = NULL; ObLogicalOperator *temp_table_root = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(stmt), K(table_id_), K(table_item)); } else if (OB_ISNULL(temp_table_root = get_plan()->get_optimizer_context(). get_temp_table_plan(table_item->ref_query_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(temp_table_root), K(ret)); } else if (OB_ISNULL(temp_table_path = reinterpret_cast( allocator_->alloc(sizeof(TempTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an AccessPath", K(ret)); } else { temp_table_path = new(temp_table_path) TempTablePath(); temp_table_path->table_id_ = table_id_; temp_table_path->temp_table_id_ = table_item->ref_id_; temp_table_path->root_ = temp_table_root; temp_table_path->parent_ = this; if (OB_FAIL(append(temp_table_path->filter_, get_restrict_infos()))) { LOG_WARN("failed to push back restrict infos.", K(ret)); } else if (OB_FAIL(compute_subquery_property(table_id_, temp_table_root))) { LOG_WARN("failed to generate subquery property", K(ret)); } else if (OB_FAIL(compute_subquery_path_property(table_id_, temp_table_root, temp_table_path))) { LOG_WARN("failed to generate subquery paths", K(ret)); } else if (OB_FAIL(temp_table_path->compute_sharding_info())) { LOG_WARN("failed to reset temp table partition keys", K(ret)); } else if (OB_FAIL(temp_table_path->compute_path_ordering())) { LOG_WARN("failed to compute path ordering", K(ret)); } else if (OB_FAIL(temp_table_path->estimate_cost())) { LOG_WARN("failed to estimate cost", K(ret)); } else if (OB_FAIL(temp_table_path->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(add_path(temp_table_path))) { LOG_WARN("failed to add path", K(ret)); } else if (ObShardingInfo::is_shuffled_server_list(temp_table_path->server_list_)) { /** Two temp tables with shuffled server list might not be in the same real server list * TEMP1 (shuffled : s1,s2) TEMP2 (shuffled : s3,s4) * | | * GROUPY BY GROUP BY * | | * HASH EXCHANGE HASH EXCHANGE * | | * TABLE SCAN(s1, s2) TABLE SCAN(s3, s4) * TEMP1 and TEMP2 should not be union all by ext partition wise */ temp_table_path->server_list_.reuse(); } } return ret; } int ObJoinOrder::extract_necessary_pushdown_quals(ObIArray &candi_quals, ObIArray &necessary_pushdown_quals, ObIArray &unnecessary_pushdown_quals) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(stmt)); } else if (stmt->is_hierarchical_query()) { /** * PredicateMoveAround skipped hierarchical query, * so we push down all of its quals here. */ if (OB_FAIL(append(necessary_pushdown_quals, candi_quals))) { LOG_WARN("failed to append", K(ret)); } } else { for (int64_t i = 0; OB_SUCC(ret) && i < candi_quals.count(); i ++) { ObRawExpr *expr = candi_quals.at(i); /** * Only push down such filters here: * a. Filters contain dynamic param, such as onetime exprs: `a = ?` * select * from (select * from t) where a = (select max(b) from t); * b. Filters generated by optimizer: `v1.a = 1 or v1.a = 2` * select * from (select * from t) v1, v2 where (v1.a = 1 and v1.b = v2.b) or v1.a = 2; * c. Filters push down by upper log plan * * case a and case b should be removed after they can be push down in the transformer */ if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret)); } else if (expr->has_flag(CNT_DYNAMIC_PARAM) || ObOptimizerUtil::find_item(get_plan()->get_new_or_quals(), expr) || ObOptimizerUtil::find_item(get_plan()->get_pushdown_filters(), expr)) { if (OB_FAIL(necessary_pushdown_quals.push_back(expr))) { LOG_WARN("failed to push back", K(ret)); } } else { if (OB_FAIL(unnecessary_pushdown_quals.push_back(expr))) { LOG_WARN("failed to push back", K(ret)); } } } } return ret; } int ObJoinOrder::generate_normal_subquery_paths() { int ret = OB_SUCCESS; PathHelper helper; bool can_pushdown = false; const ObDMLStmt *parent_stmt = NULL; const TableItem *table_item = NULL; ObSQLSessionInfo *session_info = NULL; ObRawExprFactory *expr_factory = NULL; ObSEArray candi_pushdown_quals; ObSEArray candi_nonpushdown_quals; helper.is_inner_path_ = false; LOG_TRACE("start to generate normal subquery path", K(table_id_)); if (OB_ISNULL(get_plan()) || OB_ISNULL(parent_stmt = get_plan()->get_stmt()) || OB_ISNULL(session_info = get_plan()->get_optimizer_context().get_session_info()) || OB_ISNULL(expr_factory = &get_plan()->get_optimizer_context().get_expr_factory()) || OB_ISNULL(table_item = parent_stmt->get_table_item_by_id(table_id_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(parent_stmt), K(table_item), K(ret)); } else if (OB_ISNULL(helper.child_stmt_ = table_item->ref_query_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("stmt is null", K(ret)); } else if (OB_FAIL(extract_necessary_pushdown_quals(get_restrict_infos(), candi_pushdown_quals, candi_nonpushdown_quals))) { LOG_WARN("failed to classify push down quals", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::pushdown_and_rename_filter_into_subquery(*parent_stmt, *helper.child_stmt_, table_id_, get_plan()->get_optimizer_context(), candi_pushdown_quals, helper.pushdown_filters_, helper.filters_, /*check_match_index*/false))) { LOG_WARN("failed to push down filter into subquery", K(ret)); } else if (OB_FAIL(append(helper.filters_, candi_nonpushdown_quals))) { LOG_WARN("failed to append", K(ret)); } else if (OB_FAIL(generate_subquery_paths(helper))) { LOG_WARN("failed to generate subquery path", K(ret)); } LOG_TRACE("succed to generate normal subquery path", K(table_id_), K(interesting_paths_)); return ret; } int ObJoinOrder::generate_subquery_paths(PathHelper &helper) { int ret = OB_SUCCESS; double inner_row_count = 0.0; ObLogPlan* log_plan = NULL; const ObDMLStmt *parent_stmt = NULL; const ObDMLStmt *child_stmt = NULL; ObLogicalOperator *best_child_plan = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(parent_stmt = get_plan()->get_stmt()) || OB_ISNULL(child_stmt = static_cast(helper.child_stmt_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(parent_stmt), K(child_stmt), K(ret)); } else if (OB_ISNULL(log_plan = get_plan()->get_optimizer_context().get_log_plan_factory().create( get_plan()->get_optimizer_context(), *child_stmt))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to create plan", K(ret)); } else if (OB_FAIL(log_plan->add_pushdown_filters(helper.pushdown_filters_))) { LOG_WARN("failed to add pushdown filters", K(ret)); } else { log_plan->set_is_subplan_scan(true); if (parent_stmt->is_insert_stmt()) { log_plan->set_insert_stmt(static_cast(parent_stmt)); } if (OB_FAIL(log_plan->generate_raw_plan())) { LOG_WARN("failed to optimize sub-select", K(ret)); } else if (OB_FAIL(log_plan->get_candidate_plans().get_best_plan(best_child_plan))) { LOG_WARN("failed to get best plan", K(ret)); } else if (OB_ISNULL(best_child_plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (!helper.is_inner_path_ && OB_FAIL(compute_subquery_property(table_id_, best_child_plan))) { LOG_WARN("failed to generate subquery property", K(ret)); } else if (helper.is_inner_path_ && OB_FAIL(estimate_size_for_inner_subquery_path(best_child_plan->get_card(), helper.filters_, inner_row_count))) { LOG_WARN("failed to estimate size for inner subquery path", K(ret)); } else { ObIArray &candidate_plans = log_plan->get_candidate_plans().candidate_plans_; for (int64_t i = 0; OB_SUCC(ret) && i < candidate_plans.count(); i++) { ObLogicalOperator *root = NULL; SubQueryPath *sub_path = NULL; if (OB_ISNULL(root = candidate_plans.at(i).plan_tree_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(root), K(ret)); } else if (OB_ISNULL(sub_path = static_cast(allocator_->alloc(sizeof(SubQueryPath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate subquery path", K(ret)); } else { sub_path = new (sub_path) SubQueryPath(root); sub_path->subquery_id_ = table_id_; sub_path->parent_ = this; if (OB_FAIL(append(sub_path->filter_, helper.filters_))) { LOG_WARN("failed to append expr", K(ret)); } else if (OB_FAIL(sub_path->subquery_exprs_.assign(helper.subquery_exprs_))) { LOG_WARN("failed to assign exprs", K(ret)); } else if (OB_FAIL(compute_subquery_path_property(table_id_, root, sub_path))) { LOG_WARN("failed to generate subquery property", K(ret)); } else if (OB_FAIL(sub_path->estimate_cost())) { LOG_WARN("failed to calculate cost of subquery path", K(ret)); } else if (OB_FAIL(sub_path->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (helper.is_inner_path_) { if (OB_FAIL(helper.inner_paths_.push_back(sub_path))) { LOG_WARN("failed to push back inner path", K(ret)); } else { sub_path->inner_row_count_ = inner_row_count; LOG_TRACE("succeed to generate inner subquery path", K(table_id_), K(sub_path->get_ordering())); } } else if (OB_FAIL(add_path(sub_path))) { LOG_WARN("failed to add path", K(ret)); } else { LOG_TRACE("succeed to generate normal subquery path", K(table_id_), K(sub_path->get_ordering())); } } } } } LOG_TRACE("succed to generate normal subquery path", K(table_id_), K(interesting_paths_)); return ret; } // generate physical property for each subquery path, including ordering, sharding int ObJoinOrder::compute_subquery_path_property(const uint64_t table_id, ObLogicalOperator *root, Path *path) { int ret = OB_SUCCESS; if (OB_ISNULL(allocator_) || OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(root) || OB_ISNULL(root->get_stmt()) || OB_ISNULL(path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(root), K(path), K(allocator_), K(ret)); } else if (OB_UNLIKELY(!root->get_stmt()->is_select_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected stmt type", K(ret)); } else { int64_t interesting_order_info = OrderingFlag::NOT_MATCH; const ObDMLStmt *parent_stmt = get_plan()->get_stmt(); if (OB_FAIL(convert_subplan_scan_order_item(*get_plan(), *root, table_id, path->get_ordering()))) { LOG_WARN("failed to convert subplan scan order item", K(ret)); } else if (OB_FAIL(convert_subplan_scan_sharding_info(*get_plan(), *root, table_id, path->strong_sharding_, path->weak_sharding_))) { LOG_WARN("failed to convert subplan scan sharding info", K(ret)); } else if (OB_FAIL(check_all_interesting_order(path->get_ordering(), parent_stmt, interesting_order_info))) { LOG_WARN("failed to check all interesting order", K(ret)); } else { path->set_interesting_order_info(interesting_order_info); path->is_local_order_ = root->get_is_local_order(); path->exchange_allocated_ = root->is_exchange_allocated(); path->phy_plan_type_ = root->get_phy_plan_type(); path->location_type_ = root->get_location_type(); path->contain_fake_cte_ = root->get_contains_fake_cte(); path->contain_pw_merge_op_ = root->get_contains_pw_merge_op(); path->contain_match_all_fake_cte_ = root->get_contains_match_all_fake_cte(); path->contain_das_op_ = root->get_contains_das_op(); path->parallel_ = root->get_parallel(); path->server_cnt_ = root->get_server_cnt(); path->available_parallel_ = root->get_available_parallel(); if (OB_FAIL(path->server_list_.assign(root->get_server_list()))) { LOG_WARN("failed to assign subquery path server list", K(ret)); } } } return ret; } // generate logical property for each subquery, including const exprs, fd item sets int ObJoinOrder::compute_subquery_property(const uint64_t table_id, ObLogicalOperator *root) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(root) || OB_ISNULL(root->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(root), K(ret)); } else if (OB_UNLIKELY(!root->get_stmt()->is_select_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected stmt type", K(ret)); } else if (OB_FAIL(estimate_size_and_width_for_subquery(table_id, root))) { LOG_WARN("failed to estimate size and width for subquery", K(ret)); } else if (OB_FAIL(compute_const_exprs_for_subquery(table_id, root))) { LOG_WARN("failed to compute const exprs for subquery", K(ret)); } else if (OB_FAIL(compute_equal_set_for_subquery(table_id, root))) { LOG_WARN("failed to compute equal set condition", K(ret)); } else if (OB_FAIL(compute_fd_item_set_for_subquery(table_id, root))) { LOG_WARN("failed to compute fd item set for subplan scan", K(ret)); } else { is_at_most_one_row_ = root->get_is_at_most_one_row(); } return ret; } int ObJoinOrder::estimate_size_for_inner_subquery_path(double root_card, const ObIArray &filters, double &output_card) { int ret = OB_SUCCESS; double selectivity = 0.0; if (OB_FAIL(ObOptSelectivity::calculate_selectivity(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), filters, selectivity, get_plan()->get_predicate_selectivities()))) { LOG_WARN("Failed to calc filter selectivities", K(filters), K(ret)); } else { output_card = root_card * selectivity; LOG_TRACE("estimate rows for inner subplan path", K(root_card), K(selectivity), K(output_card)); } return ret; } int ObJoinOrder::init_join_order(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const JoinInfo *join_info, const common::ObIArray &detectors) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || OB_ISNULL(join_info) || OB_ISNULL(allocator_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(left_tree), K(right_tree), K(allocator_), K(ret)); } else { //设置table_set_为左右的集合 if (OB_FAIL(get_tables().add_members(left_tree->get_tables()))) { LOG_WARN("fail to add left tree's tables", K(ret)); } else if (OB_FAIL(get_tables().add_members(right_tree->get_tables()))) { LOG_WARN("fail to add left tree's tables", K(ret)); } else if (IS_SEMI_ANTI_JOIN(join_info->join_type_)) { if (IS_LEFT_SEMI_ANTI_JOIN(join_info->join_type_)) { if (OB_FAIL(get_output_tables().add_members(left_tree->get_output_tables()))) { LOG_WARN("fail to add left tree's output tables", K(ret)); } } else if (OB_FAIL(get_output_tables().add_members(right_tree->get_output_tables()))) { LOG_WARN("fail to add left tree's output tables", K(ret)); } } else if (OB_FAIL(get_output_tables().add_members(left_tree->get_output_tables()))) { LOG_WARN("fail to add left tree's output tables", K(ret)); } else if (OB_FAIL(get_output_tables().add_members(right_tree->get_output_tables()))) { LOG_WARN("fail to add left tree's output tables", K(ret)); } //设置join info if (OB_SUCC(ret)) { JoinInfo* temp_join_info = NULL; if (OB_ISNULL(temp_join_info = static_cast( allocator_->alloc(sizeof(JoinInfo))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to create outer join info", K(ret)); } else { temp_join_info = new (temp_join_info) JoinInfo(join_info->join_type_); if (OB_FAIL(temp_join_info->table_set_.add_members(join_info->table_set_))) { LOG_WARN("failed to add members", K(ret)); } else if (OB_FAIL(temp_join_info->on_conditions_.assign(join_info->on_conditions_))) { LOG_WARN("failed to assign on condition", K(ret)); } else if (OB_FAIL(temp_join_info->where_conditions_.assign(join_info->where_conditions_))) { LOG_WARN("failed to assign where condition", K(ret)); } else if (OB_FAIL(temp_join_info->equal_join_conditions_.assign(join_info->equal_join_conditions_))) { LOG_WARN("failed to assign equal join condition", K(ret)); } else { join_info_ = temp_join_info; } } } if (OB_SUCC(ret)) { bool has_rownum = false; if (left_tree->get_cnt_rownum() || right_tree->get_cnt_rownum()) { set_cnt_rownum(true); } else if (OB_FAIL(ObTransformUtils::check_has_rownum(join_info->on_conditions_, has_rownum))) { LOG_WARN("failed to check has rownum", K(ret)); } else if (!has_rownum && OB_FAIL(ObTransformUtils::check_has_rownum(join_info->where_conditions_, has_rownum))) { LOG_WARN("failed to check has rownum", K(ret)); } else if (!has_rownum && OB_FAIL(ObTransformUtils::check_has_rownum(join_info->equal_join_conditions_, has_rownum))) { LOG_WARN("failed to check has rownum", K(ret)); } else { set_cnt_rownum(has_rownum); } } if (OB_SUCC(ret)) { //outer join的join qual暂存于restrict info,用于equal set、const expr计算 if (IS_OUTER_OR_CONNECT_BY_JOIN(join_info->join_type_)) { if (OB_FAIL(append(get_restrict_infos(), join_info->where_conditions_))) { LOG_WARN("failed to append restrict info", K(ret)); } } } if (OB_SUCC(ret)) { if (OB_FAIL(merge_conflict_detectors(const_cast(left_tree), const_cast(right_tree), detectors))) { LOG_WARN("failed to merge conflict detectors", K(ret)); } else if (OB_FAIL(compute_join_property(left_tree, right_tree, join_info))) { LOG_WARN("failed to compute join property", K(ret)); } else { /*do nothing*/ } } } return ret; } int ObJoinOrder::compute_join_property(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const JoinInfo *join_info) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || OB_ISNULL(join_info)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_tree), K(right_tree), K(join_info), K(ret)); } else if (OB_FAIL(estimate_size_and_width_for_join(left_tree, right_tree, join_info->join_type_))) { LOG_WARN("failed to estimate_size", K(ret)); } else if (OB_FAIL(compute_const_exprs_for_join(left_tree, right_tree, join_info->join_type_))) { LOG_WARN("failed to compute const exprs for join", K(ret)); } else if (OB_FAIL(compute_equal_set_for_join(left_tree, right_tree, join_info->join_type_))) { LOG_WARN("failed to compute equal set", K(ret)); } else if (OB_FAIL(compute_fd_item_set_for_join(left_tree, right_tree, join_info, join_info->join_type_))) { LOG_WARN("failed to compute fd item set for join", K(ret)); } else if (OB_FAIL(compute_one_row_info_for_join(left_tree, right_tree, IS_OUTER_OR_CONNECT_BY_JOIN(join_info->join_type_) ? join_info->on_conditions_ : join_info->where_conditions_, join_info->equal_join_conditions_, join_info->join_type_))) { LOG_WARN("failed to compute one row info for join", K(ret)); } else { /*do nothing*/ } return ret; } /* * We currently support left-deep tree, right_deep tree and zigzag tree */ int ObJoinOrder::generate_join_paths(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const JoinInfo &join_info, bool force_ordered) { int ret = OB_SUCCESS; EqualSets equal_sets; ValidPathInfo path_info; ValidPathInfo reverse_path_info; ObJoinType join_type = join_info.join_type_; ObJoinType reverse_join_type = get_opposite_join_type(join_info.join_type_); bool is_connect_by = (join_info.join_type_ == CONNECT_BY_JOIN); typedef ObSEArray, 4> PathArray; reverse_path_info.is_reverse_path_ = true; SMART_VARS_2((PathArray, left_paths), (PathArray, right_paths)) { if (OB_FAIL(append(equal_sets, left_tree.get_output_equal_sets())) || OB_FAIL(append(equal_sets, right_tree.get_output_equal_sets()))) { LOG_WARN("failed to append equal sets", K(ret)); } else if (OB_FAIL(classify_paths_based_on_sharding(left_tree.get_interesting_paths(), left_tree.get_output_equal_sets(), left_paths))) { LOG_WARN("failed to classify paths based on sharding", K(ret)); } else if (OB_FAIL(classify_paths_based_on_sharding(right_tree.get_interesting_paths(), right_tree.get_output_equal_sets(), right_paths))) { LOG_WARN("failed to classify paths based on sharding", K(ret)); } else if (OB_FAIL(get_valid_path_info(left_tree, right_tree, join_type, IS_OUTER_OR_CONNECT_BY_JOIN(join_type) ? join_info.on_conditions_ : join_info.where_conditions_, false, false, path_info))) { LOG_WARN("failed to get valid path types", K(join_info.join_type_), K(ret)); } else if (!is_connect_by && !force_ordered && OB_FAIL(get_valid_path_info(right_tree, left_tree, reverse_join_type, IS_OUTER_OR_CONNECT_BY_JOIN(join_type) ? join_info.on_conditions_ : join_info.where_conditions_, false, true, reverse_path_info))) { LOG_WARN("failed to get valid path types", K(join_info.join_type_), K(ret)); } else if (OB_FAIL(inner_generate_join_paths(left_tree, right_tree, equal_sets, left_paths, right_paths, join_info.on_conditions_, join_info.where_conditions_, path_info, reverse_path_info))) { LOG_WARN("failed to generate join paths", K(ret)); } else if (interesting_paths_.count() > 0) { OPT_TRACE("succeed to generate join paths using hint"); LOG_TRACE("succeed to generate join paths using hint", K(path_info), K(reverse_path_info), K(ret)); } else if (OB_FAIL(get_plan()->get_log_plan_hint().check_status())) { LOG_WARN("failed to generate join paths with hint", K(ret)); } else if (FALSE_IT(path_info.reset()) || FALSE_IT(reverse_path_info.reset())) { /*do nothing*/ } else if (OB_FAIL(get_valid_path_info(left_tree, right_tree, join_type, IS_OUTER_OR_CONNECT_BY_JOIN(join_type) ? join_info.on_conditions_ : join_info.where_conditions_, true, false, path_info))) { LOG_WARN("failed to get valid path types", K(join_info.join_type_), K(ret)); } else if (!is_connect_by && OB_FAIL(get_valid_path_info(right_tree, left_tree, reverse_join_type, IS_OUTER_OR_CONNECT_BY_JOIN(join_type) ? join_info.on_conditions_ : join_info.where_conditions_, true, true, reverse_path_info))) { LOG_WARN("failed to get valid path types", K(join_info.join_type_), K(ret)); } else if (OB_FAIL(inner_generate_join_paths(left_tree, right_tree, equal_sets, left_paths, right_paths, join_info.on_conditions_, join_info.where_conditions_, path_info, reverse_path_info))) { LOG_WARN("failed to generate join path", K(ret)); } else if (interesting_paths_.empty()) { bool is_batch_stmt = get_plan()->get_optimizer_context().is_batched_multi_stmt(); if (is_batch_stmt) { ret = OB_BATCHED_MULTI_STMT_ROLLBACK; LOG_TRACE("no validated join paths for batch stmt, need to rollback", K(ret)); } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to generate join paths by ignoring hint", K(ret)); } } else { OPT_TRACE("succeed to generate join paths by ignoring hint"); LOG_TRACE("succeed to generate join paths by ignoring hint", K(ret)); } } return ret; } int ObJoinOrder::classify_paths_based_on_sharding(const ObIArray &input_paths, const EqualSets &equal_sets, ObIArray> &output_list) { int ret = OB_SUCCESS; Path *first_path = NULL; Path *second_path = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < input_paths.count(); i++) { if (OB_ISNULL(first_path = input_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(first_path), K(ret)); } else { bool is_find = false; for (int64_t j = 0; OB_SUCC(ret) && !is_find && j < output_list.count(); j++) { bool is_equal = false; ObIArray &path_list = output_list.at(j); if (OB_UNLIKELY(path_list.empty()) || OB_ISNULL(second_path = path_list.at(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(path_list.count()), K(second_path), K(ret)); } else if (first_path->parallel_ != second_path->parallel_) { /*do nothing*/ } else if (OB_FAIL(ObShardingInfo::is_sharding_equal(first_path->get_strong_sharding(), first_path->get_weak_sharding(), second_path->get_strong_sharding(), second_path->get_weak_sharding(), equal_sets, is_equal))) { LOG_WARN("failed to check whether sharding is equal", K(ret)); } else if (!is_equal) { /*do nothing*/ } else if (OB_FAIL(path_list.push_back(first_path))) { LOG_WARN("failed to push back first_path list", K(ret)); } else { is_find = true; } } if (OB_SUCC(ret) && !is_find) { ObSEArray path_list; if (OB_FAIL(path_list.push_back(first_path))) { LOG_WARN("failed to push back first_path list", K(ret)); } else if (OB_FAIL(output_list.push_back(path_list))) { LOG_WARN("failed to push back path list", K(ret)); } else { /*do nothing*/ } } } } return ret; } int ObJoinOrder::inner_generate_join_paths(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const EqualSets &equal_sets, const ObIArray> &left_paths, const ObIArray> &right_paths, const ObIArray &on_conditions, const ObIArray &where_conditions, const ValidPathInfo &path_info, const ValidPathInfo &reverse_path_info) { int ret = OB_SUCCESS; bool has_non_nl_path = false; bool has_equal_condition = false; double equal_cond_sel = 1.0; double other_cond_sel = 1.0; ObSEArray merge_join_conditions; ObSEArray merge_join_filters; ObSEArray merge_filters; ObSEArray left_merge_keys; ObSEArray right_merge_keys; ObSEArray null_safe_merge_info; ObSEArray hash_join_conditions; ObSEArray hash_join_filters; ObSEArray hash_filters; ObSEArray left_hash_keys; ObSEArray right_hash_keys; // for naaj NLJ to avoid partition wise && pkey ObSEArray empty_left_hash_keys; ObSEArray empty_right_hash_keys; ObSEArray empty_null_safe_hash_info; ObSEArray null_safe_hash_info; int64_t path_number = interesting_paths_.count(); NullAwareAntiJoinInfo naaj_info; LOG_TRACE("valid join path types", K(path_info), K(reverse_path_info)); if (OB_FAIL(classify_mergejoin_conditions(left_tree, right_tree, path_info.join_type_, on_conditions, where_conditions, merge_join_conditions, merge_join_filters, merge_filters))) { LOG_WARN("failed to classify merge join conditions", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_equal_keys(merge_join_conditions, left_tree.get_tables(), left_merge_keys, right_merge_keys, null_safe_merge_info))) { LOG_WARN("failed to get equal join keys", K(ret)); } else if (OB_FAIL(classify_hashjoin_conditions(left_tree, right_tree, path_info.join_type_, on_conditions, where_conditions, hash_join_conditions, hash_join_filters, hash_filters, naaj_info))) { LOG_WARN("failed to classify hash join conditions", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_equal_keys(hash_join_conditions, left_tree.get_tables(), left_hash_keys, right_hash_keys, null_safe_hash_info))) { LOG_WARN("failed to get equal join keys", K(ret)); } else { has_equal_condition = !merge_join_conditions.empty() || !hash_join_conditions.empty(); if (!has_equal_condition) { OPT_TRACE("do not have equal join condition, will not use merge/hash join"); } } // generate hash join paths if (OB_SUCC(ret) && !hash_join_conditions.empty() && ((HASH_JOIN & path_info.local_methods_) || (HASH_JOIN & reverse_path_info.local_methods_))) { LOG_TRACE("start to generate hash join paths"); get_plan()->get_selectivity_ctx().init_join_ctx(path_info.join_type_, &left_tree.get_tables(), &right_tree.get_tables(), left_tree.get_output_rows(), right_tree.get_output_rows()); if (OB_FAIL(ObOptSelectivity::calculate_selectivity( get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), hash_join_conditions, equal_cond_sel, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret), K(hash_join_conditions)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity( get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), hash_join_filters, other_cond_sel, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret), K(hash_join_filters)); } else if (FALSE_IT(naaj_info.set_is_sna(path_info.join_type_, false))) { } else if ((HASH_JOIN & path_info.local_methods_) && OB_FAIL(generate_hash_paths(equal_sets, left_paths, right_paths, left_hash_keys, right_hash_keys, null_safe_hash_info, hash_join_conditions, hash_join_filters, hash_filters, equal_cond_sel, other_cond_sel, path_info, naaj_info))) { LOG_WARN("failed to generate hash join paths", K(ret)); } else if (FALSE_IT(naaj_info.set_is_sna(reverse_path_info.join_type_, true))) { } else if ((HASH_JOIN & reverse_path_info.local_methods_) && OB_FAIL(generate_hash_paths(equal_sets, right_paths, left_paths, right_hash_keys, left_hash_keys, null_safe_hash_info, hash_join_conditions, hash_join_filters, hash_filters, equal_cond_sel, other_cond_sel, reverse_path_info, naaj_info))) { LOG_WARN("failed to generate hash join paths", K(ret)); } else { int64_t hash_join_path_num = interesting_paths_.count() - path_number; path_number = interesting_paths_.count(); if (path_number > 0) { has_non_nl_path = true; } OPT_TRACE("generate", hash_join_path_num, "hash join path"); LOG_TRACE("succeed to generate hash join paths", K(hash_join_conditions.count()), "hash_path_count", hash_join_path_num); } } // generate nest loop join paths if (OB_SUCC(ret) && ((NESTED_LOOP_JOIN & path_info.local_methods_) || (NESTED_LOOP_JOIN & reverse_path_info.local_methods_))) { LOG_TRACE("start to generate nested loop join path"); if ((NESTED_LOOP_JOIN & path_info.local_methods_) && OB_FAIL(generate_nl_paths(equal_sets, left_paths, right_paths, naaj_info.is_naaj_ ? empty_left_hash_keys : left_hash_keys, naaj_info.is_naaj_ ? empty_right_hash_keys : right_hash_keys, naaj_info.is_naaj_ ? empty_null_safe_hash_info : null_safe_hash_info, on_conditions, where_conditions, path_info, has_non_nl_path, has_equal_condition))) { LOG_WARN("failed to generate nested loop join path", K(ret)); } else if ((NESTED_LOOP_JOIN & reverse_path_info.local_methods_) && OB_FAIL(generate_nl_paths(equal_sets, right_paths, left_paths, naaj_info.is_naaj_ ? empty_right_hash_keys : right_hash_keys, naaj_info.is_naaj_ ? empty_left_hash_keys : left_hash_keys, naaj_info.is_naaj_ ? empty_null_safe_hash_info : null_safe_hash_info, on_conditions, where_conditions, reverse_path_info, has_non_nl_path, has_equal_condition))) { LOG_WARN("failed to generate nested loop join path", K(ret)); } else { int64_t nl_join_path_num = interesting_paths_.count() - path_number; path_number = interesting_paths_.count(); OPT_TRACE("generate", nl_join_path_num, "nl join path"); LOG_TRACE("succeed to generate all nested loop join path", "nl_path_count", nl_join_path_num); } } // generate merge join paths if (OB_SUCC(ret) && !merge_join_conditions.empty() && ((MERGE_JOIN & path_info.local_methods_) || (MERGE_JOIN & reverse_path_info.local_methods_))) { LOG_TRACE("start to generate merge join paths"); ObArenaAllocator allocator; bool can_ignore_merge_plan = !(interesting_paths_.empty() || !path_info.prune_mj_); typedef ObSEArray, 4> MergeKeyInfoArray; SMART_VARS_2((MergeKeyInfoArray, left_merge_infos), (MergeKeyInfoArray, right_merge_infos)) { get_plan()->get_selectivity_ctx().init_join_ctx(path_info.join_type_, &left_tree.get_tables(), &right_tree.get_tables(), left_tree.get_output_rows(), right_tree.get_output_rows()); if (OB_FAIL(ObOptSelectivity::calculate_selectivity( get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), merge_join_conditions, equal_cond_sel, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret), K(merge_join_conditions)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity( get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), merge_join_filters, other_cond_sel, get_plan()->get_predicate_selectivities()))) { LOG_WARN("failed to calculate selectivity", K(ret), K(merge_join_filters)); } else if (OB_FAIL(init_merge_join_structure(allocator, left_paths, left_merge_keys, left_merge_infos, can_ignore_merge_plan))) { LOG_WARN("failed to init merge join structure", K(ret)); } else if (OB_FAIL(init_merge_join_structure(allocator, right_paths, right_merge_keys, right_merge_infos, can_ignore_merge_plan))) { LOG_WARN("failed to init merge join structure", K(ret)); } else if ((MERGE_JOIN & path_info.local_methods_) && OB_FAIL(generate_mj_paths(equal_sets, left_paths, right_paths, left_merge_infos, left_merge_keys, right_merge_keys, null_safe_merge_info, merge_join_conditions, merge_join_filters, merge_filters, equal_cond_sel, other_cond_sel, path_info))) { LOG_WARN("failed to generate merge join paths", K(ret)); } else if ((MERGE_JOIN & reverse_path_info.local_methods_) && OB_FAIL(generate_mj_paths(equal_sets, right_paths, left_paths, right_merge_infos, right_merge_keys, left_merge_keys, null_safe_merge_info, merge_join_conditions, merge_join_filters, merge_filters, equal_cond_sel, other_cond_sel, reverse_path_info))) { LOG_WARN("failed to generate merge join paths", K(ret)); } else { int64_t merge_join_path_num = interesting_paths_.count() - path_number; path_number = interesting_paths_.count(); has_non_nl_path = true; OPT_TRACE("generate", merge_join_path_num, "merge join path"); LOG_TRACE("succeed to generate merge join paths", K(merge_join_conditions.count()), "merge_path_count", merge_join_path_num); } } } return ret; } int ObJoinOrder::generate_hash_paths(const EqualSets &equal_sets, const ObIArray> &left_paths, const ObIArray> &right_paths, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const ObIArray &join_conditions, const ObIArray &join_filters, const ObIArray &join_quals, const double equal_cond_sel, const double other_cond_sel, const ValidPathInfo &path_info, const NullAwareAntiJoinInfo &naaj_info) { int ret = OB_SUCCESS; ObSEArray left_best_paths; ObSEArray right_best_paths; if (OB_FAIL(find_minimal_cost_path(left_paths, left_best_paths))) { LOG_WARN("failed to find minimal cost path", K(ret)); } else if (OB_FAIL(find_minimal_cost_path(right_paths, right_best_paths))) { LOG_WARN("failed to find minimal cost path", K(ret)); } else { Path *left_path = NULL; Path *right_path = NULL; if (path_info.is_reverse_path_) { OPT_TRACE_TITLE("Consider Reverse HASH", ob_join_type_str(path_info.join_type_)); } else { OPT_TRACE_TITLE("Consider HASH", ob_join_type_str(path_info.join_type_)); } for (int64_t i = 0; OB_SUCC(ret) && i < left_best_paths.count(); i++) { if (OB_ISNULL(left_path = left_best_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else { for (int64_t j = 0; OB_SUCC(ret) && j < right_best_paths.count(); j++) { int64_t dist_method = 0; if (OB_ISNULL(right_path = right_best_paths.at(j))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(right_path), K(ret)); } else if (OB_FAIL(get_distributed_join_method(*left_path, *right_path, equal_sets, left_join_keys, right_join_keys, null_safe_info, path_info, HASH_JOIN, false, naaj_info.is_naaj_, dist_method))) { LOG_WARN("failed to get distributed join method", K(ret)); } else { LOG_TRACE("succeed to get distributed hash join method", K(dist_method)); for (int64_t k = DistAlgo::DIST_BASIC_METHOD; OB_SUCC(ret) && k < DistAlgo::DIST_MAX_JOIN_METHOD; k = k << 1) { if (dist_method & k) { DistAlgo dist_algo = get_dist_algo(k); if ((DistAlgo::DIST_PARTITION_WISE != dist_algo || is_partition_wise_valid(*left_path, *right_path)) && is_repart_valid(*left_path, *right_path, dist_algo, false /* is_nl */) && OB_FAIL(create_and_add_hash_path(left_path, right_path, path_info.join_type_, dist_algo, path_info.force_slave_mapping_, join_conditions, join_filters, join_quals, equal_cond_sel, other_cond_sel, naaj_info))) { LOG_WARN("failed to create and add hash path", K(ret)); } else { /*do nothing*/ } } } } } } } } return ret; } int ObJoinOrder::generate_nl_paths(const EqualSets &equal_sets, const ObIArray> &left_paths, const ObIArray> &right_paths, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const ObIArray &on_conditions, const ObIArray &where_conditions, const ValidPathInfo &path_info, const bool has_non_nl_path, const bool has_equal_cond) { int ret = OB_SUCCESS; Path *path = NULL; ObJoinOrder *left_tree = NULL; ObJoinOrder *right_tree = NULL; ObSEArray best_paths; const ObIArray &join_conditions = IS_OUTER_OR_CONNECT_BY_JOIN(path_info.join_type_) ? on_conditions : where_conditions; bool need_inner_path = false; if (path_info.is_reverse_path_) { OPT_TRACE_TITLE("Consider Reverse NL", ob_join_type_str(path_info.join_type_)); } else { OPT_TRACE_TITLE("Consider NL", ob_join_type_str(path_info.join_type_)); } if (OB_UNLIKELY(left_paths.empty()) || OB_UNLIKELY(right_paths.empty()) || OB_ISNULL(get_plan()) || OB_UNLIKELY(left_paths.at(0).empty()) || OB_ISNULL(left_tree = left_paths.at(0).at(0)->parent_) || OB_UNLIKELY(right_paths.at(0).empty()) || OB_ISNULL(right_tree = right_paths.at(0).at(0)->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(left_paths.count()), K(right_paths.count()), K(left_tree), K(right_tree), K(ret)); } else if (OB_FAIL(check_valid_for_inner_path(join_conditions, path_info, *right_tree, need_inner_path))) { LOG_WARN("failed to check valid for inner path", K(ret)); } else if (need_inner_path && OB_FAIL(get_cached_inner_paths(join_conditions, *left_tree, *right_tree, path_info.force_inner_nl_, best_paths))) { LOG_WARN("failed to generate best inner paths", K(ret)); } else if (!best_paths.empty()) { for (int64_t i = 0; OB_SUCC(ret) && i < left_paths.count(); i++) { for (int64_t j = 0; OB_SUCC(ret) && j < best_paths.count(); j++) { if (OB_FAIL(create_plan_for_inner_path(best_paths.at(j)))) { LOG_WARN("failed to create plan for inner path", K(ret)); } else if (OB_FAIL(generate_inner_nl_paths(equal_sets, left_paths.at(i), best_paths.at(j), left_join_keys, right_join_keys, null_safe_info, on_conditions, where_conditions, path_info, has_equal_cond))) { LOG_WARN("failed to generate inner nl paths", K(ret)); } else { /*do nothing*/ } } } } else if ((has_non_nl_path && !left_tree->get_is_at_most_one_row()) || path_info.force_inner_nl_) { /*do nothing*/ OPT_TRACE("ignore normal NL join"); } else { if (OB_FAIL(find_minimal_cost_path(right_paths, best_paths))) { LOG_WARN("failed to find minimal cost path", K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && i < left_paths.count(); i++) { for (int64_t j = 0; OB_SUCC(ret) && j < best_paths.count(); j++) { if (OB_FAIL(generate_normal_nl_paths(equal_sets, left_paths.at(i), best_paths.at(j), left_join_keys, right_join_keys, null_safe_info, on_conditions, where_conditions, path_info, has_equal_cond))) { LOG_WARN("failed to generate normal nl paths", K(ret)); } else { /*do nothing*/ } } } } } return ret; } int ObJoinOrder::create_plan_for_inner_path(Path *path) { int ret = OB_SUCCESS; ObLogicalOperator *op = NULL; if (OB_ISNULL(path) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null path", K(ret)); } else if (path->subquery_exprs_.empty()) { //do nothing } else if (OB_FAIL(get_plan()->create_plan_tree_from_path(path, op))) { LOG_WARN("failed to create plan from path", K(ret)); } else if (OB_FAIL(path->compute_path_property_from_log_op())) { LOG_WARN("failed to compute path property", K(ret)); } return ret; } int ObJoinOrder::create_subplan_filter_for_join_path(Path *path, ObIArray &subquery_filters) { int ret = OB_SUCCESS; ObLogicalOperator *op = NULL; if (OB_ISNULL(path) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null path", K(ret)); } else if (subquery_filters.empty()) { //do nothing } else if (OB_FAIL(get_plan()->create_plan_tree_from_path(path, op))) { LOG_WARN("failed to create plan from path", K(ret)); } else if (OB_ISNULL(op)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null op", K(ret)); } else if (OB_FAIL(get_plan()->allocate_subplan_filter_as_top(op, subquery_filters, true, true))) { LOG_WARN("failed to allocate subplan filter", K(ret)); } else if (OB_FALSE_IT(path->log_op_ = op)) { } else if (OB_FAIL(path->compute_path_property_from_log_op())) { LOG_WARN("failed to compute path property", K(ret)); } return ret; } int ObJoinOrder::check_valid_for_inner_path(const ObIArray &join_conditions, const ValidPathInfo &path_info, const ObJoinOrder &right_tree, bool &is_valid) { int ret = OB_SUCCESS; is_valid = true; if (path_info.force_inner_nl_) { is_valid = true; } else if (join_conditions.empty() || path_info.force_mat_ || (ACCESS != right_tree.get_type() && SUBQUERY != right_tree.get_type())) { is_valid = false; } else if (CONNECT_BY_JOIN == path_info.join_type_) { for (int64_t i = 0; OB_SUCC(ret) && is_valid && i < join_conditions.count(); i++) { if (OB_ISNULL(join_conditions.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (join_conditions.at(i)->has_flag(CNT_ROWNUM)) { is_valid = false; } else {/*do nothing*/} } } return ret; } int ObJoinOrder::generate_inner_nl_paths(const EqualSets &equal_sets, const ObIArray &left_paths, Path *right_path, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const ObIArray &on_conditions, const ObIArray &where_conditions, const ValidPathInfo &path_info, const bool has_equal_cond) { int ret = OB_SUCCESS; int64_t dist_method = 0; if (OB_UNLIKELY(left_paths.empty()) || OB_ISNULL(left_paths.at(0)) || OB_ISNULL(right_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(left_paths.count()), K(right_path), K(ret)); } else if (OB_FAIL(get_distributed_join_method(*left_paths.at(0), *right_path, equal_sets, left_join_keys, right_join_keys, null_safe_info, path_info, NESTED_LOOP_JOIN, true, false, dist_method))) { LOG_WARN("failed to get distributed join method", K(ret)); } else if (dist_method == 0) { /*do nothing*/ } else { // generate inner push down path LOG_TRACE("succeed to get distributed inner nested loop join method", K(dist_method)); for (int64_t i = 0; OB_SUCC(ret) && i < left_paths.count(); i++) { for (int64_t j = DistAlgo::DIST_BASIC_METHOD; OB_SUCC(ret) && j < DistAlgo::DIST_MAX_JOIN_METHOD; j = (j << 1)) { if (dist_method & j) { DistAlgo dist_algo = get_dist_algo(j); if ((DistAlgo::DIST_PARTITION_WISE != dist_algo || (is_partition_wise_valid(*left_paths.at(i), *right_path) && !right_path->exchange_allocated_)) && is_repart_valid(*left_paths.at(i), *right_path, dist_algo, true /* is_nl */) && OB_FAIL(create_and_add_nl_path(left_paths.at(i), right_path, path_info.join_type_, dist_algo, path_info.force_slave_mapping_, on_conditions, where_conditions, has_equal_cond, false))) { LOG_WARN("failed to create and add hash path", K(ret)); } else { /*do nothing*/ } } } } } return ret; } int ObJoinOrder::generate_normal_nl_paths(const EqualSets &equal_sets, const ObIArray &left_paths, Path *right_path, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const common::ObIArray &on_conditions, const common::ObIArray &where_conditions, const ValidPathInfo &path_info, const bool has_equal_cond) { int ret = OB_SUCCESS; Path *left_path = NULL; ObJoinOrder *left_tree = NULL; int64_t dist_method = 0; if (OB_UNLIKELY(left_paths.empty()) || OB_ISNULL(left_paths.at(0)) || OB_ISNULL(left_tree = left_paths.at(0)->parent_) || OB_ISNULL(right_path) || OB_ISNULL(right_path->get_sharding())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(left_paths.count()), K(right_path), K(ret)); } else if (OB_FAIL(get_distributed_join_method(*left_paths.at(0), *right_path, equal_sets, left_join_keys, right_join_keys, null_safe_info, path_info, NESTED_LOOP_JOIN, false, false, dist_method))) { LOG_WARN("failed to get distributed join method", K(ret)); } else if (dist_method == 0) { /*do nothing*/ } else { bool need_mat = CONNECT_BY_JOIN != path_info.join_type_ && (path_info.force_mat_ || (!path_info.force_no_mat_ && !left_tree->get_is_at_most_one_row())); bool need_no_mat = (path_info.force_no_mat_ || (!path_info.force_mat_ && (left_tree->get_is_at_most_one_row() || CONNECT_BY_JOIN == path_info.join_type_))); LOG_TRACE("succeed to get distributed normal nested loop join method", K(need_mat), K(need_no_mat), K(dist_method)); for (int64_t i = 0; OB_SUCC(ret) && i < left_paths.count(); i++) { if (OB_ISNULL(left_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } for (int64_t j = DistAlgo::DIST_BASIC_METHOD; OB_SUCC(ret) && j < DistAlgo::DIST_MAX_JOIN_METHOD; j = (j << 1)) { DistAlgo dist_algo = get_dist_algo(j); if ((dist_method & j) && (DistAlgo::DIST_PARTITION_WISE != dist_algo || is_partition_wise_valid(*left_paths.at(i), *right_path)) && is_repart_valid(*left_paths.at(i), *right_path, dist_algo, true /* is_nl */)) { bool right_need_exchange = (dist_algo == DIST_HASH_HASH || dist_algo == DIST_NONE_BROADCAST || dist_algo == DIST_NONE_PARTITION || dist_algo == DIST_NONE_HASH); if (!ObOptimizerUtil::is_right_need_exchange(*right_path->get_sharding(), dist_algo) && right_path->exchange_allocated_ && right_path->get_sharding()->is_distributed()) { //如果右边不需要分配exchange,但是right path已经分配过exchange, //生成nl path会导致right path里的exchange打上px表,无法执行 } else if ((need_mat || right_need_exchange) && OB_FAIL(create_and_add_nl_path(left_paths.at(i), right_path, path_info.join_type_, dist_algo, path_info.force_slave_mapping_, on_conditions, where_conditions, has_equal_cond, true))) { LOG_WARN("failed to create and add nl path with materialization", K(ret)); } else if (need_no_mat && !right_need_exchange && OB_FAIL(create_and_add_nl_path(left_paths.at(i), right_path, path_info.join_type_, dist_algo, path_info.force_slave_mapping_, on_conditions, where_conditions, has_equal_cond, false))) { LOG_WARN("failed to create and add nl path without materialization", K(ret)); } else { /*do nothing*/ } } } } } return ret; } int ObJoinOrder::get_distributed_join_method(Path &left_path, Path &right_path, const EqualSets &equal_sets, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const ValidPathInfo &path_info, const JoinAlgo join_algo, const bool is_push_down, const bool is_naaj, int64_t &distributed_methods) { int ret = OB_SUCCESS; bool is_basic = false; bool is_remote = false; bool is_left_match_repart = false; bool is_right_match_repart = false; bool is_partition_wise = false; bool is_ext_partition_wise = false; bool right_is_base_table = false; bool need_pull_to_local = false; ObSEArray target_part_keys; ObShardingInfo *left_sharding = NULL; ObShardingInfo *right_sharding = NULL; distributed_methods = path_info.distributed_methods_; bool use_shared_hash_join = right_path.parallel_ > ObGlobalHint::DEFAULT_PARALLEL; ObSQLSessionInfo *session = NULL; const ObLogPlanHint *log_hint = NULL; const LogJoinHint *log_join_hint = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(left_sharding = left_path.get_sharding()) || OB_ISNULL(session = get_plan()->get_optimizer_context().get_session_info()) || OB_ISNULL(right_sharding = right_path.get_sharding()) || OB_ISNULL(left_path.parent_) || OB_ISNULL(right_path.parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(left_sharding), K(right_sharding), K(left_path.parent_), K(ret)); } else if (use_shared_hash_join && OB_FAIL(session->get_px_shared_hash_join( use_shared_hash_join))) { LOG_WARN("get force parallel ddl dop failed", K(ret)); } else if (left_path.contain_fake_cte_ || right_path.contain_fake_cte_) { distributed_methods &= ~DIST_HASH_HASH; distributed_methods &= ~DIST_BROADCAST_NONE; distributed_methods &= ~DIST_NONE_BROADCAST; distributed_methods &= ~DIST_NONE_ALL; distributed_methods &= ~DIST_ALL_NONE; distributed_methods &= ~DIST_BC2HOST_NONE; distributed_methods &= ~DIST_PARTITION_NONE; distributed_methods &= ~DIST_HASH_NONE; distributed_methods &= ~DIST_NONE_PARTITION; distributed_methods &= ~DIST_NONE_HASH; distributed_methods &= ~DIST_PARTITION_WISE; distributed_methods &= ~DIST_EXT_PARTITION_WISE; OPT_TRACE("fake cte table will use basic or pull to local"); } else if (HASH_JOIN == join_algo && is_naaj) { distributed_methods &= ~DIST_PARTITION_WISE; distributed_methods &= ~DIST_EXT_PARTITION_WISE; OPT_TRACE("HASH NAA JOIN can not use partition wise"); if (LEFT_ANTI_JOIN == path_info.join_type_) { distributed_methods &= ~DIST_PARTITION_NONE; distributed_methods &= ~DIST_HASH_NONE; OPT_TRACE("left naaj can not use PKEY/HASH NONE"); } else { distributed_methods &= ~DIST_NONE_PARTITION; distributed_methods &= ~DIST_NONE_HASH; OPT_TRACE("right naaj can not use NONE PKEY/HASH"); } } if (OB_SUCC(ret)) { log_hint = &get_plan()->get_log_plan_hint(); log_join_hint = log_hint->get_join_hint(right_path.parent_->get_tables()); if (HASH_JOIN == join_algo) { if (use_shared_hash_join) { distributed_methods &= ~DIST_BROADCAST_NONE; distributed_methods &= ~DIST_ALL_NONE; OPT_TRACE("shared hash join will not use BROADCAST"); if (IS_LEFT_STYLE_JOIN(path_info.join_type_)) { distributed_methods &= ~DIST_BC2HOST_NONE; } } else { distributed_methods &= ~DIST_BC2HOST_NONE; OPT_TRACE("hash join will not use BC2HOST"); } } else if (MERGE_JOIN == join_algo) { // disable dist algo except basic & pwj for mj distributed_methods &= ~DIST_BC2HOST_NONE; if (path_info.prune_mj_) { distributed_methods &= ~DIST_PULL_TO_LOCAL; distributed_methods &= ~DIST_HASH_HASH; distributed_methods &= ~DIST_BROADCAST_NONE; distributed_methods &= ~DIST_NONE_BROADCAST; distributed_methods &= ~DIST_NONE_ALL; distributed_methods &= ~DIST_ALL_NONE; distributed_methods &= ~DIST_PARTITION_NONE; distributed_methods &= ~DIST_HASH_NONE; distributed_methods &= ~DIST_NONE_PARTITION; distributed_methods &= ~DIST_NONE_HASH; OPT_TRACE("merge join prune normal path and will only use basic or partition wise"); } } else if (!is_push_down) { distributed_methods &= ~DIST_BC2HOST_NONE; distributed_methods &= ~DIST_ALL_NONE; // @guoping.wgp release this constraint in future distributed_methods &= ~DIST_HASH_HASH; distributed_methods &= ~DIST_HASH_NONE; distributed_methods &= ~DIST_NONE_HASH; OPT_TRACE("normal NL join can not use BC2HOST and HASH HASH"); } else { // nested loop join with pushdown distributed_methods &= ~DIST_HASH_HASH; distributed_methods &= ~DIST_NONE_PARTITION; distributed_methods &= ~DIST_NONE_HASH; distributed_methods &= ~DIST_HASH_NONE; distributed_methods &= ~DIST_NONE_BROADCAST; distributed_methods &= ~DIST_BROADCAST_NONE; distributed_methods &= ~DIST_ALL_NONE; if (right_path.exchange_allocated_) { distributed_methods &= ~DIST_PARTITION_WISE; distributed_methods &= ~DIST_EXT_PARTITION_WISE; } if (OB_FAIL(right_path.check_is_base_table(right_is_base_table))) { LOG_WARN("failed to check is base table", K(ret)); } else if (!right_is_base_table || left_path.parent_->get_is_at_most_one_row() || !(ObJoinType::INNER_JOIN == path_info.join_type_ || (IS_LEFT_STYLE_JOIN(path_info.join_type_) && right_sharding->is_single()))) { distributed_methods &= ~DIST_BC2HOST_NONE; } } if (right_sharding->is_local() || right_sharding->is_match_all()) { distributed_methods &= ~DIST_BROADCAST_NONE; distributed_methods &= ~DIST_ALL_NONE; distributed_methods &= ~DIST_BC2HOST_NONE; } if (left_sharding->is_local() || left_sharding->is_match_all()) { distributed_methods &= ~DIST_NONE_BROADCAST; distributed_methods &= ~DIST_NONE_ALL; } if (left_sharding->is_match_all()) { distributed_methods &= ~DIST_BC2HOST_NONE; distributed_methods &= ~DIST_BROADCAST_NONE; } if (left_path.parallel_ <= 1) { distributed_methods &= ~DIST_NONE_BROADCAST; } if (right_path.parallel_ <= 1) { distributed_methods &= ~DIST_BROADCAST_NONE; } if (left_path.parallel_ <= 1 && right_path.parallel_ <= 1) { distributed_methods &= ~DIST_HASH_HASH; } } // check if match none_all sharding info if (OB_SUCC(ret) && (distributed_methods & DIST_NONE_ALL)) { if (left_sharding->is_distributed() && right_sharding->is_match_all() && // exclude cte path whose sharding is match all !right_path.is_cte_path()) { distributed_methods = DIST_NONE_ALL; } else { distributed_methods &= ~DIST_NONE_ALL; } } // check if match all_none sharding info if (OB_SUCC(ret) && (distributed_methods & DIST_ALL_NONE)) { if (right_sharding->is_distributed() && left_sharding->is_match_all() && !left_path.contain_das_op() && !left_path.is_cte_path()) { // all side is allowed for only EXPRESSION distributed_methods = DIST_ALL_NONE; } else { distributed_methods &= ~DIST_ALL_NONE; } } // check if match basic sharding info if (OB_SUCC(ret) && (distributed_methods & DIST_BASIC_METHOD)) { OPT_TRACE("check basic method"); ObSEArray input_shardings; if (OB_FAIL(input_shardings.push_back(left_sharding)) || OB_FAIL(input_shardings.push_back(right_sharding))) { LOG_WARN("failed to push back shardings", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::check_basic_sharding_info( get_plan()->get_optimizer_context().get_local_server_addr(), input_shardings, is_basic, is_remote))) { LOG_WARN("failed to check basic sharding info", K(ret)); } else if (get_cnt_rownum() && (!is_basic || is_remote)) { distributed_methods &= DIST_PULL_TO_LOCAL; OPT_TRACE("query with rownum, will use pull to local"); } else if (is_basic) { distributed_methods = DIST_BASIC_METHOD; OPT_TRACE("plan will use basic method"); } else { distributed_methods &= ~DIST_BASIC_METHOD; OPT_TRACE("plan will not use basic method"); } } // check if match partition wise join if (OB_SUCC(ret) && (distributed_methods & DIST_PARTITION_WISE)) { OPT_TRACE("check partition wise method"); if (OB_FAIL(check_if_match_partition_wise(equal_sets, left_path, right_path, left_join_keys, right_join_keys, null_safe_info, is_partition_wise))) { LOG_WARN("failed to check if match partition wise join", K(ret)); } else if (is_partition_wise) { bool need_reduce_dop = left_path.parallel_more_than_part_cnt() || right_path.parallel_more_than_part_cnt(); if (!need_reduce_dop && left_path.exchange_allocated_ == right_path.exchange_allocated_) { distributed_methods = DIST_PARTITION_WISE; OPT_TRACE("plan will use partition wise method"); } else { need_pull_to_local = true; } } else { distributed_methods &= ~DIST_PARTITION_WISE; OPT_TRACE("plan will not use partition wise method"); } } // check if match extended partition wise join if (OB_SUCC(ret) && (distributed_methods & DIST_EXT_PARTITION_WISE)) { OPT_TRACE("check extended partition wise method"); if (!left_sharding->is_distributed_without_table_location_with_partitioning() || !ObShardingInfo::is_shuffled_server_list(left_path.get_server_list()) || !right_sharding->is_distributed_without_table_location_with_partitioning() || !ObShardingInfo::is_shuffled_server_list(right_path.get_server_list())) { distributed_methods &= ~DIST_EXT_PARTITION_WISE; is_ext_partition_wise = false; OPT_TRACE("sharding is not expected, will not use extended partition wise"); } else if (OB_FAIL(ObShardingInfo::check_if_match_extended_partition_wise(equal_sets, left_path.get_server_list(), right_path.get_server_list(), left_join_keys, right_join_keys, null_safe_info, left_path.get_strong_sharding(), left_path.get_weak_sharding(), right_path.get_strong_sharding(), right_path.get_weak_sharding(), is_ext_partition_wise))) { LOG_WARN("failed to check match extended partition wise", K(ret)); } else if (is_ext_partition_wise) { distributed_methods = DIST_EXT_PARTITION_WISE; OPT_TRACE("plan will use ext partition wise method"); } else { distributed_methods &= ~DIST_EXT_PARTITION_WISE; OPT_TRACE("plan will not use ext partition wise method"); } } if (OB_SUCC(ret) && ((distributed_methods & DIST_PARTITION_NONE) || (distributed_methods & DIST_HASH_NONE) || ((distributed_methods & DIST_BROADCAST_NONE) && path_info.force_slave_mapping_))) { target_part_keys.reuse(); if (OB_FAIL(right_sharding->get_all_partition_keys(target_part_keys, true))) { LOG_WARN("failed to get partition keys", K(ret)); } else if (OB_FAIL(ObShardingInfo::check_if_match_repart_or_rehash(equal_sets, left_join_keys, right_join_keys, target_part_keys, is_right_match_repart))) { LOG_WARN("failed to check if match repartition", K(ret)); } } if (OB_SUCC(ret) && ((distributed_methods & DIST_NONE_PARTITION) || (distributed_methods & DIST_NONE_HASH) || ((distributed_methods & DIST_NONE_BROADCAST) && path_info.force_slave_mapping_))) { target_part_keys.reuse(); if (OB_FAIL(left_sharding->get_all_partition_keys(target_part_keys, true))) { LOG_WARN("failed to get partition keys", K(ret)); } else if (OB_FAIL(ObShardingInfo::check_if_match_repart_or_rehash(equal_sets, right_join_keys, left_join_keys, target_part_keys, is_left_match_repart))) { LOG_WARN("failed to check if match repartition", K(ret)); } } // check if match left re-partition if (OB_SUCC(ret) && (distributed_methods & DIST_PARTITION_NONE)) { OPT_TRACE("check partition none method"); if (NULL == right_path.get_strong_sharding()) { OPT_TRACE("strong sharding of right path is null, not use partition none"); distributed_methods &= ~DIST_PARTITION_NONE; } else if (!right_path.get_sharding()->is_distributed_with_table_location_and_partitioning() || !is_right_match_repart) { OPT_TRACE("right path not meet repart, not use partition none"); distributed_methods &= ~DIST_PARTITION_NONE; } else if (right_path.parallel_more_than_part_cnt()) { OPT_TRACE("plan will use partition none method with parallel degree reduced"); } else { OPT_TRACE("plan will use partition none method and prune broadcast/bc2host/hash none method"); distributed_methods &= ~DIST_BROADCAST_NONE; distributed_methods &= ~DIST_HASH_NONE; if (use_shared_hash_join && HASH_JOIN == join_algo) { distributed_methods &= ~DIST_BC2HOST_NONE; } need_pull_to_local = right_path.exchange_allocated_; } } // check if match hash none if (OB_SUCC(ret) && (distributed_methods & DIST_HASH_NONE)) { OPT_TRACE("check hash none method"); if (NULL == right_path.get_strong_sharding()) { OPT_TRACE("strong sharding of right path is null, not use hash none"); distributed_methods &= ~DIST_HASH_NONE; } else if (!right_sharding->is_distributed_without_table_location_with_partitioning() || !ObShardingInfo::is_shuffled_server_list(right_path.get_server_list()) || !is_right_match_repart) { OPT_TRACE("plan will not use hash none method"); distributed_methods &= ~DIST_HASH_NONE; } else { OPT_TRACE("plan will use hash none method and prune broadcast none method"); distributed_methods &= ~DIST_BROADCAST_NONE; } } // check if match right re-partition if (OB_SUCC(ret) && (distributed_methods & DIST_NONE_PARTITION)) { OPT_TRACE("check none partition method"); if (NULL == left_path.get_strong_sharding()) { OPT_TRACE("strong sharding of left path is null, not use none partition"); distributed_methods &= ~DIST_NONE_PARTITION; } else if (!left_path.get_sharding()->is_distributed_with_table_location_and_partitioning() || !is_left_match_repart) { OPT_TRACE("left path not meet repart, not use none partition"); distributed_methods &= ~DIST_NONE_PARTITION; } else if (left_path.parallel_more_than_part_cnt()) { OPT_TRACE("plan will use none partition method with parallel degree reduced"); } else { OPT_TRACE("plan will use none partition method and prune none broadcast/hash method"); distributed_methods &= ~DIST_NONE_BROADCAST; distributed_methods &= ~DIST_NONE_HASH; need_pull_to_local = false; } } // check if match none-hash if (OB_SUCC(ret) && (distributed_methods & DIST_NONE_HASH)) { OPT_TRACE("check none hash method"); if (NULL == left_path.get_strong_sharding()) { OPT_TRACE("strong sharding of left path is null, not use none hash"); distributed_methods &= ~DIST_NONE_HASH; } else if (!left_sharding->is_distributed_without_table_location_with_partitioning() || !ObShardingInfo::is_shuffled_server_list(left_path.get_server_list()) || !is_left_match_repart) { OPT_TRACE("plan will not use none hash method"); distributed_methods &= ~DIST_NONE_HASH; } else { OPT_TRACE("plan will use none hash method and prune none broadcast method"); distributed_methods &= ~DIST_NONE_BROADCAST; } } if (OB_SUCC(ret) && (distributed_methods & DIST_BROADCAST_NONE) && path_info.force_slave_mapping_ && !is_right_match_repart) { OPT_TRACE("force slave mapping and right path not meet repart, prune broadcast none method"); distributed_methods &= ~DIST_BROADCAST_NONE; } if (OB_SUCC(ret) && (distributed_methods & DIST_NONE_BROADCAST) && path_info.force_slave_mapping_ && !is_left_match_repart) { OPT_TRACE("force slave mapping and left path not meet repart, prune none broadcast method"); distributed_methods &= ~DIST_NONE_BROADCAST; } /* * if we have other parallel join methods, avoid pull to local execution, * we may change this strategy in future */ if (OB_SUCC(ret) && distributed_methods != DIST_PULL_TO_LOCAL && !need_pull_to_local) { distributed_methods &= ~DIST_PULL_TO_LOCAL; OPT_TRACE("plan will not use pull to local method"); } return ret; } bool ObJoinOrder::is_partition_wise_valid(const Path &left_path, const Path &right_path) { bool is_valid = true; if ((left_path.exchange_allocated_ || right_path.exchange_allocated_) && (left_path.contain_pw_merge_op() || right_path.contain_pw_merge_op())) { is_valid = false; } else { is_valid = true; } return is_valid; } bool ObJoinOrder::is_repart_valid(const Path &left_path, const Path &right_path, const DistAlgo dist_algo, const bool is_nl) { bool is_valid = true; if (DistAlgo::DIST_PARTITION_NONE == dist_algo && right_path.exchange_allocated_ && is_nl) { is_valid = false; } else if (DistAlgo::DIST_PARTITION_NONE == dist_algo && right_path.contain_pw_merge_op()) { is_valid = true; } else if (DistAlgo::DIST_NONE_PARTITION == dist_algo && left_path.contain_pw_merge_op()) { is_valid = true; } else { is_valid = true; } return is_valid; } int ObJoinOrder::check_if_match_partition_wise(const EqualSets &equal_sets, Path &left_path, Path &right_path, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_exprs, bool &is_partition_wise) { int ret = OB_SUCCESS; is_partition_wise = false; if (OB_FAIL(ObShardingInfo::check_if_match_partition_wise(equal_sets, left_join_keys, right_join_keys, null_safe_exprs, left_path.get_strong_sharding(), left_path.get_weak_sharding(), right_path.get_strong_sharding(), right_path.get_weak_sharding(), is_partition_wise))) { LOG_WARN("failed to check if match partition wise join", K(ret)); } else { LOG_TRACE("succeed to check if match partition wise join", K(is_partition_wise)); } return ret; } int ObJoinOrder::classify_mergejoin_conditions(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const ObJoinType join_type, const ObIArray &on_condition, const ObIArray &where_condition, ObIArray &equal_join_conditions, ObIArray &other_join_conditions, ObIArray &filters) { int ret = OB_SUCCESS; if (OB_FAIL(extract_mergejoin_conditions(IS_OUTER_OR_CONNECT_BY_JOIN(join_type) ? on_condition : where_condition, left_tree.get_tables(), right_tree.get_tables(), equal_join_conditions, other_join_conditions))) { LOG_WARN("failed to extract merge-join conditions and on_conditions", K(join_type), K(ret)); } else if (IS_OUTER_OR_CONNECT_BY_JOIN(join_type) && OB_FAIL(append(filters, where_condition))) { LOG_WARN("failed to append join where_filters", K(ret)); } else { /*do nothing*/ } return ret; } int ObJoinOrder::generate_mj_paths(const EqualSets &equal_sets, const ObIArray> &left_paths, const ObIArray> &right_paths, const ObIArray> &left_merge_keys, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const common::ObIArray &equal_join_conditions, const common::ObIArray &other_join_conditions, const common::ObIArray &filters, const double equal_cond_sel, const double other_cond_sel, const ValidPathInfo &path_info) { int ret = OB_SUCCESS; if (OB_UNLIKELY(left_paths.count() != left_merge_keys.count())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected array count", K(left_paths.count()), K(left_merge_keys.count()), K(ret)); } else { if (path_info.is_reverse_path_) { OPT_TRACE_TITLE("Consider Reverse Merge", ob_join_type_str(path_info.join_type_)); } else { OPT_TRACE_TITLE("Consider Merge", ob_join_type_str(path_info.join_type_)); } for (int64_t i = 0; OB_SUCC(ret) && i < left_paths.count(); i++) { for (int64_t j = 0; OB_SUCC(ret) && j < right_paths.count(); j++) { if (OB_FAIL(generate_mj_paths(equal_sets, left_paths.at(i), right_paths.at(j), left_merge_keys.at(i), left_join_keys, right_join_keys, null_safe_info, equal_join_conditions, other_join_conditions, filters, equal_cond_sel, other_cond_sel, path_info))) { LOG_WARN("failed to generated merge join paths", K(ret)); } else { /*do nothing*/ } } } } return ret; } int ObJoinOrder::generate_mj_paths(const EqualSets &equal_sets, const ObIArray &left_paths, const ObIArray &right_paths, const ObIArray &left_merge_keys, const ObIArray &left_join_keys, const ObIArray &right_join_keys, const ObIArray &null_safe_info, const common::ObIArray &equal_join_conditions, const common::ObIArray &other_join_conditions, const common::ObIArray &filters, const double equal_cond_sel, const double other_cond_sel, const ValidPathInfo &path_info) { int ret = OB_SUCCESS; Path *left_path = NULL; Path *right_path = NULL; MergeKeyInfo *merge_key = NULL; int64_t dist_method = 0; int64_t best_prefix_pos = 0; bool best_need_sort = false; ObSEArray best_order_items; ObSEArray adjusted_join_conditions; if (OB_UNLIKELY(left_paths.empty() || OB_ISNULL(left_paths.at(0))) || OB_UNLIKELY(right_paths.empty()) || OB_ISNULL(right_paths.at(0)) || OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(left_paths.count()), K(right_paths.count()), K(ret)); } else if (OB_FAIL(get_distributed_join_method(*left_paths.at(0), *right_paths.at(0), equal_sets, left_join_keys, right_join_keys, null_safe_info, path_info, MERGE_JOIN, false, false, dist_method))) { LOG_WARN("failed to get distributed join method", K(ret)); } else if (0 == dist_method) { /*do nothing*/ } else { LOG_TRACE("succeed to get distributed merge join method", K(dist_method)); for (int64_t i = 0; OB_SUCC(ret) && i < left_paths.count(); i++) { if (OB_ISNULL(left_path = left_paths.at(i)) || OB_ISNULL(merge_key = left_merge_keys.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_path), K(merge_key), K(ret)); } else if (merge_key->need_sort_ && !merge_key->order_needed_) { // if no further order needed, not generate merge style plan } else if (OB_FAIL(ObOptimizerUtil::adjust_exprs_by_mapping(equal_join_conditions, merge_key->map_array_, adjusted_join_conditions))) { LOG_WARN("failed to adjust exprs by mapping", K(ret)); } else { for (int64_t j = DistAlgo::DIST_BASIC_METHOD; OB_SUCC(ret) && j < DistAlgo::DIST_MAX_JOIN_METHOD; j = (j << 1)) { if (dist_method & j) { DistAlgo dist_algo = get_dist_algo(j); if (OB_FAIL(find_minimal_cost_merge_path(*left_path, *merge_key, right_join_keys, right_paths, dist_algo, path_info.force_slave_mapping_, best_order_items, right_path, best_need_sort, best_prefix_pos, path_info.prune_mj_))) { LOG_WARN("failed to find minimal cost merge path", K(ret)); } else if (NULL != right_path && OB_FAIL(create_and_add_mj_path(left_path, right_path, path_info.join_type_, dist_algo, path_info.force_slave_mapping_, merge_key->order_directions_, adjusted_join_conditions, other_join_conditions, filters, equal_cond_sel, other_cond_sel, merge_key->order_items_, merge_key->need_sort_, merge_key->prefix_pos_, best_order_items, best_need_sort, best_prefix_pos))) { LOG_WARN("failed to create and add merge join path", K(ret)); } else { /*do nothing*/ } } } } } } return ret; } int ObJoinOrder::find_minimal_cost_merge_path(const Path &left_path, const MergeKeyInfo &left_merge_key, const ObIArray &right_join_exprs, const ObIArray &right_path_list, const DistAlgo join_dist_algo, const bool is_slave_mapping, ObIArray &best_order_items, Path *&best_path, bool &best_need_sort, int64_t &best_prefix_pos, bool prune_mj) { int ret = OB_SUCCESS; double best_cost = 0.0; double right_path_cost = 0.0; double right_sort_cost = 0.0; int64_t right_prefix_pos = 0; bool right_need_sort = false; ObShardingInfo *sharding = NULL; int64_t out_parallel = ObGlobalHint::UNSET_PARALLEL; int64_t in_parallel = ObGlobalHint::UNSET_PARALLEL; int64_t available_parallel = ObGlobalHint::UNSET_PARALLEL; int64_t server_cnt = 0; ObSEArray server_list; ObSEArray right_order_exprs; ObSEArray temp_order_items; ObSEArray right_order_items; best_path = NULL; best_need_sort = false; best_prefix_pos = 0; EstimateCostInfo info; double right_output_rows = 0.0; double right_orig_cost = 0.0; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null plan", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < right_path_list.count(); i++) { Path *right_path = NULL; right_order_exprs.reset(); temp_order_items.reset(); right_order_items.reset(); ObOptimizerContext &opt_ctx = get_plan()->get_optimizer_context(); if (OB_ISNULL(right_path = right_path_list.at(i)) || OB_ISNULL(right_path->parent_) || OB_ISNULL(sharding = right_path->get_sharding())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(right_path), K(sharding), K(ret)); } else if (DistAlgo::DIST_PARTITION_WISE == join_dist_algo && !is_partition_wise_valid(left_path, *right_path)) { /*do nothing*/ } else if (!is_repart_valid(left_path, *right_path, join_dist_algo, false /* is_nl */)) { /*do nothing*/ } else if (OB_FAIL(ObOptimizerUtil::adjust_exprs_by_mapping(right_join_exprs, left_merge_key.map_array_, right_order_exprs))) { LOG_WARN("failed to adjust exprs by mapping", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::make_sort_keys(right_order_exprs, left_merge_key.order_directions_, temp_order_items))) { LOG_WARN("failed to make sort keys", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::simplify_ordered_exprs(right_path->parent_->get_fd_item_set(), right_path->parent_->get_output_equal_sets(), right_path->parent_->get_output_const_exprs(), get_plan()->get_onetime_query_refs(), temp_order_items, right_order_items))) { LOG_WARN("failed to simplify exprs", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::check_need_sort(right_order_items, right_path->ordering_, right_path->parent_->get_fd_item_set(), right_path->parent_->get_output_equal_sets(), right_path->parent_->get_output_const_exprs(), get_plan()->get_onetime_query_refs(), right_path->parent_->get_is_at_most_one_row(), right_need_sort, right_prefix_pos))) { LOG_WARN("failed to check need sort", K(ret)); } else if ((DistAlgo::DIST_PARTITION_WISE == join_dist_algo || DistAlgo::DIST_BASIC_METHOD == join_dist_algo) && left_merge_key.need_sort_ && right_need_sort && prune_mj) { // do nothing OPT_TRACE("prune merge join,because both left and right path need sort"); } else if (OB_FAIL(JoinPath::compute_join_path_parallel_and_server_info(opt_ctx.get_local_server_addr(), &left_path, right_path, join_dist_algo, is_slave_mapping, in_parallel, available_parallel, server_cnt, server_list))) { LOG_WARN("failed to compute server info", K(ret)); } else if (OB_UNLIKELY(ObGlobalHint::DEFAULT_PARALLEL > (out_parallel = right_path->parallel_) || ObGlobalHint::DEFAULT_PARALLEL > in_parallel)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected parallel", K(out_parallel), K(in_parallel), K(ret)); } else { bool is_fully_partition_wise = (DistAlgo::DIST_PARTITION_WISE == join_dist_algo) && !left_path.exchange_allocated_ && !right_path->exchange_allocated_; bool is_local_order = right_path->is_local_order_ && !is_fully_partition_wise; ObPQDistributeMethod::Type dist_method = ObOptimizerUtil::get_right_dist_method (*sharding, join_dist_algo); info.reset(); // is single, may allocate exchange above, set need_parallel_ as 1 and compute exchange cost in cost_sort_and_exchange info.need_parallel_ = right_path->is_single() ? ObGlobalHint::DEFAULT_PARALLEL : in_parallel; if (OB_FAIL(right_path->re_estimate_cost(info, right_output_rows, right_orig_cost))) { LOG_WARN("failed to re estimate cost", K(ret)); } else if (OB_FAIL(ObOptEstCost::cost_sort_and_exchange(&plan_->get_update_table_metas(), &plan_->get_selectivity_ctx(), dist_method, right_path->is_distributed(), is_local_order, right_output_rows, right_path->parent_->get_output_row_size(), right_orig_cost, out_parallel, server_cnt, in_parallel, right_order_items, right_need_sort, right_prefix_pos, right_path_cost, opt_ctx))) { LOG_WARN("failed to compute cost for merge-join style op", K(ret)); } else if (NULL == best_path || right_path_cost < best_cost) { if (OB_FAIL(best_order_items.assign(right_order_items))) { LOG_WARN("failed to assign exprs", K(ret)); } else { best_path = right_path; best_need_sort = right_need_sort; best_prefix_pos = right_prefix_pos; best_cost = right_path_cost; } } else { /*do nothing*/ } } } return ret; } int ObJoinOrder::init_merge_join_structure(ObIAllocator &allocator, const ObIArray> &paths, const ObIArray &join_exprs, ObIArray> &merge_keys, const bool can_ignore_merge_plan) { int ret = OB_SUCCESS; ObSEArray temp_merge_keys; for (int64_t i = 0; OB_SUCC(ret) && i < paths.count(); i++) { temp_merge_keys.reuse(); if (OB_FAIL(init_merge_join_structure(allocator, paths.at(i), join_exprs, temp_merge_keys, can_ignore_merge_plan))) { LOG_WARN("failed to init merge join structure", K(ret)); } else if (OB_FAIL(merge_keys.push_back(temp_merge_keys))) { LOG_WARN("failed to push back merge keys", K(ret)); } else { /*do nothing*/ } } return ret; } int ObJoinOrder::init_merge_join_structure(ObIAllocator &allocator, const ObIArray &paths, const ObIArray &join_exprs, ObIArray &merge_keys, const bool can_ignore_merge_plan) { int ret = OB_SUCCESS; Path *path = NULL; ObSEArray default_directions; MergeKeyInfo *interesting_key = NULL; // interesting ordering merge key MergeKeyInfo *merge_key = NULL; const ObDMLStmt *stmt = NULL; int64_t interesting_order_info = OrderingFlag::NOT_MATCH; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_default_directions(join_exprs.count(), default_directions))) { LOG_WARN("failed to get default directions", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < paths.count(); ++i) { if (OB_ISNULL(path = paths.at(i)) || OB_ISNULL(path->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(path), K(ret)); } else if (OB_ISNULL(merge_key = static_cast( allocator.alloc(sizeof(MergeKeyInfo))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to alloc merge key info", K(ret)); } else if (OB_FALSE_IT(merge_key = new(merge_key)MergeKeyInfo(allocator, join_exprs.count()))) { } else if (OB_FAIL(ObOptimizerUtil::decide_sort_keys_for_merge_style_op( stmt, get_plan()->get_equal_sets(), path->ordering_, path->parent_->get_fd_item_set(), path->parent_->get_output_equal_sets(), path->parent_->get_output_const_exprs(), get_plan()->get_onetime_query_refs(), path->parent_->get_is_at_most_one_row(), join_exprs, default_directions, *merge_key, interesting_key))) { LOG_WARN("failed to decide sort key for merge set", K(ret)); } else if (OB_FAIL(merge_keys.push_back(merge_key))) { LOG_WARN("failed to push back merge key", K(ret)); } else if (can_ignore_merge_plan) { if (OB_FAIL(check_all_interesting_order(merge_key->order_items_, stmt, interesting_order_info))) { LOG_WARN("failed to check interesting order", K(ret)); } else if (OrderingFlag::NOT_MATCH == interesting_order_info) { merge_key->order_needed_ = false; } } } return ret; } int ObJoinOrder::set_nl_filters(JoinPath *join_path, const Path *right_path, const ObJoinType join_type, const ObIArray &on_conditions, const ObIArray &where_conditions) { int ret = OB_SUCCESS; if (OB_ISNULL(join_path) || OB_ISNULL(right_path)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(join_path), K(right_path), K(ret)); } else if (IS_OUTER_OR_CONNECT_BY_JOIN(join_type)) { if (OB_FAIL(append_array_no_dup(join_path->filter_, where_conditions))) { LOG_WARN("failed to append conditions", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < on_conditions.count(); ++i) { if (right_path->is_inner_path() && //如果是条件下降的NL ObOptimizerUtil::find_item(right_path->pushdown_filters_, on_conditions.at(i))) { /*do nothing*/ } else if (OB_FAIL(join_path->other_join_conditions_.push_back(on_conditions.at(i)))) { //未下降的nl条件 LOG_WARN("failed to push back conditions", K(ret)); } } } else { if (OB_FAIL(append_array_no_dup(join_path->other_join_conditions_, on_conditions))) { LOG_WARN("failed to append conditions", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < where_conditions.count(); ++i) { //只有能在本级处理的qual才能放在join条件里,处理AB时,遇到a+b=c条件是不能放在本级join条件里的 if (OB_ISNULL(where_conditions.at(i))) { ret = OB_ERR_NULL_VALUE; LOG_WARN("raw expr is null", K(ret)); } else if (right_path->is_inner_path() && //如果是条件下降的NL ObOptimizerUtil::find_item(right_path->pushdown_filters_, where_conditions.at(i))) { /*do nothing*/ } else if (OB_FAIL(join_path->other_join_conditions_.push_back(where_conditions.at(i)))) { //未下降的nl条件 LOG_WARN("failed to push back conditions", K(ret)); } } } return ret; } int ObJoinOrder::alloc_join_path(JoinPath *&join_path) { int ret = OB_SUCCESS; join_path = NULL; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid plan", K(ret)); } else if (!get_plan()->get_recycled_join_paths().empty() && OB_FAIL(get_plan()->get_recycled_join_paths().pop_back(join_path))) { LOG_WARN("failed to pop back join path from recycled paths", K(ret)); } else if (NULL == join_path && OB_ISNULL(join_path = static_cast(allocator_->alloc(sizeof(JoinPath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate a join path", K(join_path), K(ret)); } else { //do nothing } return ret; } int ObJoinOrder::create_and_add_hash_path(const Path *left_path, const Path *right_path, const ObJoinType join_type, const DistAlgo join_dist_algo, const bool is_slave_mapping, const ObIArray &equal_join_conditions, const ObIArray &other_join_conditions, const ObIArray &filters, const double equal_cond_sel, const double other_cond_sel, const NullAwareAntiJoinInfo &naaj_info) { int ret = OB_SUCCESS; JoinPath *join_path = NULL; ObSEArray normal_filters; ObSEArray subquery_filters; if (OB_ISNULL(left_path) || OB_ISNULL(right_path) || OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(left_path), K(right_path), K(get_plan()), K(ret)); } else if (OB_FAIL(ObOptimizerUtil::classify_subquery_exprs(filters, subquery_filters, normal_filters, false))) { LOG_WARN("failed to classify subquery exprs", K(ret)); } else if (OB_FAIL(alloc_join_path(join_path))) { LOG_WARN("failed to allocate a hash join path", K(ret)); } else { join_path = new(join_path)JoinPath(this, left_path, right_path, HASH_JOIN, join_dist_algo, is_slave_mapping, join_type); join_path->equal_cond_sel_ = equal_cond_sel; join_path->other_cond_sel_ = other_cond_sel; join_path->is_naaj_ = naaj_info.is_naaj_; join_path->is_sna_ = naaj_info.is_sna_; join_path->is_slave_mapping_ &= (!naaj_info.is_naaj_); OPT_TRACE("create new Hash Join path:", join_path); if (OB_FAIL(append(join_path->equal_join_conditions_, equal_join_conditions))) { LOG_WARN("failed to append join conditions", K(ret)); } else if (OB_FAIL(append(join_path->other_join_conditions_, other_join_conditions))) { LOG_WARN("failed to append join filters", K(ret)); } else if (OB_FAIL(append(join_path->filter_, normal_filters))) { LOG_WARN("failed to append join quals", K(ret)); } else if (OB_FAIL(append(join_path->expr_constraints_, naaj_info.expr_constraints_))) { LOG_WARN("failed to append constraints", K(ret)); } else if (OB_FAIL(generate_join_filter_infos(*left_path, *right_path, join_type, join_dist_algo, equal_join_conditions, naaj_info.is_naaj_, join_path->join_filter_infos_))) { LOG_WARN("failed to generate join filter info", K(ret)); } else if (OB_FAIL(join_path->compute_join_path_property())) { LOG_WARN("failed to compute join path property", K(ret)); } else if (OB_FAIL(create_subplan_filter_for_join_path(join_path, subquery_filters))) { LOG_WARN("failed to create subplan filter for join path", K(ret)); } else if (OB_FAIL(add_path(join_path))) { LOG_WARN("failed to add path", K(ret)); } else { LOG_TRACE("succeed to create a hash join path", K(join_type), K(join_dist_algo), K(equal_join_conditions), K(other_join_conditions)); } } return ret; } int ObJoinOrder::generate_join_filter_infos(const Path &left_path, const Path &right_path, const ObJoinType join_type, const DistAlgo join_dist_algo, const ObIArray &equal_join_conditions, const bool is_naaj, ObIArray &join_filter_infos) { int ret = OB_SUCCESS; bool right_is_scan = false; bool can_use_join_filter = false; ObLogicalOperator *right_child = NULL; int64_t hash_join_parallel = ObGlobalHint::UNSET_PARALLEL; const int64_t join_parallel = ObOptimizerUtil::get_join_style_parallel(left_path.parallel_, right_path.parallel_, join_dist_algo); /* * 1. 检查并行度是否大于1, 检查是否使用新引擎. * 2. 检查Join类型. * 3. 检查计划形态. * - 满足右侧基表或者跨exchange基表 * - 满足不跨exchange非基表 * 4. 检查代价是否可以生成. * 5. 检查hint是否可以生成. */ if (ObGlobalHint::DEFAULT_PARALLEL >= join_parallel) { OPT_TRACE("hash join parallel <= 1, plan will not use join filter"); } else if (RIGHT_OUTER_JOIN == join_type || FULL_OUTER_JOIN == join_type || RIGHT_ANTI_JOIN == join_type || CONNECT_BY_JOIN == join_type || is_naaj) { //do nothing } else if (OB_FAIL(find_possible_join_filter_tables(left_path, right_path, join_dist_algo, equal_join_conditions, join_filter_infos))) { LOG_WARN("failed to find possible table scan for bf", K(ret)); } else if (join_filter_infos.empty()) { OPT_TRACE("no valid join filter"); } else if (OB_FAIL(check_normal_join_filter_valid(left_path, right_path, join_filter_infos))) { LOG_WARN("fail to check bloom filter gen rule", K(ret)); } else if (OB_FAIL(check_partition_join_filter_valid(join_dist_algo, join_filter_infos))) { LOG_WARN("fail to check hint gen rule", K(ret)); } else if (OB_FAIL(remove_invalid_join_filter_infos(join_filter_infos))) { LOG_WARN("failed to remove invalid join filter info", K(ret)); } return ret; } int ObJoinOrder::find_possible_join_filter_tables(const Path &left_path, const Path &right_path, const DistAlgo join_dist_algo, const ObIArray &equal_join_conditions, ObIArray &join_filter_infos) { int ret = OB_SUCCESS; ObRelIds right_tables; if (OB_ISNULL(get_plan()) || OB_ISNULL(right_path.get_sharding()) || OB_ISNULL(left_path.parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret), K(get_plan()), K(right_path.get_sharding()), K(left_path.parent_)); } else { bool right_need_exchange = ObOptimizerUtil::is_right_need_exchange(*right_path.get_sharding(), join_dist_algo); bool left_need_exchange = ObOptimizerUtil::is_left_need_exchange(*left_path.get_sharding(), join_dist_algo); bool is_fully_partition_wise = !left_need_exchange && !right_need_exchange && DIST_PARTITION_WISE == join_dist_algo; int64_t current_dfo_level = left_need_exchange ? -1 : (right_need_exchange ? 1 : 0); ObSEArray left_exprs; ObSEArray right_exprs; if (OB_FAIL(ObOptimizerUtil::extract_equal_join_conditions(equal_join_conditions, left_path.parent_->get_tables(), left_exprs, right_exprs))) { LOG_WARN("failed format equal join conditions", K(ret)); } else if (OB_FAIL(get_plan()->get_table_ids(right_exprs, right_tables))) { LOG_WARN("failed to get table ids by rexprs", K(ret)); } else if (OB_FAIL(find_possible_join_filter_tables( get_plan()->get_log_plan_hint(), right_path, left_path.parent_->get_tables(), right_tables, !get_plan()->get_optimizer_context().enable_runtime_filter(), !right_need_exchange, is_fully_partition_wise, current_dfo_level, left_exprs, right_exprs, join_filter_infos))) { LOG_WARN("failed to find subquery possible join filter table", K(ret)); } } return ret; } int ObJoinOrder::fill_join_filter_info(JoinFilterInfo &join_filter_info) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret), K(get_plan())); } else if (OB_FAIL(ObOptSelectivity::calculate_distinct(get_plan()->get_update_table_metas(), get_plan()->get_selectivity_ctx(), join_filter_info.rexprs_, join_filter_info.row_count_, join_filter_info.right_distinct_card_, false))) { LOG_WARN("failed to calc distinct", K(ret)); } return ret; } int ObJoinOrder::find_possible_join_filter_tables(const ObLogPlanHint &log_plan_hint, const Path &right_path, const ObRelIds &left_tables, const ObRelIds &right_tables, bool config_disable, bool is_current_dfo, bool is_fully_partition_wise, int64_t current_dfo_level, const ObIArray &left_join_conditions, const ObIArray &right_join_conditions, ObIArray &join_filter_infos) { int ret = OB_SUCCESS; const ObDMLStmt* stmt; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null stmt", K(ret)); } else if (right_path.is_access_path()) { const AccessPath &access = static_cast(right_path); bool can_join_filter = false; const ObJoinFilterHint *force_hint = NULL; bool can_part_join_filter = false; const ObJoinFilterHint *force_part_hint = NULL; if (access.est_cost_info_.index_meta_info_.is_global_index_ && access.est_cost_info_.index_meta_info_.is_index_back_) { //do nothing } else if (OB_FAIL(log_plan_hint.check_use_join_filter(access.table_id_, left_tables, false, config_disable, can_join_filter, force_hint))) { LOG_WARN("failed to check use join filter", K(ret)); } else if (!is_fully_partition_wise && OB_FAIL(log_plan_hint.check_use_join_filter(access.table_id_, left_tables, true, config_disable, can_part_join_filter, force_part_hint))) { LOG_WARN("failed to check use join filter", K(ret)); } else if (!can_join_filter && !can_part_join_filter) { //do nothing } else { JoinFilterInfo info; info.table_id_ = access.table_id_; info.filter_table_id_ = access.table_id_; info.index_id_ = access.index_id_; info.ref_table_id_ = access.ref_table_id_; info.sharding_ = access.strong_sharding_; info.row_count_ = access.get_output_row_count(); info.can_use_join_filter_ = can_join_filter; info.force_filter_ = force_hint; info.need_partition_join_filter_ = can_part_join_filter; info.force_part_filter_ = force_part_hint; info.in_current_dfo_ = is_current_dfo; if ((info.can_use_join_filter_ || info.need_partition_join_filter_)) { bool will_use_column_store = false; bool will_use_row_store = false; if (access.use_column_store_) { info.use_column_store_ = true; } else if (OB_FAIL(get_plan()->will_use_column_store(info.table_id_, info.index_id_, will_use_column_store, will_use_row_store))) { LOG_WARN("failed to check will use column store", K(ret)); } else if (will_use_column_store) { info.use_column_store_ = true; } if (OB_FAIL(ret)) { } else if (OB_FAIL(get_join_filter_exprs(left_join_conditions, right_join_conditions, info))) { LOG_WARN("failed to get join filter exprs", K(ret)); } else if (OB_FAIL(fill_join_filter_info(info))) { LOG_WARN("failed to fill join filter info", K(ret)); } else if(OB_FAIL(join_filter_infos.push_back(info))) { LOG_WARN("failed to push back info", K(ret)); } } } } else if (right_path.is_temp_table_path()) { const TempTablePath &temp_table = static_cast(right_path); bool can_join_filter = false; const ObJoinFilterHint *force_hint = NULL; if (OB_FAIL(log_plan_hint.check_use_join_filter(temp_table.table_id_, left_tables, false, config_disable, can_join_filter, force_hint))) { LOG_WARN("failed to check use join filter", K(ret)); } else if (can_join_filter) { JoinFilterInfo info; info.table_id_ = temp_table.table_id_; info.filter_table_id_ = temp_table.table_id_; info.row_count_ = temp_table.get_path_output_rows(); info.can_use_join_filter_ = true; info.force_filter_ = force_hint; info.need_partition_join_filter_ = false; info.force_part_filter_ = NULL; info.in_current_dfo_ = is_current_dfo; if (OB_FAIL(get_join_filter_exprs(left_join_conditions, right_join_conditions, info))) { LOG_WARN("failed to get join filter exprs", K(ret)); } else if (OB_FAIL(fill_join_filter_info(info))) { LOG_WARN("failed to fill join filter info", K(ret)); } else if (OB_FAIL(join_filter_infos.push_back(info))) { LOG_WARN("failed to push back info", K(ret)); } } } else if (right_path.is_join_path()) { const JoinPath &join_path = static_cast(right_path); int64_t left_current_dfo_level = (current_dfo_level == -1 ? -1 : current_dfo_level + (int64_t)(join_path.is_left_need_exchange())); int64_t right_current_dfo_level = (current_dfo_level == -1 ? -1 : current_dfo_level + (int64_t)(join_path.is_right_need_exchange())); is_fully_partition_wise |= join_path.is_fully_partition_wise(); if (left_current_dfo_level >= 2) { // If the root join path doesn't has the left child dfo, // It should not be generated cuz it cannot actually work by current scheduler. } else if (OB_ISNULL(join_path.left_path_) || OB_ISNULL(join_path.left_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (join_path.left_path_->parent_->get_tables().overlap(right_tables) && OB_FAIL(SMART_CALL(find_possible_join_filter_tables(log_plan_hint, *join_path.left_path_, left_tables, right_tables, config_disable, !join_path.is_left_need_exchange() && is_current_dfo, is_fully_partition_wise, left_current_dfo_level, left_join_conditions, right_join_conditions, join_filter_infos)))) { LOG_WARN("failed to find shuffle table scan", K(ret)); } if (OB_FAIL(ret)) { } else if (right_current_dfo_level >= 2) { // If the root join path doesn't has the left child dfo, // It should not be generated cuz it cannot actually work by current scheduler. } else if (OB_ISNULL(join_path.right_path_) || OB_ISNULL(join_path.right_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (join_path.right_path_->parent_->get_tables().overlap(right_tables) && OB_FAIL(SMART_CALL(find_possible_join_filter_tables(log_plan_hint, *join_path.right_path_, left_tables, right_tables, config_disable, !join_path.is_right_need_exchange() && is_current_dfo, is_fully_partition_wise, right_current_dfo_level, left_join_conditions, right_join_conditions, join_filter_infos)))) { LOG_WARN("failed to find shuffle table scan", K(ret)); } } else if (right_path.is_subquery_path()) { ObSEArray pushdown_left_quals; ObSEArray pushdown_right_quals; JoinFilterPushdownHintInfo hint_info; ObSqlBitSet<> table_set; ObLogPlan* child_plan; const SubQueryPath& subquery_path = static_cast(right_path); if (OB_ISNULL(subquery_path.root_) || OB_ISNULL(child_plan = subquery_path.root_->get_plan())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(log_plan_hint.get_pushdown_join_filter_hints(subquery_path.subquery_id_, left_tables, config_disable, hint_info))) { LOG_WARN("failed to check use join filter", K(ret)); } else if (OB_FAIL(table_set.add_member(stmt->get_table_bit_index(subquery_path.subquery_id_)))) { LOG_WARN("failed to add member into table set", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::extract_pushdown_join_filter_quals(left_join_conditions, right_join_conditions, table_set, pushdown_left_quals, pushdown_right_quals))) { LOG_WARN("failed to extract pushdown quals", K(ret)); } else if (OB_FAIL(child_plan->pushdown_join_filter_into_subquery(stmt, subquery_path.root_, subquery_path.subquery_id_, hint_info, is_current_dfo, is_fully_partition_wise, current_dfo_level, pushdown_left_quals, pushdown_right_quals, join_filter_infos))) { LOG_WARN("failed to find pushdown join filter table", K(ret)); } } return ret; } int ObJoinOrder::get_join_filter_exprs(const ObIArray &left_join_conditions, const ObIArray &right_join_conditions, JoinFilterInfo &join_filter_info) { int ret = OB_SUCCESS; ObSqlBitSet<> table_set; const ObDMLStmt* stmt; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret), K(get_plan())); } else if (OB_UNLIKELY(left_join_conditions.count() != right_join_conditions.count())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("join condition length error", K(ret)); } else if (OB_FAIL(table_set.add_member(stmt->get_table_bit_index(join_filter_info.table_id_)))) { LOG_WARN("failed to add member", K(ret)); } for (int64_t j = 0; OB_SUCC(ret) && j < right_join_conditions.count(); ++j) { ObRawExpr *lexpr = left_join_conditions.at(j); ObRawExpr *rexpr = right_join_conditions.at(j); if (OB_ISNULL(lexpr) || OB_ISNULL(rexpr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (rexpr->get_relation_ids().is_subset(table_set)) { if (OB_FAIL(join_filter_info.lexprs_.push_back(lexpr))) { LOG_WARN("failed to push back expr", K(ret)); } else if (OB_FAIL(join_filter_info.rexprs_.push_back(rexpr))) { LOG_WARN("failed to push back expr", K(ret)); } } } return ret; } int ObJoinOrder::check_normal_join_filter_valid(const Path& left_path, const Path& right_path, ObIArray &join_filter_infos) { int ret = OB_SUCCESS; ObLogPlan *plan = get_plan(); ObJoinOrder* left_tree = NULL; const ObDMLStmt *stmt = NULL; bool left_find = false; bool right_find = false; bool cur_dfo_has_shuffle_bf = false; if (OB_ISNULL(plan) || OB_ISNULL(left_tree=left_path.parent_) || OB_ISNULL(stmt = plan->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null plan", K(ret)); } for (int i = 0; OB_SUCC(ret) && i < join_filter_infos.count(); ++i) { JoinFilterInfo &info = join_filter_infos.at(i); double join_filter_sel = 1.0; if (!info.can_use_join_filter_ || info.lexprs_.empty()) { info.can_use_join_filter_ = false; } else if (OB_FAIL(calc_join_filter_selectivity(left_path, info, join_filter_sel))) { LOG_WARN("failed to calc join filter sel", K(ret)); } else { double rate = 1 - join_filter_sel; double threshold = 0.6; if (info.in_current_dfo_) { threshold = 0.9; } info.join_filter_selectivity_ = join_filter_sel; info.can_use_join_filter_ = rate >= threshold || NULL != info.force_filter_; OPT_TRACE("join filter info:"); OPT_TRACE("in current dfo:", info.in_current_dfo_); OPT_TRACE("filter selectivity:", info.join_filter_selectivity_); OPT_TRACE("force use join filter:", NULL != info.force_filter_); OPT_TRACE("use join filter:", info.can_use_join_filter_); LOG_TRACE("succeed to check normal join filter", K(info)); } } return ret; } int ObJoinOrder::calc_join_filter_selectivity(const Path& left_path, JoinFilterInfo& info, double &join_filter_selectivity) { int ret = OB_SUCCESS; ObLogPlan *plan = get_plan(); double left_distinct_card = 1.0; double right_distinct_card = 1.0; join_filter_selectivity = 1.0; if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null plan", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_distinct(plan->get_update_table_metas(), plan->get_selectivity_ctx(), info.lexprs_, left_path.get_path_output_rows(), left_distinct_card, false))) { LOG_WARN("failed to calc distinct", K(ret)); } else { join_filter_selectivity = left_distinct_card / info.right_distinct_card_; if (join_filter_selectivity < 0) { join_filter_selectivity = 0; } else if (join_filter_selectivity > 0.9) { join_filter_selectivity = 0.9; } LOG_TRACE("succeed to calc join filter selectivity", K(join_filter_selectivity), K(left_distinct_card), K(info.right_distinct_card_)); } return ret; } int ObJoinOrder::find_shuffle_join_filter(const Path& path, bool &find) { int ret = OB_SUCCESS; find = false; if (path.is_join_path()) { const JoinPath &join_path = static_cast(path); for (int64_t i = 0; OB_SUCC(ret) && !find && i < join_path.join_filter_infos_.count(); ++i) { find = !join_path.join_filter_infos_.at(i).in_current_dfo_; } if (OB_SUCC(ret) && !find && !join_path.is_left_need_exchange() && OB_NOT_NULL(join_path.left_path_)) { if (OB_FAIL(SMART_CALL(find_shuffle_join_filter(*join_path.left_path_, find)))) { LOG_WARN("failed to find shuffle join filter", K(ret)); } } if (OB_SUCC(ret) && !find && !join_path.is_right_need_exchange() && OB_NOT_NULL(join_path.right_path_)) { if (OB_FAIL(SMART_CALL(find_shuffle_join_filter(*join_path.right_path_, find)))) { LOG_WARN("failed to find shuffle join filter", K(ret)); } } } else if (path.is_subquery_path()) { ObLogicalOperator *op = static_cast(path).root_; if (OB_ISNULL(op)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null", K(ret)); } else if (OB_FAIL(op->find_shuffle_join_filter(find))) { LOG_WARN("failed to find shuffle join filter", K(ret)); } } return ret; } int ObJoinOrder::check_partition_join_filter_valid(const DistAlgo join_dist_algo, ObIArray &join_filter_infos) { int ret = OB_SUCCESS; ObSEArray target_part_keys; ObRawExpr *left_calc_part_id_expr = NULL; ObLogPlan *plan = get_plan(); bool match = false; bool skip_subpart = false; if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null plan", K(ret)); } for (int i = 0; OB_SUCC(ret) && i < join_filter_infos.count(); ++i) { JoinFilterInfo &info = join_filter_infos.at(i); target_part_keys.reuse(); match = false; if (!info.need_partition_join_filter_ || DIST_PARTITION_WISE == join_dist_algo) { info.need_partition_join_filter_ = false; } else if (OB_ISNULL(info.sharding_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null sharding", K(ret)); } else if (info.sharding_->is_single()) { info.need_partition_join_filter_ = false; } else if (OB_FAIL(info.sharding_->get_all_partition_keys(target_part_keys))) { LOG_WARN("fail to get all partion keys", K(ret)); } else if (OB_FAIL(ObShardingInfo::check_if_match_repart_or_rehash(get_plan()->get_equal_sets(), info.lexprs_, info.rexprs_, target_part_keys, match))) { LOG_WARN("fail to check if match repart", K(ret)); } else if (!match) { // If the join condition includes all level 1 partition key, // partition bf can be generated based on the level 1 partition key if (OB_FAIL(ObShardingInfo::check_if_match_repart_or_rehash(get_plan()->get_equal_sets(), info.lexprs_, info.rexprs_, info.sharding_->get_partition_keys(), match))) { LOG_WARN("fail to check if match repart", K(ret)); } else { info.skip_subpart_ = true; } } if (OB_FAIL(ret)) { } else if (!match) { info.need_partition_join_filter_ = false; OPT_TRACE("hash join will not use partition join filter"); } else if (OB_FAIL(build_join_filter_part_expr(info.index_id_, info.lexprs_, info.rexprs_, info.sharding_, info.calc_part_id_expr_, info.skip_subpart_))) { LOG_WARN("fail to init bf part expr", K(ret)); } else { OPT_TRACE("hash join will use partition join filter"); } } return ret; } int ObJoinOrder::build_join_filter_part_expr(const int64_t ref_table_id, const common::ObIArray &lexprs , const common::ObIArray &rexprs, ObShardingInfo *sharding_info, ObRawExpr *&left_calc_part_id_expr, bool skip_subpart) { int ret = OB_SUCCESS; left_calc_part_id_expr = NULL; ObSQLSessionInfo *session_info = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(sharding_info) || lexprs.empty() || lexprs.count() != rexprs.count() || sharding_info->get_partition_func().empty() || (OB_ISNULL(session_info = get_plan()->get_optimizer_context().get_session_info()))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null param", K(ret)); } else { // build right calc part id expr ObRawExprFactory &expr_factory = get_plan()->get_optimizer_context().get_expr_factory(); ObRawExprCopier copier(expr_factory); // build left calc part id expr ObSEArray repart_exprs; ObSEArray repart_sub_exprs; ObSEArray repart_func_exprs; // get repart keys for (int i = 0; i < sharding_info->get_partition_keys().count() && OB_SUCC(ret); ++i) { bool is_found = false; for (int j = 0; j < rexprs.count() && OB_SUCC(ret) && !is_found; ++j) { if (ObOptimizerUtil::is_expr_equivalent(sharding_info->get_partition_keys().at(i), rexprs.at(j), get_plan()->get_equal_sets())) { if (OB_FAIL(repart_exprs.push_back(lexprs.at(j)))) { LOG_WARN("failed to push back expr", K(ret)); } else { is_found = true; } } } } // get subpart keys for (int i = 0; i < sharding_info->get_sub_partition_keys().count() && !skip_subpart && OB_SUCC(ret); ++i) { bool is_found = false; for (int j = 0; j < rexprs.count() && OB_SUCC(ret) && !is_found; ++j) { if (ObOptimizerUtil::is_expr_equivalent(sharding_info->get_sub_partition_keys().at(i), rexprs.at(j), get_plan()->get_equal_sets())) { if (OB_FAIL(repart_sub_exprs.push_back(lexprs.at(j)))) { LOG_WARN("failed to push back expr", K(ret)); } else { is_found = true; } } } } if (OB_FAIL(ret)) { // do nothing } else if (OB_FAIL(copier.add_replaced_expr(sharding_info->get_partition_keys(), repart_exprs))) { LOG_WARN("failed to add replace pair", K(ret)); } else if (!skip_subpart && OB_FAIL(copier.add_replaced_expr(sharding_info->get_sub_partition_keys(), repart_sub_exprs))) { LOG_WARN("failed to add replace pair", K(ret)); } else { ObRawExpr *repart_func_expr = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < sharding_info->get_partition_func().count(); i++) { repart_func_expr = NULL; ObRawExpr *target_func_expr = sharding_info->get_partition_func().at(i); if (OB_ISNULL(target_func_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (1 == i && skip_subpart) { ObConstRawExpr *const_expr = NULL; ObRawExpr *dummy_expr = NULL; int64_t const_value = 1; if (OB_FAIL(ObRawExprUtils::build_const_int_expr(get_plan()->get_optimizer_context().get_expr_factory(), ObIntType, const_value, const_expr))) { LOG_WARN("Failed to build const expr", K(ret)); } else if (OB_ISNULL(dummy_expr = const_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(dummy_expr->formalize(session_info))) { LOG_WARN("Failed to formalize a new expr", K(ret)); } else if (OB_FAIL(repart_func_exprs.push_back(dummy_expr))) { LOG_WARN("failed to push back expr", K(ret)); } } else if (OB_FAIL(copier.copy_on_replace(target_func_expr, repart_func_expr))) { LOG_WARN("failed to copy on replace repart expr", K(ret)); } else if (OB_FAIL(repart_func_exprs.push_back(repart_func_expr))) { LOG_WARN("failed to add repart func expr", K(ret)); } } if (OB_SUCC(ret)) { if (OB_FAIL(ObRawExprUtils::build_calc_tablet_id_expr(expr_factory, *session_info, ref_table_id, sharding_info->get_part_level(), repart_func_exprs.at(0), repart_func_exprs.count() > 1 ? repart_func_exprs.at(1) : NULL, left_calc_part_id_expr))) { LOG_WARN("fail to init calc part id expr", K(ret)); } else if (OB_ISNULL(left_calc_part_id_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected calc part id expr", K(ret)); } else if (skip_subpart) { left_calc_part_id_expr->set_partition_id_calc_type(CALC_IGNORE_SUB_PART); } } } } return ret; } int ObJoinOrder::remove_invalid_join_filter_infos(ObIArray &join_filter_infos) { int ret = OB_SUCCESS; ObSEArray new_infos; for (int i = 0; OB_SUCC(ret) && i < join_filter_infos.count(); ++i) { if (!join_filter_infos.at(i).can_use_join_filter_ && !join_filter_infos.at(i).need_partition_join_filter_) { //do nothing } else if (OB_FAIL(new_infos.push_back(join_filter_infos.at(i)))) { LOG_WARN("failed to push back join filter info", K(ret)); } } if (OB_SUCC(ret)) { if (OB_FAIL(join_filter_infos.assign(new_infos))) { LOG_WARN("failed to assign join filter infos", K(ret)); } } return ret; } int ObJoinOrder::create_and_add_mj_path(const Path *left_path, const Path *right_path, const ObJoinType join_type, const DistAlgo join_dist_algo, const bool is_slave_mapping, const ObIArray &merge_directions, const common::ObIArray &equal_join_conditions, const common::ObIArray &other_join_conditions, const common::ObIArray &filters, const double equal_cond_sel, const double other_cond_sel, const common::ObIArray &left_sort_keys, const bool left_need_sort, const int64_t left_prefix_pos, const common::ObIArray &right_sort_keys, const bool right_need_sort, const int64_t right_prefix_pos) { int ret = OB_SUCCESS; JoinPath *join_path = NULL; const ObDMLStmt *stmt = NULL; ObSEArray normal_filters; ObSEArray subquery_filters; if (OB_ISNULL(left_path) || OB_ISNULL(right_path) || OB_ISNULL(left_path->get_sharding()) || OB_ISNULL(right_path->get_sharding()) || OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("invalid argument", K(left_path), K(right_path), K(get_plan()), K(stmt), K(ret)); } else if (OB_FAIL(ObOptimizerUtil::classify_subquery_exprs(filters, subquery_filters, normal_filters, false))) { LOG_WARN("failed to classify subquery exprs", K(ret)); } else if (RIGHT_SEMI_JOIN == join_type || RIGHT_ANTI_JOIN == join_type) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected right semt/anti merge join", K(ret), K(join_type)); } else if (OB_FAIL(alloc_join_path(join_path))) { LOG_WARN("failed to allocate a merge join path", K(ret)); } else { join_path = new(join_path)JoinPath(this, left_path, right_path, MERGE_JOIN, join_dist_algo, is_slave_mapping, join_type); join_path->left_need_sort_ = left_need_sort; join_path->right_need_sort_ = right_need_sort; join_path->left_prefix_pos_ = left_prefix_pos; join_path->right_prefix_pos_ = right_prefix_pos; join_path->equal_cond_sel_ = equal_cond_sel; join_path->other_cond_sel_ = other_cond_sel; OPT_TRACE("create new Merge Join path:", join_path); if (OB_FAIL(append(join_path->equal_join_conditions_, equal_join_conditions))) { LOG_WARN("failed to append join conditions", K(ret)); } else if (OB_FAIL(append(join_path->other_join_conditions_, other_join_conditions))) { LOG_WARN("failed to append join filters", K(ret)); } else if (OB_FAIL(append(join_path->filter_, normal_filters))) { LOG_WARN("failed to append join quals", K(ret)); } else if (OB_FAIL(append(join_path->left_sort_keys_, left_sort_keys))) { LOG_WARN("failed to append left expected ordering", K(ret)); } else if (OB_FAIL(append(join_path->right_sort_keys_, right_sort_keys))) { LOG_WARN("failed to append right expected ordering", K(ret)); } else if (OB_FAIL(append(join_path->merge_directions_, merge_directions))) { LOG_WARN("failed to append merge directions", K(ret)); } else if (OB_FAIL(join_path->compute_join_path_property())) { LOG_WARN("failed to compute join path property", K(ret)); } else if (OB_FAIL(create_subplan_filter_for_join_path(join_path, subquery_filters))) { LOG_WARN("failed to create subplan filter for join path", K(ret)); } else if (OB_FAIL(add_path(join_path))) { LOG_WARN("failed to add join path", K(ret)); } else { LOG_TRACE("succeed to create a merge join path", K(join_type), K(merge_directions), K(left_sort_keys), K(right_sort_keys), K(left_need_sort), K(right_need_sort)); } } return ret; } int ObJoinOrder::extract_hashjoin_conditions(const ObIArray &join_quals, const ObRelIds &left_tables, const ObRelIds &right_tables, ObIArray &equal_join_conditions, ObIArray &other_join_conditions, const ObJoinType &join_type, NullAwareAntiJoinInfo &naaj_info) { int ret = OB_SUCCESS; ObRawExpr *cur_expr = NULL; ObSQLSessionInfo *session = NULL; bool naaj_enabled = false; if ((LEFT_ANTI_JOIN == join_type || RIGHT_ANTI_JOIN == join_type)) { if (OB_ISNULL(get_plan()) || OB_ISNULL(session = get_plan()->get_optimizer_context().get_session_info())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to get session info", K(ret), K(get_plan())); } else if (OB_FAIL(session->get_enable_optimizer_null_aware_antijoin(naaj_enabled))) { LOG_WARN("failed to get sys var naaj enabled", K(ret)); } else if (naaj_enabled) { if (OB_FAIL(extract_naaj_join_conditions(join_quals, left_tables, right_tables, equal_join_conditions, naaj_info))) { LOG_WARN("failed to extract naaj join conditions", K(ret)); } } } for (int64_t i = 0 ; !naaj_info.is_naaj_ && OB_SUCC(ret) && i < join_quals.count(); ++i) { cur_expr = join_quals.at(i); bool is_equal_cond = false; if (OB_FAIL(check_is_join_equal_conditions(cur_expr, left_tables, right_tables, is_equal_cond))) { LOG_WARN("failed to check equal cond", K(cur_expr), K(ret)); } else if (is_equal_cond) { if (OB_FAIL(equal_join_conditions.push_back(cur_expr))) { LOG_WARN("fail to push back", K(cur_expr), K(ret)); } } else if (cur_expr->get_relation_ids().is_subset(get_tables())) { if (OB_FAIL(other_join_conditions.push_back(cur_expr))) { LOG_WARN("fail to push back", K(cur_expr), K(ret)); } } } return ret; } int ObJoinOrder::check_is_join_equal_conditions(const ObRawExpr *equal_cond, const ObRelIds &left_tables, const ObRelIds &right_tables, bool &is_equal_cond) { int ret = OB_SUCCESS; const ObRawExpr *left_expr = NULL; const ObRawExpr *right_expr = NULL; is_equal_cond = false; if (OB_ISNULL(equal_cond)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(equal_cond), K(ret)); } else if (equal_cond->has_flag(IS_JOIN_COND) && (OB_ISNULL(left_expr = equal_cond->get_param_expr(0)) || OB_ISNULL(right_expr = equal_cond->get_param_expr(1)))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_expr), K(right_expr), K(ret)); } else if (equal_cond->has_flag(IS_JOIN_COND) && T_OP_ROW != left_expr->get_expr_type() && T_OP_ROW != right_expr->get_expr_type() && ((left_expr->get_relation_ids().is_subset(left_tables) && right_expr->get_relation_ids().is_subset(right_tables)) || (left_expr->get_relation_ids().is_subset(right_tables) && right_expr->get_relation_ids().is_subset(left_tables)))) { is_equal_cond = true; } return ret; } int ObJoinOrder::classify_hashjoin_conditions(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const ObJoinType join_type, const ObIArray &on_conditions, const ObIArray &where_filters, ObIArray &equal_join_conditions, ObIArray &other_join_conditions, ObIArray &filters, NullAwareAntiJoinInfo &naaj_info) { int ret = OB_SUCCESS; if (OB_FAIL(extract_hashjoin_conditions(IS_OUTER_OR_CONNECT_BY_JOIN(join_type) ? on_conditions : where_filters, left_tree.get_tables(), right_tree.get_tables(), equal_join_conditions, other_join_conditions, join_type, naaj_info))) { LOG_WARN("failed to extract hash join conditions and filters", K(join_type), K(ret)); } else if (IS_OUTER_OR_CONNECT_BY_JOIN(join_type) && OB_FAIL(append(filters, where_filters))) { LOG_WARN("failed to append join quals", K(ret)); } else {} return ret; } int ObJoinOrder::extract_mergejoin_conditions(const ObIArray &join_quals, const ObRelIds &left_tables, const ObRelIds &right_tables, ObIArray &equal_join_conditions, ObIArray &other_join_conditions) { int ret = OB_SUCCESS; ObRawExpr* cur_expr = NULL; ObRawExpr* left_expr = NULL; ObRawExpr* right_expr = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < join_quals.count(); ++i) { cur_expr = join_quals.at(i); //我们相信joininfo里的join_quals是经过处理的,left=A,right=B,a=c是不可能出现在这里的, //所以大胆的利用IS_JOIN_COND进行判断即可 if (OB_ISNULL(cur_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(cur_expr), K(ret)); } else if (cur_expr->has_flag(IS_JOIN_COND) && (OB_ISNULL(left_expr = cur_expr->get_param_expr(0)) || OB_ISNULL(right_expr = cur_expr->get_param_expr(1)))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(cur_expr), K(left_expr), K(right_expr), K(ret)); } else if (cur_expr->has_flag(IS_JOIN_COND) && !cur_expr->has_flag(CNT_ROWNUM) && T_OP_ROW != left_expr->get_expr_type() && T_OP_ROW != right_expr->get_expr_type() && left_expr->get_collation_type() == right_expr->get_collation_type() //TODO:@ryan.ly && ((left_expr->get_relation_ids().is_subset(left_tables) && right_expr->get_relation_ids().is_subset(right_tables)) || (left_expr->get_relation_ids().is_subset(right_tables) && right_expr->get_relation_ids().is_subset(left_tables)))) { bool is_mj_able = false; common::ObObjType compare_type = cur_expr->get_result_type().get_calc_type(); if (OB_FAIL(ObObjCaster::is_cast_monotonic(left_expr->get_data_type(), compare_type, is_mj_able))) { LOG_WARN("check cast monotonic error", K(left_expr->get_data_type()), K(compare_type), K(ret)); } else if (is_mj_able) { if (OB_FAIL(ObObjCaster::is_cast_monotonic(right_expr->get_data_type(), compare_type, is_mj_able))) { LOG_WARN("check cast monotonic error", K(right_expr->get_data_type()), K(compare_type), K(ret)); } else { /*do nothing*/ } } else { /*do nothing*/ } if (OB_SUCC(ret)) { if (is_mj_able) { ret = equal_join_conditions.push_back(cur_expr); } else { ret = other_join_conditions.push_back(cur_expr); } } else { /*do nothing*/ } } else if (cur_expr->get_relation_ids().is_subset(get_tables())) { //如果条件仅涉及左右分支,可以拿出来作为join filter if (OB_FAIL(other_join_conditions.push_back(cur_expr))) { LOG_WARN("fail to push back", K(cur_expr), K(ret)); } } else { //其余条件是涉及本级表,但是不能在不本级处理的条件,例如:left=A,right=B,条件为a+b=c. //这样的条件会在下一次生成ABC的连接的过程中,处理joininfo的时候被处理 LOG_TRACE("A qual references this join, but we can not resolve it in this level"); } } return ret; } class NLParamReplacer : public ObIRawExprReplacer { public: int generate_new_expr(ObRawExprFactory &expr_factory, ObRawExpr *old_expr, ObRawExpr *&new_expr) override { int ret = OB_SUCCESS; new_expr = NULL; if (OB_ISNULL(old_expr) || OB_ISNULL(left_table_set_) || OB_ISNULL(copier_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("params are invalid", K(ret), K(old_expr), K(left_table_set_)); } else if (!old_expr->get_relation_ids().overlap(*left_table_set_) && !old_expr->has_flag(CNT_LEVEL) && !old_expr->has_flag(CNT_PRIOR)) { new_expr = old_expr; } else if (old_expr->is_query_ref_expr()) { // only function table subquery expr may come into here // normal push down predicates does not contain subquery ObQueryRefRawExpr *new_query_ref = NULL; ObSEArray exec_params; if (OB_FAIL(expr_factory.create_raw_expr(T_REF_QUERY, new_query_ref))) { LOG_WARN("failed to create raw expr", K(ret)); } else if (OB_FAIL(new_query_ref->assign(*old_expr))) { LOG_WARN("failed to assign old expr", K(ret)); } else if (OB_FAIL(exec_params.assign(new_query_ref->get_exec_params()))) { LOG_WARN("failed to push back exec param", K(ret)); } else { new_query_ref->get_exec_params().reuse(); } for (int64_t i = 0; OB_SUCC(ret) && i < exec_params.count(); ++i) { ObExecParamRawExpr* expr = exec_params.at(i); ObRawExpr *ref_expr = NULL; if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (OB_ISNULL(ref_expr = expr->get_ref_expr())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (ref_expr->get_relation_ids().is_subset(*left_table_set_)) { if (OB_FAIL(nl_params_.push_back(expr))) { LOG_WARN("failed to push back nl param", K(ret)); } else { new_query_ref->set_has_nl_param(true); } } else if (OB_UNLIKELY(ref_expr->get_relation_ids().overlap(*left_table_set_))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected expr", K(ret), K(*ref_expr)); } else if (OB_FAIL(new_query_ref->get_exec_params().push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } } new_expr = new_query_ref; } else if (copier_->is_existed(old_expr)) { // do nothing } else if ((old_expr->is_column_ref_expr() && old_expr->get_relation_ids().is_subset(*left_table_set_)) || old_expr->has_flag(IS_LEVEL) || old_expr->has_flag(IS_PRIOR)) { new_expr = old_expr; if (OB_FAIL(ObRawExprUtils::create_new_exec_param(query_ctx_, expr_factory, new_expr))) { LOG_WARN("failed to create new exec param", K(ret)); } else if (OB_FAIL(nl_params_.push_back( static_cast(new_expr)))) { LOG_WARN("failed to push back new expr", K(ret)); } } return ret; } ObArray nl_params_; ObQueryCtx *query_ctx_; const ObRelIds *left_table_set_; ObRawExpr *root_expr_; ObRawExprCopier *copier_; }; int ObJoinOrder::extract_params_for_inner_path(const ObRelIds &join_relids, ObIArray &nl_params, ObIArray &subquery_exprs, const ObIArray &exprs, ObIArray &new_exprs) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else { ObSEArray query_ref_exprs; ObRawExprCopier copier(get_plan()->get_optimizer_context().get_expr_factory()); NLParamReplacer replacer; replacer.query_ctx_ = stmt->get_query_ctx(); replacer.left_table_set_ = &join_relids; replacer.copier_ = &copier; if (OB_FAIL(ObTransformUtils::extract_query_ref_expr(exprs, query_ref_exprs))) { LOG_WARN("failed to extract query ref expr", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < query_ref_exprs.count(); ++i) { ObQueryRefRawExpr *query_ref_expr = query_ref_exprs.at(i); if (OB_ISNULL(query_ref_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } for (int64_t j = 0; OB_SUCC(ret) && j < query_ref_expr->get_param_count(); ++j) { ObExecParamRawExpr *exec_param = query_ref_expr->get_exec_param(j); ObRawExpr *ref_expr = NULL; if (OB_ISNULL(exec_param) || OB_ISNULL(ref_expr = exec_param->get_ref_expr())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (!ref_expr->get_relation_ids().is_subset(join_relids) || copier.is_existed(ref_expr)) { // do nothing } else if (OB_FAIL(copier.add_replaced_expr(ref_expr, exec_param))) { LOG_WARN("failed to add replaced expr", K(ret)); } } } for (int64_t i = 0; OB_SUCC(ret) && i < exprs.count(); i++) { ObRawExpr *temp_expr = NULL; replacer.root_expr_ = exprs.at(i); if (OB_FAIL(copier.copy_on_replace(exprs.at(i), temp_expr, &replacer))) { LOG_WARN("failed to copy on replace expr", K(ret)); } else if (OB_FAIL(temp_expr->extract_info())) { LOG_WARN("failed to extract expr info", K(ret)); } else if (OB_FAIL(temp_expr->pull_relation_id())) { LOG_WARN("failed to formalize expr", K(ret)); } else if (temp_expr->has_flag(CNT_SUB_QUERY)) { if (OB_FAIL(create_onetime_expr(join_relids, temp_expr))) { LOG_WARN("failed to create onetime expr", K(ret)); } else if (OB_FAIL(temp_expr->extract_info())) { LOG_WARN("failed to extract expr info", K(ret)); } else if (OB_FAIL(subquery_exprs.push_back(temp_expr))) { LOG_WARN("failed to push back expr", K(ret)); } else if (!temp_expr->has_flag(CNT_SUB_QUERY) && OB_FAIL(new_exprs.push_back(temp_expr))) { LOG_WARN("failed to push back exprs", K(ret)); } } else if (OB_FAIL(new_exprs.push_back(temp_expr))) { LOG_WARN("failed to push back exprs", K(ret)); } } if (OB_SUCC(ret) && OB_FAIL(nl_params.assign(replacer.nl_params_))) { LOG_WARN("failed to assign nl params", K(ret)); } } return ret; } int ObJoinOrder::is_onetime_expr(const ObRelIds &ignore_relids,ObRawExpr* expr, bool &is_valid) { int ret = OB_SUCCESS; if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is null", K(ret)); } else { // if a expr contain psedu column, hierarchical expr, any column is_valid = !ObOptimizerUtil::has_psedu_column(*expr) && !ObOptimizerUtil::has_hierarchical_expr(*expr) && expr->get_relation_ids().is_subset(ignore_relids) && !expr->has_flag(CNT_AGG) && !expr->has_flag(CNT_WINDOW_FUNC) && !expr->has_flag(CNT_ONETIME) && !expr->has_flag(CNT_ALIAS) && expr->get_ref_count() <= 1; } if (OB_SUCC(ret) && is_valid && expr->is_query_ref_expr()) { bool has_ref_assign_user_var = false; if (OB_FAIL(ObOptimizerUtil::check_subquery_has_ref_assign_user_var( expr, has_ref_assign_user_var))) { LOG_WARN("failed to check subquery has ref assign user var", K(ret)); } else if (has_ref_assign_user_var) { is_valid = false; } else if (!static_cast(expr)->is_scalar()) { is_valid = false; } } if (OB_SUCC(ret) && is_valid && expr->has_flag(CNT_SUB_QUERY)) { if (expr->get_expr_type() == T_FUN_COLUMN_CONV || expr->get_expr_type() == T_OP_ROW) { is_valid = false; } } return ret; } int ObJoinOrder::create_onetime_expr(const ObRelIds &ignore_relids, ObRawExpr* &expr) { int ret = OB_SUCCESS; const ObDMLStmt* stmt = NULL; bool is_valid = false; if (OB_ISNULL(expr) || OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (expr->has_flag(CNT_SUB_QUERY) && OB_FAIL(is_onetime_expr(ignore_relids, expr, is_valid))) { LOG_WARN("failed to check is onetime expr", K(ret)); } else if (is_valid) { ObExecParamRawExpr *new_expr = NULL; ObRawExprFactory &expr_factory = get_plan()->get_optimizer_context().get_expr_factory(); if (OB_FAIL(expr_factory.create_raw_expr(T_QUESTIONMARK, new_expr))) { LOG_WARN("failed to create exec param expr", K(ret)); } else if (OB_ISNULL(new_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("new expr is null", K(ret), K(new_expr)); } else { new_expr->set_ref_expr(expr, true); new_expr->set_result_type(expr->get_result_type()); new_expr->set_param_index(stmt->get_question_marks_count()); // TODO link.zt const_cast(stmt)->increase_question_marks_count(); ObSQLSessionInfo *session_info = get_plan()->get_optimizer_context().get_session_info(); if (OB_FAIL(new_expr->formalize(session_info))) { LOG_WARN("failed to extract expr info", K(ret)); } else { expr = new_expr; } } } else if (expr->has_flag(CNT_SUB_QUERY)) { for (int64_t i = 0; OB_SUCC(ret) && i < expr->get_param_count(); ++i) { if (OB_FAIL(SMART_CALL(create_onetime_expr(ignore_relids, expr->get_param_expr(i))))) { LOG_WARN("failed to create onetime expr", K(ret)); } } } return ret; } int ObJoinOrder::get_valid_path_info_from_hint(const ObRelIds &table_set, bool both_access, ValidPathInfo &path_info) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(ret)); } else { const ObLogPlanHint &log_hint = get_plan()->get_log_plan_hint(); const LogJoinHint *log_join_hint = log_hint.get_join_hint(table_set); if (NULL != log_join_hint && !log_join_hint->dist_method_hints_.empty()) { path_info.distributed_methods_ &= log_join_hint->dist_methods_; if (log_join_hint->dist_methods_ & DIST_NONE_ALL) { path_info.distributed_methods_ = DIST_NONE_ALL; } else if (log_join_hint->dist_methods_ & DIST_ALL_NONE) { path_info.distributed_methods_ = DIST_ALL_NONE; } } else if (log_hint.is_outline_data_) { // outline data has no pq distributed hint path_info.distributed_methods_ &= DIST_BASIC_METHOD; } if (NULL != log_join_hint && both_access && NULL != log_join_hint->slave_mapping_) { path_info.force_slave_mapping_ = true; path_info.distributed_methods_ &= ~DIST_PULL_TO_LOCAL; path_info.distributed_methods_ &= ~DIST_HASH_HASH; path_info.distributed_methods_ &= ~DIST_BC2HOST_NONE; path_info.distributed_methods_ &= ~DIST_BASIC_METHOD; } if (NULL != log_join_hint && NULL != log_join_hint->nl_material_) { path_info.force_mat_ = log_join_hint->nl_material_->is_enable_hint(); path_info.force_no_mat_ = log_join_hint->nl_material_->is_disable_hint(); } else if (log_hint.is_outline_data_) { path_info.force_mat_ = false; path_info.force_no_mat_ = true; } if (NULL != log_join_hint && !log_join_hint->local_method_hints_.empty()) { path_info.prune_mj_ = !(log_join_hint->local_methods_ & MERGE_JOIN); path_info.local_methods_ &= log_join_hint->local_methods_; } else if (OB_FAIL(log_hint.check_status())) { // spm outline mode, must get local_methods_ from hint LOG_WARN("failed to get valid local methods from hint", K(ret)); } else { ObOptimizerContext &opt_ctx = get_plan()->get_optimizer_context(); int64_t local_methods_mask = 0; if (opt_ctx.is_hash_join_enabled()) { local_methods_mask |= HASH_JOIN; } if (opt_ctx.is_merge_join_enabled()){ local_methods_mask |= MERGE_JOIN; } if (opt_ctx.is_nested_join_enabled()) { local_methods_mask |= NESTED_LOOP_JOIN; } path_info.local_methods_ &= local_methods_mask; path_info.prune_mj_ = path_info.local_methods_ != MERGE_JOIN; } } return ret; } int ObJoinOrder::get_valid_path_info(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const ObJoinType join_type, const ObIArray &join_conditions, const bool ignore_hint, const bool reverse_join_tree, ValidPathInfo &path_info) { int ret = OB_SUCCESS; path_info.join_type_ = join_type; path_info.ignore_hint_ = ignore_hint; if (OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(ret)); } else { if (ignore_hint) { OPT_TRACE("start generate join method without hint"); } else { OPT_TRACE("start generate join method with hint"); } if (reverse_join_tree) { OPT_TRACE("start generate reverse join method"); } ObOptimizerContext &opt_ctx = get_plan()->get_optimizer_context(); const bool both_access = ACCESS == left_tree.get_type() && ACCESS == right_tree.get_type(); if (CONNECT_BY_JOIN == path_info.join_type_) { path_info.local_methods_ = NESTED_LOOP_JOIN; path_info.distributed_methods_ = DIST_PULL_TO_LOCAL | DIST_BASIC_METHOD; OPT_TRACE("connect by will use nl join"); OPT_TRACE("connect by will use pull to local / basic method"); } else { path_info.local_methods_ = NESTED_LOOP_JOIN | MERGE_JOIN | HASH_JOIN ; path_info.distributed_methods_ = DIST_PULL_TO_LOCAL | DIST_HASH_HASH | DIST_HASH_NONE | DIST_NONE_HASH | DIST_BROADCAST_NONE | DIST_NONE_BROADCAST | DIST_BC2HOST_NONE | DIST_PARTITION_NONE | DIST_NONE_PARTITION | DIST_PARTITION_WISE | DIST_EXT_PARTITION_WISE | DIST_BASIC_METHOD | DIST_NONE_ALL | DIST_ALL_NONE; } if (!ignore_hint && OB_FAIL(get_valid_path_info_from_hint(right_tree.get_tables(), both_access, path_info))) { LOG_WARN("failed to get valid path info from hint", K(ret)); } else if (RIGHT_OUTER_JOIN == path_info.join_type_ || FULL_OUTER_JOIN == path_info.join_type_) { path_info.local_methods_ &= ~NESTED_LOOP_JOIN; OPT_TRACE("right or full outer join can not use nested loop join"); } else if (RIGHT_SEMI_JOIN == path_info.join_type_ || RIGHT_ANTI_JOIN == path_info.join_type_) { path_info.local_methods_ &= ~NESTED_LOOP_JOIN; path_info.local_methods_ &= ~MERGE_JOIN; OPT_TRACE("right semi/anti join can not use nested loop/merge join"); } if (OB_SUCC(ret)) { bool force_use_nlj = false; force_use_nlj = (OB_SUCCESS != (OB_E(EventTable::EN_GENERATE_PLAN_WITH_NLJ) OB_SUCCESS)); if (force_use_nlj) { path_info.local_methods_ &= ~MERGE_JOIN; path_info.local_methods_ |= NESTED_LOOP_JOIN; } } //check batch update join type if (OB_SUCC(ret) && get_plan()->get_optimizer_context().is_batched_multi_stmt()) { // left_tree is the generated table of batch params and right tree is other path -> NLJ // other join order we don't need care it bool left_is_batch_table = false; bool right_is_batch_table = false; if (INNER_JOIN != join_type) { //ignore this join path path_info.local_methods_ = 0; } else if (left_tree.type_ != JOIN && OB_FAIL(ObTransformUtils::is_batch_stmt_write_table(left_tree.get_table_id(), *get_plan()->get_stmt(), left_is_batch_table))) { LOG_WARN("check left tree is the generated table of batch params failed", K(ret), "left_tree table_id", left_tree.get_table_id(), "type", left_tree.type_); } else if (right_tree.type_ != JOIN && OB_FAIL(ObTransformUtils::is_batch_stmt_write_table(right_tree.get_table_id(), *get_plan()->get_stmt(), right_is_batch_table))) { LOG_WARN("check right tree is the generated table of batch params failed", K(ret), "right_tree table_id", right_tree.get_table_id(), "type", right_tree.type_); } else if (left_is_batch_table || right_is_batch_table) { if (left_is_batch_table && right_is_batch_table) { ret = OB_ERR_UNEXPECTED; LOG_WARN("left tree and right tree are batch_stmt, invalid", K(ret), K(join_type), KPC(get_plan()->get_stmt())); } else if (left_is_batch_table) { //force to use nested loop join in batch update //the update target table must be the right table path_info.local_methods_ = NESTED_LOOP_JOIN; path_info.force_inner_nl_ = true; OPT_TRACE("batch multi stmt force use nested loop join"); } else { //ignore this join path path_info.local_methods_ = 0; } } } //check depend function table if (OB_SUCC(ret)) { if (OB_FAIL(check_depend_function_table(left_tree, right_tree, join_type, path_info))) { LOG_WARN("failed to check depend function table", K(ret)); } else if (OB_FAIL(check_depend_json_table(left_tree, right_tree, join_type, path_info))) { LOG_WARN("failed to check depend function table", K(ret)); } else if (OB_FAIL(check_subquery_in_join_condition(join_type, join_conditions, path_info))) { LOG_WARN("failed to check subquery in join condition", K(ret)); } } // get distributed path types if (OB_FAIL(ret)) { /*do nothing*/ } else { if (get_cnt_rownum() || (!opt_ctx.is_var_assign_only_in_root_stmt() && opt_ctx.has_var_assign())) { path_info.distributed_methods_ &= DIST_PULL_TO_LOCAL | DIST_BASIC_METHOD; OPT_TRACE("query with rownum can only use pull to local or basic method"); } if (IS_LEFT_STYLE_JOIN(path_info.join_type_)) { // without BC2HOST DIST_BROADCAST_NONE path_info.distributed_methods_ &= ~DIST_BROADCAST_NONE; path_info.distributed_methods_ &= ~DIST_ALL_NONE; OPT_TRACE("left anti/semi/outer join can not use broadcast none method"); } if (IS_RIGHT_STYLE_JOIN(path_info.join_type_)) { // without BC2HOST DIST_NONE_BROADCAST path_info.distributed_methods_ &= ~DIST_NONE_BROADCAST; path_info.distributed_methods_ &= ~DIST_NONE_ALL; OPT_TRACE("right anti/semi/outer join can not use none broadcast method"); } OPT_TRACE("candi local methods:"); int64_t local_methods = path_info.local_methods_; const ObString join_algo_str[] = { "NESTED LOOP JOIN", "MERGE JOIN", "HASH JOIN" }; for (int idx = 0; idx < sizeof(join_algo_str) / sizeof(ObString); ++idx) { if (local_methods & 1) { OPT_TRACE(join_algo_str[idx]); } local_methods >>= 1; } OPT_TRACE("candi distribute methods:"); int64_t distributed_methods = path_info.distributed_methods_; for (int64_t k = 1; k < DistAlgo::DIST_MAX_JOIN_METHOD; k = k << 1) { if (distributed_methods & k) { DistAlgo dist_algo = get_dist_algo(k); OPT_TRACE(ob_dist_algo_str(dist_algo)); } } } } return ret; } int ObJoinOrder::check_depend_function_table(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const ObJoinType join_type, ValidPathInfo &path_info) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Input argument error", K(get_plan()), K(ret)); } else { const ObIArray &infos = get_plan()->get_function_table_depend_infos(); for (int64_t i = 0; OB_SUCC(ret) && i < infos.count(); ++i) { const FunctionTableDependInfo &info = infos.at(i); if (left_tree.get_tables().has_member(info.table_idx_) && info.depend_table_set_.is_subset(right_tree.get_tables())) { path_info.local_methods_ = 0; OPT_TRACE("right tree has depend function table, ignore this path"); } else if (right_tree.get_tables().has_member(info.table_idx_) && info.depend_table_set_.is_subset(left_tree.get_tables())) { if (RIGHT_OUTER_JOIN == join_type || FULL_OUTER_JOIN == join_type) { ret = OB_NOT_SUPPORTED; OPT_TRACE("right/full outer join with depend function table not support"); LOG_USER_ERROR(OB_NOT_SUPPORTED, "depended function table in right/full outer join"); } else { path_info.local_methods_ &= NESTED_LOOP_JOIN; path_info.force_inner_nl_ = true; OPT_TRACE("left tree has depend function table, force use nested loop join"); } } } } return ret; } int ObJoinOrder::check_depend_json_table(const ObJoinOrder &left_tree, const ObJoinOrder &right_tree, const ObJoinType join_type, ValidPathInfo &path_info) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Input argument error", K(get_plan()), K(ret)); } else { const ObIArray &infos = get_plan()->get_json_table_depend_infos(); for (int64_t i = 0; OB_SUCC(ret) && i < infos.count(); ++i) { const JsonTableDependInfo &info = infos.at(i); if (left_tree.get_tables().has_member(info.table_idx_) && info.depend_table_set_.is_subset(right_tree.get_tables())) { path_info.local_methods_ = 0; } else if (right_tree.get_tables().has_member(info.table_idx_) && info.depend_table_set_.is_subset(left_tree.get_tables())) { if (RIGHT_OUTER_JOIN == join_type || FULL_OUTER_JOIN == join_type) { ret = OB_NOT_SUPPORTED; } else { path_info.local_methods_ &= NESTED_LOOP_JOIN; path_info.force_inner_nl_ = true; } } } } return ret; } int ObJoinOrder::check_subquery_in_join_condition(const ObJoinType join_type, const ObIArray &join_conditions, ValidPathInfo &path_info) { int ret = OB_SUCCESS; bool has_subquery = false; for (int64_t i = 0; OB_SUCC(ret) && !has_subquery && i < join_conditions.count(); ++i) { const ObRawExpr *expr = join_conditions.at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (expr->has_flag(CNT_SUB_QUERY)) { has_subquery = true; } } if (OB_SUCC(ret) && has_subquery) { if (IS_RIGHT_STYLE_JOIN(join_type)) { path_info.local_methods_ = 0; OPT_TRACE("right style join has correlated subquery, ignore this path"); } else { path_info.local_methods_ &= NESTED_LOOP_JOIN; path_info.force_inner_nl_ = true; OPT_TRACE("join condition has correlated subquery, force use nested loop join"); } } return ret; } int ObJoinOrder::extract_used_columns(const uint64_t table_id, const uint64_t ref_table_id, bool only_normal_ref_expr, ObIArray &column_ids, ObIArray &columns) { int ret = OB_SUCCESS; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema *table_schema = NULL; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard())) { LOG_WARN("null point error", K(ret), K(get_plan()), K(stmt), K(schema_guard)); } else if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid table id", K(table_id), K(ref_table_id), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(ref_table_id, table_schema, ObSqlSchemaGuard::is_link_table(stmt, table_id)))) { LOG_WARN("failed to get table schema", K(ref_table_id), K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null table schema", K(ret)); } else { const TableItem *table_item = stmt->get_table_item_by_id(table_id); if (OB_ISNULL(table_item)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null table item", K(ret)); } else { // add all rowkey info, always used when merge ss-table and mem-table const ObRowkeyInfo &rowkey_info = table_schema->get_rowkey_info(); uint64_t column_id = OB_INVALID_ID; for (int64_t i = 0; OB_SUCC(ret) && i < rowkey_info.get_size(); ++i) { if (OB_FAIL(rowkey_info.get_column_id(i, column_id))) { LOG_WARN("Fail to get column id", K(ret)); } else if (OB_FAIL(column_ids.push_back(column_id))) { LOG_WARN("Fail to add column id", K(ret)); } else { /*do nothing*/ } } // add common column ids for (int64_t i = 0; OB_SUCC(ret) && i < stmt->get_column_size(); ++i) { const ColumnItem *col_item = stmt->get_column_item(i); if (OB_ISNULL(col_item) || OB_ISNULL(col_item->expr_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("column item or item expr is NULL", K(ret), K(col_item)); } else if (col_item->table_id_ == table_id && col_item->expr_->is_explicited_reference() && !col_item->expr_->is_only_referred_by_stored_gen_col()) { if (only_normal_ref_expr && !col_item->expr_->is_referred_by_normal()) { //do nothing } else if( OB_FAIL(add_var_to_array_no_dup(column_ids, col_item->expr_->get_column_id()))) { LOG_WARN("Fail to add column id", K(ret)); } else if (OB_FAIL(columns.push_back(*col_item))) { LOG_WARN("failed to pushback column item", K(ret)); } } else { /*do nothing*/ } } } } return ret; } /** * compute whether is unique index and index need back */ int ObJoinOrder::get_simple_index_info(const uint64_t table_id, const uint64_t ref_table_id, const uint64_t index_id, bool &is_unique_index, bool &is_index_back, bool &is_index_global) { int ret = OB_SUCCESS; is_unique_index = false; is_index_back = false; ObSEArray column_ids; ObSEArray dummy_columns; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema *index_schema = NULL; const ObDMLStmt *stmt = nullptr; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(schema_guard = get_plan()->get_optimizer_context().get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null point error", K(ret), K(get_plan()), K(stmt), K(schema_guard)); } else if (OB_UNLIKELY(OB_INVALID_ID == ref_table_id) || OB_UNLIKELY(OB_INVALID_ID == index_id)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("invalid table id", K(ref_table_id), K(index_id), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema))) { LOG_WARN("failed to get index schema", K(ret)); } else if (OB_FAIL(extract_used_columns(table_id, ref_table_id, true, column_ids, dummy_columns))) { LOG_WARN("failed to extract column ids", K(table_id), K(ref_table_id), K(ret)); } else if (index_id != ref_table_id) { is_unique_index = index_schema->is_unique_index(); is_index_global = index_schema->is_global_index_table(); is_index_back = index_schema->is_spatial_index() ? true : false; for (int64_t idx = 0; OB_SUCC(ret) && !is_index_back && idx < column_ids.count(); ++idx) { bool found = false; const uint64_t used_column_id = column_ids.at(idx); if (OB_HIDDEN_LOGICAL_ROWID_COLUMN_ID == used_column_id) { // rowid can be computed directly from index table. } else if (OB_FAIL(index_schema->has_column(used_column_id, found))) { LOG_WARN("check index_schema has column failed", K(found), K(idx), K(column_ids.at(idx)), K(ret)); } else if (!found) { is_index_back = true; } } for (int64_t i = 0; OB_SUCC(ret) && i < stmt->get_pseudo_column_like_exprs().count(); i++) { //index scan with ora rowscn must lookup the data table ObRawExpr *expr = stmt->get_pseudo_column_like_exprs().at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (T_ORA_ROWSCN == expr->get_expr_type() && static_cast(expr)->get_table_id() == table_id) { is_index_back = true; } else { /*do nothing*/} } } else { is_index_global = false; is_unique_index = true; is_index_back = false; } return ret; } /** * prefix_filters: 影响query_range range范围的filter * pushdown prefix filters: push down filters that can contribute query range * postfix_filters: filters that can be evaluated on index * table_filters: filters that can be evaluated after index back */ int ObJoinOrder::fill_filters(const ObIArray &all_filters, const ObQueryRange *query_range, ObCostTableScanInfo &est_cost_info, bool &is_nl_with_extended_range, bool is_link, bool use_skip_scan) { int ret = OB_SUCCESS; is_nl_with_extended_range = false; if (NULL == query_range) { //如果没有抽出query range,那么所有的filter都是table filter ret = est_cost_info.table_filters_.assign(all_filters); } else { ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema* index_schema = NULL; ObBitSet<> expr_column_bs; ObBitSet<> index_column_bs; ObBitSet<> prefix_column_bs; ObBitSet<> ex_prefix_column_bs; ObSEArray index_column_descs; if (OB_ISNULL(get_plan()) || OB_ISNULL(schema_guard = get_plan()->get_optimizer_context().get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(schema_guard), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(est_cost_info.index_id_, index_schema))) { LOG_WARN("failed to get index schema", K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(index_schema), K(ret)); } else if (OB_FAIL(index_schema->get_column_ids(index_column_descs))) { LOG_WARN("failed to extract column ids", K(ret)); } else { uint64_t geo_column_id; bool is_geo_index = index_schema->is_spatial_index(); if (is_geo_index && OB_FAIL(index_schema->get_spatial_geo_column_id(geo_column_id))) { LOG_WARN("failed to extract geo column id", K(ret)); } // replace cellid column id with geo column id, since filters only record geo column id. for (int64_t i = 0; OB_SUCC(ret) && i < index_column_descs.count(); i++) { if (is_geo_index && (i == 0) && OB_FAIL(index_column_bs.add_member(geo_column_id))) { LOG_WARN("failed to add geo member", K(ret), K(i), K(geo_column_id)); } else if (OB_FAIL(index_column_bs.add_member(index_column_descs.at(i).col_id_))) { LOG_WARN("failed to add member", K(ret)); } } // if (OB_SUCC(ret)) { if (OB_FAIL(est_cost_info.prefix_filters_.assign(query_range->get_range_exprs()))) { LOG_WARN("failed to assign exprs", K(ret)); } else if (use_skip_scan && OB_FAIL(est_cost_info.ss_postfix_range_filters_.assign(query_range->get_ss_range_exprs()))) { LOG_WARN("failed to assign exprs", K(ret)); } } //prefix filter中可能存在条件下推的subquery //这种filter在存储层无法估行 //例如:index(c1,c2,c3),filter:c1 = 1 and c2 = ? and c3 = 3 and c1 = ? and c2 = 1 //真正的prefix filter是c1 = 1 and c2 = 1 and c3 = 3, //c1 = ? and c2 = ? 需要放到pushdown prefix filter中 ObSEArray new_prefix_filters; ObBitSet<> column_bs; //首先找到所有条件下推的表达式包含的index column ids for (int64_t i = 0; OB_SUCC(ret) && i < est_cost_info.prefix_filters_.count(); ++i) { ObRawExpr *expr = est_cost_info.prefix_filters_.at(i); if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (expr->has_flag(CNT_DYNAMIC_PARAM)) { ret = est_cost_info.pushdown_prefix_filters_.push_back(expr); } else if (OB_FAIL(ObOptimizerUtil::extract_column_ids(expr, est_cost_info.table_id_, column_bs))) { LOG_WARN("failed to extract column ids", K(ret)); } else { ret = new_prefix_filters.push_back(expr); } } int64_t first_param_column_idx = -1; //把range_columns分成有query range的column ids与没有query range的column ids for (int64_t i = 0; OB_SUCC(ret) && first_param_column_idx == -1 && i < est_cost_info.range_columns_.count(); ++i) { ColumnItem &column = est_cost_info.range_columns_.at(i); uint64_t column_id = column.column_id_; if (is_geo_index && (i == 0)) { column_id = geo_column_id; } if (!column_bs.has_member(column_id)) { first_param_column_idx = i; } else { ret = prefix_column_bs.add_member(column_id); } } if (OB_FAIL(ret)) { } else if (OB_FAIL(ex_prefix_column_bs.add_members(prefix_column_bs))) { LOG_WARN("failed to add members", K(ret)); } else if (-1 != first_param_column_idx) { uint64_t column_id = est_cost_info.range_columns_.at(first_param_column_idx).column_id_; if (is_geo_index && (first_param_column_idx == 0)) { column_id = geo_column_id; } ret = ex_prefix_column_bs.add_member(column_id); } //如果filter不在prefix filter中,但是是索引列的filter,那么应该在回表前计算 for (int64_t i = 0; OB_SUCC(ret) && i < all_filters.count(); i++) { expr_column_bs.reset(); ObRawExpr *filter = NULL; bool can_extract = false; if (OB_ISNULL(filter = all_filters.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (ObOptimizerUtil::find_equal_expr(est_cost_info.prefix_filters_, filter)) { /*do nothing*/ } else if (OB_FAIL(ObOptimizerUtil::extract_column_ids(filter, est_cost_info.table_id_, expr_column_bs))) { LOG_WARN("failed to extract column ids", K(ret)); } else if (!expr_column_bs.is_subset(index_column_bs)) { ret = est_cost_info.table_filters_.push_back(filter); } else if (OB_FAIL(can_extract_unprecise_range(est_cost_info.table_id_, filter, ex_prefix_column_bs, can_extract))) { LOG_WARN("failed to extract column ids", K(ret)); } else if (can_extract) { ret = est_cost_info.pushdown_prefix_filters_.push_back(filter); } else if (est_cost_info.ref_table_id_ != est_cost_info.index_id_) { if (!use_skip_scan || !ObOptimizerUtil::find_item(est_cost_info.ss_postfix_range_filters_, filter)) { ret = est_cost_info.postfix_filters_.push_back(filter); } // 对于空间索引,空间谓词一定要回表计算 if (OB_SUCC(ret) && est_cost_info.index_meta_info_.is_geo_index_) { ret = est_cost_info.table_filters_.push_back(filter); } } else { if (!use_skip_scan || !ObOptimizerUtil::find_item(est_cost_info.ss_postfix_range_filters_, filter)) { ret = est_cost_info.table_filters_.push_back(filter); } } } if (est_cost_info.pushdown_prefix_filters_.empty()) { //没有EXEC_PARAM, do nothing } else if (!column_bs.is_empty()) { est_cost_info.prefix_filters_.reset(); //没有query range的prefix_filters需要放到pushdown prefix filter中 for (int64_t i = 0; OB_SUCC(ret) && i < new_prefix_filters.count(); ++i) { expr_column_bs.reset(); ObRawExpr *filter = new_prefix_filters.at(i); if (OB_ISNULL(filter)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::extract_column_ids(filter, est_cost_info.table_id_, expr_column_bs))) { LOG_WARN("failed to extract column ids", K(ret)); } else if (expr_column_bs.is_subset(prefix_column_bs)) { ret = est_cost_info.prefix_filters_.push_back(filter); } else { ret = est_cost_info.pushdown_prefix_filters_.push_back(filter); } } } else { est_cost_info.prefix_filters_.reset(); } if (OB_SUCC(ret)) { if (!est_cost_info.pushdown_prefix_filters_.empty()) { is_nl_with_extended_range = true; } LOG_TRACE("succeed to classify filters", K(est_cost_info.prefix_filters_), K(est_cost_info.pushdown_prefix_filters_), K(est_cost_info.ss_postfix_range_filters_), K(est_cost_info.postfix_filters_), K(est_cost_info.table_filters_), K(is_nl_with_extended_range)); } } } return ret; } int ObJoinOrder::can_extract_unprecise_range(const uint64_t table_id, const ObRawExpr *filter, const ObBitSet<> &ex_prefix_column_bs, bool &can_extract) { int ret = OB_SUCCESS; const ObRawExpr *exec_param = NULL; const ObColumnRefRawExpr *column = NULL; can_extract = false; if (OB_ISNULL(filter)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (T_OP_EQ == filter->get_expr_type() || T_OP_NSEQ == filter->get_expr_type()) { const ObRawExpr *l_expr = filter->get_param_expr(0); const ObRawExpr *r_expr = filter->get_param_expr(1); if (OB_ISNULL(l_expr) || OB_ISNULL(r_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (l_expr->is_dynamic_const_expr() && r_expr->is_column_ref_expr()) { column = static_cast(r_expr); exec_param = l_expr; } else if (l_expr->is_column_ref_expr() && r_expr->is_dynamic_const_expr()) { column = static_cast(l_expr); exec_param = r_expr; } if (OB_SUCC(ret) && NULL != column && NULL != exec_param) { ObObjType column_type = column->get_result_type().get_type(); ObObjType exec_param_type = exec_param->get_result_type().get_type(); if (column->get_table_id() != table_id || !ex_prefix_column_bs.has_member(column->get_column_id())) { /*do nothing*/ } else if ((ObCharType == column_type && ObVarcharType == exec_param_type) || (ObNCharType == column_type && ObNVarchar2Type == exec_param_type)) { can_extract = true; } else { can_extract = false; } } } else if (T_OP_LIKE == filter->get_expr_type()) { const ObRawExpr *first_expr = filter->get_param_expr(0); const ObRawExpr *patten_expr = filter->get_param_expr(1); const ObRawExpr *escape_expr = filter->get_param_expr(2); if (OB_ISNULL(first_expr) || OB_ISNULL(patten_expr) || OB_ISNULL(escape_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null expr", K(ret)); } else if (first_expr->is_column_ref_expr() && patten_expr->is_dynamic_const_expr() && escape_expr->is_static_const_expr()) { column = static_cast(first_expr); ObObjType column_type = column->get_result_type().get_type(); ObObjType patten_type = patten_expr->get_result_type().get_type(); if (column->get_table_id() != table_id || !ex_prefix_column_bs.has_member(column->get_column_id())) { /*do nothing*/ } else if (column_type == patten_type && ob_is_string_type(column_type)) { can_extract = true; } else { can_extract = false; } } } else if (filter->is_spatial_expr()) { const ObRawExpr *geo_expr = ObRawExprUtils::skip_inner_added_expr(filter); const ObRawExpr *l_expr = NULL; const ObRawExpr *r_expr = NULL; if (OB_ISNULL(geo_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (OB_ISNULL(l_expr = geo_expr->get_param_expr(0)) || OB_ISNULL(r_expr = geo_expr->get_param_expr(1))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null expr", K(ret)); } else if (l_expr->has_flag(IS_DYNAMIC_PARAM) && r_expr->is_column_ref_expr()) { column = static_cast(r_expr); exec_param = l_expr; } else if (l_expr->is_column_ref_expr() && r_expr->has_flag(IS_DYNAMIC_PARAM)) { column = static_cast(l_expr); exec_param = r_expr; } if (OB_SUCC(ret) && NULL != column && NULL != exec_param) { ObObjType column_type = column->get_result_type().get_type(); ObObjType exec_param_type = exec_param->get_result_type().get_type(); if (column->get_table_id() != table_id || !ex_prefix_column_bs.has_member(column->get_column_id())) { /*do nothing*/ } else if ((ob_is_string_type(column_type) || ob_is_geometry(column_type)) && (ob_is_string_type(exec_param_type) || ob_is_geometry(exec_param_type))) { can_extract = true; } else { can_extract = false; } } } return ret; } int ObJoinOrder::compute_table_meta_info(const uint64_t table_id, const uint64_t ref_table_id) { int ret = OB_SUCCESS; ObSqlSchemaGuard *schema_guard = NULL; const ObTableSchema* table_schema = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(table_partition_info_) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(schema_guard), K(get_plan()), K(table_partition_info_), K(ret)); } else if (OB_FAIL(schema_guard->get_table_schema(ref_table_id, table_schema))) { LOG_WARN("failed to get table schema", K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("null table schema", K(ret)); } else { table_meta_info_.ref_table_id_ = ref_table_id; table_meta_info_.table_type_ = table_schema->get_table_type(); table_meta_info_.table_rowkey_count_ = table_schema->get_rowkey_info().get_size(); table_meta_info_.table_column_count_ = table_schema->get_column_count(); table_meta_info_.micro_block_size_ = table_schema->get_block_size(); table_meta_info_.part_count_ = table_partition_info_->get_phy_tbl_location_info().get_phy_part_loc_info_list().count(); table_meta_info_.schema_version_ = table_schema->get_schema_version(); LOG_TRACE("after compute table meta info", K(table_meta_info_)); } if (OB_SUCC(ret)) { if (OB_FAIL(init_est_sel_info_for_access_path(table_id, ref_table_id, *table_schema))) { LOG_WARN("failed to init estimation selectivity info", K(ret)); } } return ret; } int ObJoinOrder::fill_path_index_meta_info(const uint64_t table_id, const uint64_t ref_table_id, ObIArray &access_paths) { int ret = OB_SUCCESS; ObSqlSchemaGuard *schema_guard = NULL; if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("invalid table id", K(table_id), K(ref_table_id), K(ret)); } else if (OB_ISNULL(get_plan()) || OB_ISNULL(schema_guard = OPT_CTX.get_sql_schema_guard())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("null point error", K(schema_guard), K(get_plan()), K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < access_paths.count(); ++i) { AccessPath *ap = access_paths.at(i); if (OB_ISNULL(ap) || OB_ISNULL(ap->table_partition_info_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("access path is null", K(ret), K(ap)); } else { const uint64_t ref_table_id = ap->ref_table_id_; const uint64_t index_id = ap->index_id_; ObIndexMetaInfo &index_meta_info = ap->est_cost_info_.index_meta_info_; index_meta_info.index_part_count_ = ap->table_partition_info_->get_phy_tbl_location_info().get_partition_cnt(); index_meta_info.index_micro_block_size_ = table_meta_info_.micro_block_size_; index_meta_info.index_column_count_ = table_meta_info_.table_column_count_; index_meta_info.index_part_size_ = table_meta_info_.part_size_; index_meta_info.index_micro_block_count_ = table_meta_info_.has_opt_stat_ ? table_meta_info_.micro_block_count_ : -1; ap->est_cost_info_.table_meta_info_ = &table_meta_info_; ObSEArray dummy_columns; if (OB_FAIL(extract_used_columns(table_id, ref_table_id, index_id != ref_table_id && !ap->est_cost_info_.index_meta_info_.is_index_back_, ap->est_cost_info_.access_columns_, dummy_columns))) { LOG_WARN("failed to extract used column ids", K(ret)); } else if (index_id != ref_table_id) { const ObTableSchema* index_schema = NULL; const ObTableSchema* table_schema = NULL; bool has_opt_stat = false; if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema, ObSqlSchemaGuard::is_link_table(get_plan()->get_stmt(), table_id)))) { LOG_WARN("failed to get table schema", K(index_id), K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index schema should not be null", K(ret), K(index_id)); } else if (OB_FAIL(schema_guard->get_table_schema(ref_table_id, table_schema, ObSqlSchemaGuard::is_link_table(get_plan()->get_stmt(), table_id)))) { LOG_WARN("failed to get table schema", K(index_id), K(ret)); } else if (OB_ISNULL(table_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("index schema should not be null", K(ret), K(index_id)); } else if (OB_FAIL(init_est_info_for_index(index_id, index_meta_info, ap->table_partition_info_, ap->is_global_index_ ? *index_schema : *table_schema, has_opt_stat))) { LOG_WARN("failed to init index est info", K(ret)); } else { index_meta_info.index_micro_block_size_ = index_schema->get_block_size(); index_meta_info.index_column_count_ = index_schema->get_column_count(); if (!has_opt_stat) { index_meta_info.index_part_size_ = table_meta_info_.part_size_ * (static_cast(index_meta_info.index_column_count_) / static_cast(table_meta_info_.table_column_count_)); index_meta_info.index_micro_block_count_ = table_meta_info_.has_opt_stat_ ? table_meta_info_.micro_block_count_ * (static_cast(index_meta_info.index_column_count_) / static_cast(table_meta_info_.table_column_count_)) : -1; } } } } } return ret; } //find minimal cost path among all the paths int ObJoinOrder::find_minimal_cost_path(const ObIArray &all_paths, Path *&minimal_cost_path) { int ret = OB_SUCCESS; minimal_cost_path = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < all_paths.count(); ++i) { if (OB_ISNULL(all_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (minimal_cost_path == NULL || minimal_cost_path->cost_ > all_paths.at(i)->cost_) { minimal_cost_path = all_paths.at(i); } else { /*do nothing*/} } return ret; } int ObJoinOrder::find_minimal_cost_path(const ObIArray> &path_list, ObIArray &best_paths) { int ret = OB_SUCCESS; for (int64_t i = 0; OB_SUCC(ret) && i < path_list.count(); i++) { Path *best_path = NULL; if (OB_FAIL(find_minimal_cost_path(path_list.at(i), best_path))) { LOG_WARN("failed to find minimal cost path", K(ret)); } else if (OB_ISNULL(best_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("failed to get best path", K(ret)); } else if (OB_FAIL(best_paths.push_back(best_path))) { LOG_WARN("failed to push back best paths", K(ret)); } else { /*do nothing*/ } } return ret; } int ObJoinOrder::push_down_order_siblings(JoinPath *join_path, const Path *right_path) { int ret = OB_SUCCESS; const ObSelectStmt *stmt = static_cast(get_plan()->get_stmt()); if (OB_ISNULL(join_path) || OB_ISNULL(right_path) || OB_ISNULL(stmt) || OB_ISNULL(right_path->get_sharding())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(stmt), K(join_path), K(right_path), K(ret)); } else if (stmt->is_order_siblings()) { int64_t right_prefix_pos = 0; bool right_need_sort = true; if (OB_FAIL((ObOptimizerUtil::check_need_sort(stmt->get_order_items(), right_path->ordering_, right_path->parent_->get_fd_item_set(), right_path->parent_->get_output_equal_sets(), right_path->parent_->get_output_const_exprs(), get_plan()->get_onetime_query_refs(), right_path->parent_->get_is_at_most_one_row(), right_need_sort, right_prefix_pos)))) { LOG_WARN("failed to check if need sort", K(ret)); } else { join_path->right_need_sort_ = right_need_sort; join_path->right_prefix_pos_ = right_prefix_pos; if (join_path->is_right_need_sort() && OB_FAIL(join_path->right_sort_keys_.assign(stmt->get_order_items()))) { LOG_WARN("failed to assign expr", K(ret)); } else { /*do nothing*/ } } } return ret; } int ObJoinOrder::create_and_add_nl_path(const Path *left_path, const Path *right_path, const ObJoinType join_type, const DistAlgo join_dist_algo, const bool is_slave_mapping, const common::ObIArray &on_conditions, const common::ObIArray &where_conditions, const bool has_equal_cond, bool need_mat) { int ret = OB_SUCCESS; JoinPath *join_path = NULL; ObSEArray normal_filters; ObSEArray subquery_filters; if (OB_ISNULL(left_path) || OB_ISNULL(right_path) || OB_ISNULL(get_plan()) || OB_ISNULL(left_path->get_sharding())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(left_path), K(right_path), K(get_plan()), K(ret)); } else if (IS_OUTER_OR_CONNECT_BY_JOIN(join_type) && OB_FAIL(ObOptimizerUtil::classify_subquery_exprs(where_conditions, subquery_filters, normal_filters, false))) { LOG_WARN("failed to classify subquery exprs", K(ret)); } else if (!(IS_OUTER_OR_CONNECT_BY_JOIN(join_type)) && OB_FAIL(normal_filters.assign(where_conditions))) { LOG_WARN("failed to assign filters", K(ret)); } else if (OB_FAIL(alloc_join_path(join_path))) { LOG_WARN("failed to allocate a nl join path", K(ret)); } else { join_path = new (join_path) JoinPath(this, left_path, right_path, NESTED_LOOP_JOIN, join_dist_algo, is_slave_mapping, join_type, need_mat); join_path->contain_normal_nl_ = !has_equal_cond; OPT_TRACE("create new NL Join path:", join_path); if (OB_FAIL(set_nl_filters(join_path, right_path, join_type, on_conditions, normal_filters))) { LOG_WARN("failed to remove filters", K(ret)); } else if (CONNECT_BY_JOIN == join_type && OB_FAIL(push_down_order_siblings(join_path, right_path))) { LOG_WARN("push down order siblings by condition failed", K(ret)); } else if (OB_FAIL(join_path->compute_join_path_property())) { LOG_WARN("failed to compute join path property", K(ret)); } else if (OB_FAIL(create_subplan_filter_for_join_path(join_path, subquery_filters))) { LOG_WARN("failed to create subplan filter for join path", K(ret)); } else if (OB_FAIL(add_path(join_path))) { LOG_WARN("failed to add path", K(ret)); } else { LOG_TRACE("succeed to create a nested loop join path", K(join_type), K(join_dist_algo), K(need_mat), K(on_conditions), K(where_conditions)); } // Trace point to force use NLJ as possible if (OB_SUCC(ret)) { bool force_use_nlj = false; force_use_nlj = (OB_SUCCESS != (OB_E(EventTable::EN_GENERATE_PLAN_WITH_NLJ) OB_SUCCESS)); if (force_use_nlj && !join_path->contain_normal_nl_) { LOG_TRACE("trigger trace point to generate nest-loop join"); if (OB_FAIL(interesting_paths_.push_back(join_path))) { LOG_WARN("failed to push back nlj path"); } else { for (int64_t i = interesting_paths_.count() - 1; OB_SUCC(ret) && i >= 0; --i) { JoinPath *join_path = reinterpret_cast(interesting_paths_.at(i)); if (join_path->join_algo_ != NESTED_LOOP_JOIN) { if (OB_FAIL(interesting_paths_.remove(i))) { LOG_WARN("failed to remove dominated plans", K(i), K(ret)); } } } } } } } return ret; } int ObJoinOrder::init_est_sel_info_for_access_path(const uint64_t table_id, const uint64_t ref_table_id, const ObTableSchema &table_schema) { int ret = OB_SUCCESS; ObSEArray column_exprs; ObSEArray column_ids; ObSQLSessionInfo *session_info = NULL; ObSchemaGetterGuard *schema_guard = NULL; if (OB_UNLIKELY(OB_INVALID_ID == table_id) || OB_UNLIKELY(OB_INVALID_ID == ref_table_id)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("invalid table id", K(table_id), K(ref_table_id), K(ret)); } else if (OB_ISNULL(OPT_CTX.get_exec_ctx()) || OB_ISNULL(get_plan()) || OB_ISNULL(table_partition_info_) || OB_ISNULL(session_info = get_plan()->get_optimizer_context().get_session_info()) || OB_ISNULL(schema_guard = OPT_CTX.get_schema_guard())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("invalid params", K(get_plan()), K(ret)); } else if (OB_FAIL(get_plan()->get_column_exprs(table_id, column_exprs))) { LOG_WARN("failed to get column exprs", K(ret)); } else { ObSEArray all_used_part_id; ObSEArray all_used_tablet_id; const ObCandiTabletLocIArray &part_loc_info_array = table_partition_info_->get_phy_tbl_location_info().get_phy_part_loc_info_list(); for (int64_t i = 0; OB_SUCC(ret) && i < part_loc_info_array.count(); ++i) { const ObOptTabletLoc &part_loc = part_loc_info_array.at(i).get_partition_location(); if (OB_FAIL(all_used_part_id.push_back(part_loc.get_partition_id()))) { LOG_WARN("failed to push back partition id", K(ret)); } else if (OB_FAIL(all_used_tablet_id.push_back(part_loc.get_tablet_id()))) { LOG_WARN("failed to push back tablet id", K(ret)); } } LOG_TRACE("init_est_sel_info_for_access_path", K(all_used_part_id), K(all_used_tablet_id), K(ref_table_id)); if (OB_SUCC(ret)) { // 1. try with statistics bool has_opt_stat = false; OptTableStatType stat_type = OptTableStatType::DEFAULT_TABLE_STAT; int64_t last_analyzed = 0; bool is_stat_locked = false; const int64_t origin_part_cnt = all_used_part_id.count(); bool use_global = false; ObSEArray global_part_ids; double scale_ratio = 1.0; if (OPT_CTX.use_default_stat()) { // do nothing } else if (OB_ISNULL(OPT_CTX.get_opt_stat_manager())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(OPT_CTX.get_opt_stat_manager())); } else if (OB_FAIL(check_use_global_stat(ref_table_id, table_schema, all_used_part_id, all_used_tablet_id, use_global))) { LOG_WARN("failed to check use global stat", K(ret)); } else if (use_global) { has_opt_stat = true; stat_type = OptTableStatType::OPT_TABLE_STAT; } else if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->check_opt_stat_validity(*(OPT_CTX.get_exec_ctx()), session_info->get_effective_tenant_id(), ref_table_id, all_used_part_id, has_opt_stat))) { LOG_WARN("failed to check has opt stat", K(ret)); } else if (has_opt_stat) { stat_type = OptTableStatType::OPT_TABLE_STAT; } else if (OB_FAIL(check_can_use_global_stat_instead(ref_table_id, table_schema, all_used_part_id, all_used_tablet_id, has_opt_stat, global_part_ids, scale_ratio))) { LOG_WARN("failed to check can use global stat instead", K(ret)); } else if (has_opt_stat) { stat_type = OptTableStatType::OPT_TABLE_GLOBAL_STAT; } LOG_TRACE("statistics (0: default, 1: user-gathered, 2: user_gathered_global_stat)", K(stat_type), K(ref_table_id), K(all_used_part_id)); // TODO, consider move the following codes into access_path_estimation if (OB_SUCC(ret) && has_opt_stat) { ObGlobalTableStat stat; if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->get_table_stat(session_info->get_effective_tenant_id(), ref_table_id, all_used_part_id, global_part_ids, scale_ratio, stat))) { LOG_WARN("failed to get table stats", K(ret)); } else { last_analyzed = stat.get_last_analyzed(); is_stat_locked = stat.get_stat_locked(); table_meta_info_.table_row_count_ = stat.get_row_count(); table_meta_info_.part_size_ = !use_global ? static_cast(stat.get_avg_data_size()) : static_cast(stat.get_avg_data_size() * all_used_part_id.count()) / origin_part_cnt; table_meta_info_.average_row_size_ = static_cast(stat.get_avg_row_size()); table_meta_info_.micro_block_count_ = stat.get_micro_block_count(); table_meta_info_.has_opt_stat_ = has_opt_stat; LOG_INFO("total rowcount, use statistics", K(table_meta_info_.table_row_count_), K(table_meta_info_.average_row_size_), K(table_meta_info_.micro_block_count_), K(table_meta_info_.part_size_)); } } //2. if the table row count is 0 and not to force use default stat, we try refine it. if (OB_SUCC(ret) && table_meta_info_.table_row_count_ <= 0 && !OPT_CTX.use_default_stat()) { if (OB_FAIL(ObAccessPathEstimation::estimate_full_table_rowcount(OPT_CTX, *table_partition_info_, table_meta_info_))) { LOG_WARN("failed to estimate full table rowcount", K(ret)); } else { LOG_TRACE("succeed to estimate full table rowcount", K(table_meta_info_.table_row_count_)); } } //3. fallback with default stats temporary if (OB_SUCC(ret) && table_meta_info_.table_row_count_ <= 0) { table_meta_info_.table_row_count_ = table_schema.is_external_table() ? 100000.0 : ObOptStatManager::get_default_table_row_count(); table_meta_info_.average_row_size_ = ObOptStatManager::get_default_avg_row_size(); table_meta_info_.part_size_ = ObOptStatManager::get_default_data_size(); LOG_TRACE("total rowcount, empty table", K(table_meta_info_.table_row_count_)); } for (int64_t i = 0; OB_SUCC(ret) && i < column_exprs.count(); ++i) { ObColumnRefRawExpr *col_expr = column_exprs.at(i); if (OB_ISNULL(col_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null col expr", K(ret)); } else if (OB_FAIL(column_ids.push_back(col_expr->get_column_id()))) { LOG_WARN("failed to push back column id", K(ret)); } } if (OB_SUCC(ret)) { if (OB_FAIL(get_plan()->get_basic_table_metas().add_base_table_meta_info( get_plan()->get_selectivity_ctx(), table_id, ref_table_id, table_schema.get_table_type(), table_meta_info_.table_row_count_, table_meta_info_.micro_block_count_, all_used_part_id, all_used_tablet_id, column_ids, stat_type, global_part_ids, scale_ratio, last_analyzed, is_stat_locked))) { LOG_WARN("failed to add base table meta info", K(ret)); } } } } return ret; } int ObJoinOrder::init_est_info_for_index(const uint64_t index_id, ObIndexMetaInfo &index_meta_info, ObTablePartitionInfo *table_partition_info, const share::schema::ObTableSchema &index_schema, bool &has_opt_stat) { int ret = OB_SUCCESS; has_opt_stat = false; ObSQLSessionInfo *session_info = NULL; ObSchemaGetterGuard *schema_guard = NULL; if (OB_UNLIKELY(OB_INVALID_ID == index_id) || OB_ISNULL(table_partition_info) || OB_ISNULL(session_info = OPT_CTX.get_session_info()) || OB_ISNULL(OPT_CTX.get_exec_ctx())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("invalid index id", K(index_id), K(ret)); } else { ObSEArray all_used_part_id; ObSEArray all_used_tablet_id; const ObCandiTabletLocIArray &part_loc_info_array = table_partition_info->get_phy_tbl_location_info().get_phy_part_loc_info_list(); for (int64_t i = 0; OB_SUCC(ret) && i < part_loc_info_array.count(); ++i) { const ObOptTabletLoc &part_loc = part_loc_info_array.at(i).get_partition_location(); if (OB_FAIL(all_used_part_id.push_back(part_loc.get_partition_id()))) { LOG_WARN("failed to push back partition id", K(ret)); } else if (OB_FAIL(all_used_tablet_id.push_back(part_loc.get_tablet_id()))) { LOG_WARN("failed to push back tablet id", K(ret)); } } if (OB_SUCC(ret)) { OptTableStatType stat_type = OptTableStatType::DEFAULT_TABLE_STAT; const int64_t origin_part_cnt = all_used_part_id.count(); bool use_global = false; ObSEArray global_part_ids; double scale_ratio = 1.0; if (OPT_CTX.use_default_stat()) { // do nothing } else if (OB_ISNULL(OPT_CTX.get_opt_stat_manager())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(OPT_CTX.get_opt_stat_manager())); } else if (OB_FAIL(check_use_global_stat(index_id, index_schema, all_used_part_id, all_used_tablet_id, use_global))) { LOG_WARN("failed to check use global stat", K(ret)); } else if (use_global) { has_opt_stat = true; stat_type = OptTableStatType::OPT_TABLE_STAT; } else if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->check_opt_stat_validity(*(OPT_CTX.get_exec_ctx()), session_info->get_effective_tenant_id(), index_id, all_used_part_id, has_opt_stat))) { LOG_WARN("failed to check has opt stat", K(ret)); } else if (has_opt_stat) { stat_type = OptTableStatType::OPT_TABLE_STAT; } else if (OB_FAIL(check_can_use_global_stat_instead(index_id, index_schema, all_used_part_id, all_used_tablet_id, has_opt_stat, global_part_ids, scale_ratio))) { LOG_WARN("failed to check can use global stat instead", K(ret)); } else if (has_opt_stat) { stat_type = OptTableStatType::OPT_TABLE_GLOBAL_STAT; } LOG_TRACE("statistics (0: default, 1: user-gathered, 2: user_gathered_global_stat)", K(stat_type), K(index_id), K(all_used_part_id)); if (OB_SUCC(ret) && has_opt_stat) { ObGlobalTableStat stat; if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->get_table_stat(session_info->get_effective_tenant_id(), index_id, all_used_part_id, global_part_ids, scale_ratio, stat))) { LOG_WARN("failed to get table stats", K(ret)); } else { index_meta_info.index_part_size_ = !use_global ? static_cast(stat.get_avg_data_size()) : static_cast(stat.get_avg_data_size() * all_used_part_id.count()) / origin_part_cnt; index_meta_info.index_micro_block_count_ = stat.get_micro_block_count(); LOG_TRACE("index table, use statistics", K(index_meta_info), K(stat)); } } } } return ret; } int ObJoinOrder::check_use_global_stat(const uint64_t ref_table_id, const ObTableSchema &schema, ObIArray &all_used_parts, ObIArray &all_used_tablets, bool &can_use) { int ret = OB_SUCCESS; bool is_opt_stat_valid = false; int64_t global_part_id = -1; ObArray part_ids; can_use = false; ObSQLSessionInfo *session_info = NULL; ObSchemaGetterGuard *schema_guard = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(session_info = get_plan()->get_optimizer_context().get_session_info()) || OB_ISNULL(OPT_CTX.get_exec_ctx())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (all_used_parts.count() <= 1 && !is_virtual_table(ref_table_id)) { // at most one partition are used // directly use the partition } else if (all_used_parts.count() == schema.get_all_part_num() || is_virtual_table(ref_table_id)) { global_part_id = schema.is_partitioned_table() ? -1 : ref_table_id; if (OB_ISNULL(OPT_CTX.get_opt_stat_manager())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(OPT_CTX.get_opt_stat_manager())); } else if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->check_opt_stat_validity(*(OPT_CTX.get_exec_ctx()), session_info->get_effective_tenant_id(), ref_table_id, global_part_id, is_opt_stat_valid))) { LOG_WARN("failed to check stat version", K(ret)); } else if (!is_opt_stat_valid) { // do nothing } else if (OB_FAIL(part_ids.push_back(global_part_id))) { LOG_WARN("failed to push back global partition id", K(ret)); } } else if (PARTITION_LEVEL_TWO == schema.get_part_level()) { int64_t total_subpart_cnt = 0; for (int64_t i = 0; OB_SUCC(ret) && i < all_used_tablets.count(); ++i) { int64_t part_id = OB_INVALID_ID; int64_t subpart_id = OB_INVALID_ID; ObArray subpart_ids; if (OB_FAIL(schema.get_part_id_by_tablet(all_used_tablets.at(i), part_id, subpart_id))) { LOG_WARN("failed to get part id by tablet", K(ret), K(all_used_tablets.at(i))); } else if (!ObOptimizerUtil::find_item(part_ids, part_id)) { if (OB_FAIL(part_ids.push_back(part_id))) { LOG_WARN("failed to push back part id", K(ret)); } else if (OB_ISNULL(OPT_CTX.get_opt_stat_manager())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(OPT_CTX.get_opt_stat_manager())); } else if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->check_opt_stat_validity(*(OPT_CTX.get_exec_ctx()), session_info->get_effective_tenant_id(), ref_table_id, part_id, is_opt_stat_valid))) { LOG_WARN("failed to get stat version", K(ret)); } else if (!is_opt_stat_valid) { // the partition level stat isn't stat break; } else if (OB_FAIL(schema.get_subpart_ids(part_id, subpart_ids))) { LOG_WARN("failed to get subpart ids", K(ret)); } else { total_subpart_cnt += subpart_ids.count(); } } } if (OB_SUCC(ret) && !(total_subpart_cnt == all_used_parts.count() && is_opt_stat_valid)) { part_ids.reset(); } } if (OB_SUCC(ret) && !part_ids.empty()) { can_use = true; if (OB_FAIL(all_used_parts.assign(part_ids))) { LOG_WARN("failed to assign partition ids", K(ret)); } } return ret; } int ObJoinOrder::init_est_sel_info_for_subquery(const uint64_t table_id, ObLogicalOperator *root) { int ret = OB_SUCCESS; ObLogPlan *child_plan = NULL; const ObDMLStmt *child_stmt = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(root) || OB_ISNULL(child_plan = root->get_plan()) || OB_ISNULL(child_stmt = child_plan->get_stmt()) || OB_UNLIKELY(!child_stmt->is_select_stmt())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("Invalid argument", K(ret), K(get_plan()), K(root), K(child_plan), K(child_stmt)); } else { child_plan->get_selectivity_ctx().init_op_ctx(&root->get_output_equal_sets(), root->get_card()); if (OB_FAIL(get_plan()->get_basic_table_metas().add_generate_table_meta_info( get_plan()->get_stmt(), static_cast(child_stmt), table_id, child_plan->get_update_table_metas(), child_plan->get_selectivity_ctx(), root->get_card()))) { LOG_WARN("failed to add generate table meta info", K(ret)); } } return ret; } int ObJoinOrder::merge_conflict_detectors(ObJoinOrder *left_tree, ObJoinOrder *right_tree, const common::ObIArray& detectors) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null join order", K(ret)); } else if (OB_FAIL(append_array_no_dup(used_conflict_detectors_, left_tree->get_conflict_detectors()))) { LOG_WARN("failed to append detectors", K(ret)); } else if (OB_FAIL(append_array_no_dup(used_conflict_detectors_, right_tree->get_conflict_detectors()))) { LOG_WARN("failed to append detectors", K(ret)); } else if (OB_FAIL(append_array_no_dup(used_conflict_detectors_, detectors))) { LOG_WARN("failed to append detectors", K(ret)); } return ret; } int ObJoinOrder::check_and_remove_is_null_qual(ObLogPlan *plan, const ObJoinType join_type, const ObRelIds &left_ids, const ObRelIds &right_ids, const ObIArray &quals, ObIArray &normal_quals, bool &left_has_is_null_qual, bool &right_has_is_null_qual) { int ret = OB_SUCCESS; left_has_is_null_qual = false; right_has_is_null_qual = false; if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else { OptSelectivityCtx& sel_ctx = plan->get_selectivity_ctx(); for (int64_t i = 0; OB_SUCC(ret) && i < quals.count(); ++i) { bool is_null_qual = false; if (LEFT_OUTER_JOIN == join_type) { if (OB_FAIL(ObOptimizerUtil::check_is_null_qual(sel_ctx.get_params(), sel_ctx.get_stmt(), sel_ctx.get_opt_ctx().get_exec_ctx(), sel_ctx.get_allocator(), right_ids, quals.at(i), is_null_qual))) { LOG_WARN("failed to check is null qual", K(ret)); } else if (is_null_qual) { right_has_is_null_qual = true; } else if (OB_FAIL(normal_quals.push_back(quals.at(i)))) { LOG_WARN("failed to push back qual", K(ret)); } } else if (RIGHT_OUTER_JOIN == join_type) { if (OB_FAIL(ObOptimizerUtil::check_is_null_qual(sel_ctx.get_params(), sel_ctx.get_stmt(), sel_ctx.get_opt_ctx().get_exec_ctx(), sel_ctx.get_allocator(), left_ids, quals.at(i), is_null_qual))) { LOG_WARN("failed to check is null qual", K(ret)); } else if (is_null_qual) { left_has_is_null_qual = true; } else if (OB_FAIL(normal_quals.push_back(quals.at(i)))) { LOG_WARN("failed to push back qual", K(ret)); } } else if (FULL_OUTER_JOIN == join_type) { if (OB_FAIL(ObOptimizerUtil::check_is_null_qual(sel_ctx.get_params(), sel_ctx.get_stmt(), sel_ctx.get_opt_ctx().get_exec_ctx(), sel_ctx.get_allocator(), left_ids, quals.at(i), is_null_qual))) { LOG_WARN("failed to check is null qual", K(ret)); } else if (is_null_qual) { left_has_is_null_qual = true; } else if (OB_FAIL(ObOptimizerUtil::check_is_null_qual(sel_ctx.get_params(), sel_ctx.get_stmt(), sel_ctx.get_opt_ctx().get_exec_ctx(), sel_ctx.get_allocator(), right_ids, quals.at(i), is_null_qual))) { LOG_WARN("failed to check is null qual", K(ret)); } else if (is_null_qual) { right_has_is_null_qual = true; } else if (OB_FAIL(normal_quals.push_back(quals.at(i)))) { LOG_WARN("failed to push back qual", K(ret)); } } } } return ret; } int ObJoinOrder::calc_join_output_rows(ObLogPlan *plan, const ObRelIds &left_ids, const ObRelIds &right_ids, double left_output_rows, double right_output_rows, const JoinInfo &join_info, double &new_rows, double &selectivity, EqualSets &equal_sets) { int ret = OB_SUCCESS; const ObJoinType join_type = join_info.join_type_; if (OB_ISNULL(plan)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FALSE_IT(plan->get_selectivity_ctx().init_join_ctx(join_type, &left_ids, &right_ids, left_output_rows, right_output_rows, &equal_sets))) { } else if (INNER_JOIN == join_type) { if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_update_table_metas(), plan->get_selectivity_ctx(), join_info.where_conditions_, selectivity, plan->get_predicate_selectivities()))) { LOG_WARN("Failed to calc filter selectivities", K(ret)); } else { new_rows = left_output_rows * right_output_rows * selectivity; } } else if (IS_OUTER_JOIN(join_type)) { double oj_qual_sel = 1.0; double oj_filter_sel = 1.0; bool left_has_is_null = false; bool right_has_is_null = false; ObSEArray normal_quals; if (OB_FAIL(check_and_remove_is_null_qual(plan, join_type, left_ids, right_ids, join_info.where_conditions_, normal_quals, left_has_is_null, right_has_is_null))) { LOG_WARN("failed to check and remove is null qual", K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity( plan->get_update_table_metas(), plan->get_selectivity_ctx(), normal_quals, oj_qual_sel, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calc filter selectivities", K(join_info.where_conditions_), K(ret)); } else if ((LEFT_OUTER_JOIN == join_type && right_has_is_null) || (RIGHT_OUTER_JOIN == join_type && left_has_is_null) || (FULL_OUTER_JOIN == join_type && (right_has_is_null || left_has_is_null))) { // t1 left join t2 on xxx where t2.c1 is null => t1 anti join t2 on xxx bool is_left_anti = (LEFT_OUTER_JOIN == join_type && right_has_is_null) || (FULL_OUTER_JOIN == join_type && right_has_is_null); bool is_right_anti = (RIGHT_OUTER_JOIN == join_type && left_has_is_null) || (FULL_OUTER_JOIN == join_type && left_has_is_null); JoinInfo tmp_join_info; new_rows = 0.0; if (OB_FAIL(tmp_join_info.where_conditions_.assign(join_info.on_conditions_))) { LOG_WARN("failed to assign on conditions", K(ret)); } else if (is_left_anti) { tmp_join_info.join_type_ = LEFT_ANTI_JOIN; double tmp_rows = 0.0; double tmp_sel = 1.0; if (OB_FAIL(calc_join_output_rows(plan, left_ids, right_ids, left_output_rows, right_output_rows, tmp_join_info, tmp_rows, tmp_sel, equal_sets))) { LOG_WARN("failed to calc join output rows", K(ret)); } else { new_rows += tmp_rows; } } if (OB_SUCC(ret) && is_right_anti) { tmp_join_info.join_type_ = RIGHT_ANTI_JOIN; double tmp_rows = 0.0; double tmp_sel = 1.0; if (OB_FAIL(calc_join_output_rows(plan, left_ids, right_ids, left_output_rows, right_output_rows, tmp_join_info, tmp_rows, tmp_sel, equal_sets))) { LOG_WARN("failed to calc join output rows", K(ret)); } else { new_rows += tmp_rows; } } if (OB_SUCC(ret)) { // although we compute join row count as anti join, but here selectivity is treated as join // selectivity. So refine selectivity as output_row / (left_row * right_row) selectivity = new_rows / (left_output_rows * right_output_rows); } } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity( plan->get_update_table_metas(), plan->get_selectivity_ctx(), join_info.on_conditions_, oj_filter_sel, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calc filter selectivities", K(join_info.on_conditions_), K(ret)); } else { selectivity = oj_filter_sel; new_rows = left_output_rows * right_output_rows * selectivity; switch (join_type) { case LEFT_OUTER_JOIN: new_rows = new_rows < left_output_rows? left_output_rows : new_rows; break; case RIGHT_OUTER_JOIN: new_rows = new_rows < right_output_rows ? right_output_rows : new_rows; break; case FULL_OUTER_JOIN: new_rows = new_rows < left_output_rows ? left_output_rows : new_rows; new_rows = new_rows < right_output_rows ? right_output_rows : new_rows; break; default: break; } } if (OB_SUCC(ret)) { new_rows = new_rows * oj_qual_sel; selectivity *= oj_qual_sel; } } else if (IS_SEMI_ANTI_JOIN(join_type)) { // semi/anti join is treated as table filter, use origin table metas if (OB_FAIL(ObOptSelectivity::calculate_selectivity(plan->get_update_table_metas(), plan->get_selectivity_ctx(), join_info.where_conditions_, selectivity, plan->get_predicate_selectivities()))) { LOG_WARN("Failed to calc filter selectivities", K(ret)); } else { double outer_rows = IS_LEFT_SEMI_ANTI_JOIN(join_type)? left_output_rows: right_output_rows; if (LEFT_SEMI_JOIN == join_type || RIGHT_SEMI_JOIN == join_type) { new_rows = outer_rows * selectivity; } else { //如果有anti join的笛卡尔积,要么左表全输出、要么不输出任何行, //取决于右表是否有输出,但是,我们不应该直接估行为0, //一个简单的策略是,如果右表估行为0,那么应该输出左表的行数,而不是0 new_rows = outer_rows - outer_rows * selectivity; if (LEFT_ANTI_JOIN == join_type && std::fabs(right_output_rows) < OB_DOUBLE_EPSINON) { new_rows = left_output_rows; } else if (RIGHT_ANTI_JOIN == join_type && std::fabs(left_output_rows) < OB_DOUBLE_EPSINON) { new_rows = right_output_rows; } } } } else if (CONNECT_BY_JOIN == join_type) { double join_qual_sel = 1.0; double join_filter_sel = 1.0; if (OB_FAIL(ObOptSelectivity::calculate_selectivity( plan->get_update_table_metas(), plan->get_selectivity_ctx(), join_info.where_conditions_, join_qual_sel, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calc filter selectivities", K(join_info.where_conditions_), K(ret)); } else if (OB_FAIL(ObOptSelectivity::calculate_selectivity( plan->get_update_table_metas(), plan->get_selectivity_ctx(), join_info.on_conditions_, join_filter_sel, plan->get_predicate_selectivities()))) { LOG_WARN("failed to calc filter selectivities", K(join_info.on_conditions_), K(ret)); } else { double connect_by_selectivity = 0.0; if (join_filter_sel < 0 || join_filter_sel >= 1) { connect_by_selectivity = 1.0; } else { connect_by_selectivity = 1.0 / (1.0 - join_filter_sel); } new_rows = left_output_rows + left_output_rows * right_output_rows * join_filter_sel * connect_by_selectivity; new_rows = new_rows * join_qual_sel; selectivity = connect_by_selectivity; } } plan->get_selectivity_ctx().clear_equal_sets(); LOG_TRACE("estimate join size and width", K(left_output_rows), K(right_output_rows), K(selectivity), K(new_rows)); return ret; } int ObJoinOrder::increase_diverse_path_count(AccessPath *ap) { int ret = OB_SUCCESS; if (OB_ISNULL(ap)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("access path is null", K(ret)); } else if (NULL == ap->pre_query_range_ || (ap->get_cost_table_scan_info().ranges_.count() == 1 && ap->get_cost_table_scan_info().ranges_.at(0).is_whole_range())) { // ap is whole range } else { // ap has query ranges ++diverse_path_count_; } return ret; } int ObJoinOrder::deduce_const_exprs_and_ft_item_set() { int ret = OB_SUCCESS; ObSEArray column_exprs; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("access path is null", K(ret)); } else if (OB_FAIL(get_plan()->get_stmt()->get_column_exprs(column_exprs))) { LOG_WARN("failed to get column exprs", K(ret)); } else { ObFdItemFactory &fd_item_factory = get_plan()->get_fd_item_factory(); ret = fd_item_factory.deduce_fd_item_set(get_output_equal_sets(), column_exprs, get_output_const_exprs(), get_fd_item_set()); } return ret; } int ObJoinOrder::compute_fd_item_set_for_table_scan(const uint64_t table_id, const uint64_t table_ref_id, const ObIArray &quals) { int ret = OB_SUCCESS; ObSqlSchemaGuard *schema_guard = NULL; const ObDMLStmt *stmt = NULL; uint64_t index_tids[OB_MAX_INDEX_PER_TABLE]; int64_t index_count = OB_MAX_INDEX_PER_TABLE; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(schema_guard = get_plan()->get_optimizer_context().get_sql_schema_guard())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(get_plan()), K(stmt), K(schema_guard)); } if (OB_FAIL(ret)) { // do nothing } else if (OB_FAIL(schema_guard->get_can_read_index_array(table_ref_id, index_tids, index_count, false, true /*global index*/, false /*domain index*/))) { LOG_WARN("failed to get can read index", K(ret), K(table_ref_id)); } for (int64_t i = -1; OB_SUCC(ret) && i < index_count; ++i) { const ObTableSchema *index_schema = NULL; uint64_t index_id = (i == -1 ? table_ref_id : index_tids[i]); if (OB_FAIL(schema_guard->get_table_schema(index_id, index_schema))) { LOG_WARN("failed to get table schema", K(ret)); } else if (OB_ISNULL(index_schema)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get null index schema", K(ret)); } else if (-1 != i && !index_schema->is_unique_index()) { // do nothing } else if (OB_FAIL(ObOptimizerUtil::try_add_fd_item(stmt, get_plan()->get_fd_item_factory(), table_id, get_tables(), index_schema, quals, not_null_columns_, fd_item_set_, candi_fd_item_set_))) { LOG_WARN("failed to try add fd item", K(ret)); } } if (OB_SUCC(ret) && stmt->is_select_stmt()) { ObSqlBitSet<> table_set; if (OB_FAIL(stmt->get_table_rel_ids(table_id, table_set))) { LOG_WARN("fail to get table relids", K(ret)); } else if OB_FAIL(ObTransformUtils::try_add_table_fd_for_rowid( static_cast(stmt), get_plan()->get_fd_item_factory(), fd_item_set_, table_set)) { LOG_WARN("fail to add table fd for rowid", K(ret)); } } if (OB_SUCC(ret) && OB_FAIL(deduce_const_exprs_and_ft_item_set())) { LOG_WARN("failed to deduce fd item set", K(ret)); } if (OB_SUCC(ret)) { LOG_TRACE("base table fd item set", K(fd_item_set_)); } return ret; } int ObJoinOrder::compute_fd_item_set_for_join(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const JoinInfo *join_info, const ObJoinType join_type) { int ret = OB_SUCCESS; if (INNER_JOIN == join_type) { ret = compute_fd_item_set_for_inner_join(left_tree, right_tree, join_info); } else if (IS_SEMI_ANTI_JOIN(join_type)) { ret = compute_fd_item_set_for_semi_anti_join(left_tree, right_tree, join_info, join_type); } else { ret = compute_fd_item_set_for_outer_join(left_tree, right_tree, join_info, join_type); } if (OB_SUCC(ret)) { LOG_TRACE("join fd item set", K(fd_item_set_)); } else { LOG_WARN("failed to compute fd item set for join", K(join_type)); } return ret; } /** * 1. 根据连接条件将 candi fd item 提升为 fd item * 2. 确定连接是否为 n to 1 连接 * 3. 根据连接性质确定连接结果的 fd item * join_info == NULL means Cartesian join */ int ObJoinOrder::compute_fd_item_set_for_inner_join(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const JoinInfo *join_info) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObSEArray left_fd_item_set; ObSEArray left_candi_fd_item_set; ObSEArray right_fd_item_set; ObSEArray right_candi_fd_item_set; ObSEArray left_not_null; ObSEArray right_not_null; ObSEArray left_join_exprs; ObSEArray all_left_join_exprs; ObSEArray right_join_exprs; ObSEArray all_right_join_exprs; ObSEArray join_conditions; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(left_tree), K(right_tree), K(get_plan()), K(stmt)); } else if (OB_FAIL(left_fd_item_set.assign(left_tree->fd_item_set_)) || OB_FAIL(left_candi_fd_item_set.assign(left_tree->candi_fd_item_set_)) || OB_FAIL(right_fd_item_set.assign(right_tree->fd_item_set_)) || OB_FAIL(right_candi_fd_item_set.assign(right_tree->candi_fd_item_set_)) || OB_FAIL(left_not_null.assign(left_tree->not_null_columns_)) || OB_FAIL(right_not_null.assign(right_tree->not_null_columns_)) || (NULL != join_info && OB_FAIL(join_conditions.assign(join_info->equal_join_conditions_)))) { LOG_WARN("failed to append fd item set", K(ret)); } else if (NULL != join_info && OB_FAIL(ObOptimizerUtil::enhance_fd_item_set(join_info->where_conditions_, left_candi_fd_item_set, left_fd_item_set, left_not_null))) { LOG_WARN("failed to enhance left fd item set", K(ret)); } else if (NULL != join_info && OB_FAIL(ObOptimizerUtil::enhance_fd_item_set(join_info->where_conditions_, right_candi_fd_item_set, right_fd_item_set, right_not_null))) { LOG_WARN("failed to enhance right fd item set", K(ret)); } else if (OB_FAIL(append(not_null_columns_, left_not_null)) || OB_FAIL(append(not_null_columns_, right_not_null))) { LOG_WARN("failed to append not null columns", K(ret)); } else if (NULL != join_info && OB_FAIL(ObOptimizerUtil::get_type_safe_join_exprs(join_conditions, left_tree->get_tables(), right_tree->get_tables(), left_join_exprs, right_join_exprs, all_left_join_exprs, all_right_join_exprs))) { LOG_WARN("failed to extract join exprs", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::add_fd_item_set_for_left_join( get_plan()->get_fd_item_factory(), right_tree->get_output_tables(), right_join_exprs, right_tree->get_output_const_exprs(), right_tree->get_output_equal_sets(), right_fd_item_set, all_left_join_exprs, left_tree->get_output_equal_sets(), left_fd_item_set, left_candi_fd_item_set, fd_item_set_, candi_fd_item_set_))) { LOG_WARN("failed to add left fd_item_set for inner join", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::add_fd_item_set_for_left_join( get_plan()->get_fd_item_factory(), left_tree->get_output_tables(), left_join_exprs, left_tree->get_output_const_exprs(), left_tree->get_output_equal_sets(), left_fd_item_set, all_right_join_exprs, right_tree->get_output_equal_sets(), right_fd_item_set, right_candi_fd_item_set, fd_item_set_, candi_fd_item_set_))) { LOG_WARN("failed to add right fd_item_set for inner join", K(ret)); } else if(OB_FAIL(deduce_const_exprs_and_ft_item_set())) { LOG_WARN("failed to deduce fd item set", K(ret)); } else { LOG_TRACE("inner join fd item set", K(fd_item_set_)); } return ret; } int ObJoinOrder::compute_fd_item_set_for_semi_anti_join(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const JoinInfo *join_info, const ObJoinType join_type) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || !IS_SEMI_ANTI_JOIN(join_type)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("params are invalid", K(ret), K(left_tree), K(right_tree), K(join_type)); } else if (IS_LEFT_SEMI_ANTI_JOIN(join_type)) { if (OB_FAIL(fd_item_set_.assign(left_tree->fd_item_set_)) || OB_FAIL(candi_fd_item_set_.assign(left_tree->candi_fd_item_set_)) || OB_FAIL(not_null_columns_.assign(left_tree->not_null_columns_))) { LOG_WARN("failed to assign fd item set", K(ret)); } else if (IS_ANTI_JOIN(join_type)) { // anti join 的 filter 不能用来加强减少左表的空值列。 // SELECT * from A where A.c1 > all (SELECT c1 from B); // 当 B 表为空时,A.c1 = NULL 的行依然可以输出 } else if (NULL != join_info && OB_FAIL(ObOptimizerUtil::enhance_fd_item_set(join_info->where_conditions_, candi_fd_item_set_, fd_item_set_, not_null_columns_))) { LOG_WARN("failed to enhance fd item set", K(ret)); } else if (OB_FAIL(deduce_const_exprs_and_ft_item_set())) { LOG_WARN("failed to deduce fd item set", K(ret)); } else { LOG_TRACE("semi join fd item set", K(fd_item_set_)); } } else if (OB_FAIL(compute_fd_item_set_for_semi_anti_join(right_tree, left_tree, join_info, get_opposite_join_type(join_type)))) { LOG_WARN("failed to compute fd item set for right semi anti join", K(ret)); } return ret; } int ObJoinOrder::compute_fd_item_set_for_outer_join(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const JoinInfo *join_info, const ObJoinType join_type) { int ret = OB_SUCCESS; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree) || OB_ISNULL(join_info) || !IS_OUTER_OR_CONNECT_BY_JOIN(join_type)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("params have null", K(ret), K(left_tree), K(right_tree)); } else if (CONNECT_BY_JOIN == join_type) { // do nothing } else if (FULL_OUTER_JOIN == join_type) { // do nothing } else if (LEFT_OUTER_JOIN == join_type) { ObSEArray right_not_null; ObSEArray right_fd_item_set; ObSEArray right_candi_fd_item_set; ObSEArray left_join_exprs; ObSEArray right_join_exprs; ObSEArray all_left_join_exprs; ObSEArray all_right_join_exprs; if (OB_FAIL(right_fd_item_set.assign(right_tree->fd_item_set_)) || OB_FAIL(right_candi_fd_item_set.assign(right_tree->candi_fd_item_set_)) || OB_FAIL(right_not_null.assign(right_tree->not_null_columns_))) { LOG_WARN("failed to assign fd item set", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::enhance_fd_item_set(join_info->on_conditions_, right_candi_fd_item_set, right_fd_item_set, right_not_null))) { LOG_WARN("failed to enhance fd item set", K(ret)); } else if (OB_FAIL(not_null_columns_.assign(left_tree->not_null_columns_))) { LOG_WARN("failed to assign not null columns", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_type_safe_join_exprs(join_info->equal_join_conditions_, left_tree->get_tables(), right_tree->get_tables(), left_join_exprs, right_join_exprs, all_left_join_exprs, all_right_join_exprs))) { LOG_WARN("failed to get type safe join exprs", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::add_fd_item_set_for_left_join( get_plan()->get_fd_item_factory(), right_tree->get_output_tables(), right_join_exprs, right_tree->get_output_const_exprs(), right_tree->get_output_equal_sets(), right_fd_item_set, all_left_join_exprs, left_tree->get_output_equal_sets(), left_tree->fd_item_set_, left_tree->candi_fd_item_set_, fd_item_set_, candi_fd_item_set_))) { /** * left tree fd item set 的继承处理与inner join相同 * right tree fd item set 的继承暂时不处理,如果把right tree的fd item set移到candi fd item set后, * 后续要消除candi属性只要求right tree中任意一列上有控制拒绝条件即可. */ LOG_WARN("failed to add left fd_item_set for left outer join", K(ret)); } else if (OB_FAIL(deduce_const_exprs_and_ft_item_set())) { LOG_WARN("failed to deduce fd item set", K(ret)); } } else if (OB_FAIL(compute_fd_item_set_for_outer_join(right_tree, left_tree, join_info, LEFT_OUTER_JOIN))) { LOG_WARN("failed to compute fd item set for right outer join", K(ret)); } return ret; } int ObJoinOrder::compute_fd_item_set_for_subquery(const uint64_t table_id, ObLogicalOperator *subplan_root) { int ret = OB_SUCCESS; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(subplan_root->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::convert_subplan_scan_fd_item_sets( get_plan()->get_fd_item_factory(), get_plan()->get_optimizer_context().get_expr_factory(), subplan_root->get_output_equal_sets(), subplan_root->get_output_const_exprs(), table_id, *get_plan()->get_stmt(), static_cast(*subplan_root->get_stmt()), subplan_root->get_fd_item_set(), fd_item_set_))) { LOG_WARN("failed to convert subplan scan fd item sets", K(ret)); } else if (OB_FAIL(deduce_const_exprs_and_ft_item_set())) { LOG_WARN("failed to deduce fd item set", K(ret)); } else { LOG_TRACE("subplan scan fd item set", K(fd_item_set_)); } return ret; } int ObJoinOrder::compute_one_row_info_for_join(const ObJoinOrder *left_tree, const ObJoinOrder *right_tree, const ObIArray &join_condition, const ObIArray &equal_join_condition, const ObJoinType join_type) { int ret = OB_SUCCESS; bool left_is_unique = false; bool right_is_unique = false; ObSEArray left_fd_item_set; ObSEArray left_candi_fd_item_set; ObSEArray right_fd_item_set; ObSEArray right_candi_fd_item_set; ObSEArray left_not_null; ObSEArray right_not_null; ObSEArray left_join_exprs; ObSEArray all_left_join_exprs; ObSEArray right_join_exprs; ObSEArray all_right_join_exprs; is_at_most_one_row_ = false; if (OB_ISNULL(left_tree) || OB_ISNULL(right_tree)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(left_tree), K(right_tree), K(ret)); } else if (CONNECT_BY_JOIN == join_type || FULL_OUTER_JOIN == join_type) { // do nothing } else if (!left_tree->get_is_at_most_one_row() && !right_tree->get_is_at_most_one_row()) { /*do nothing*/ } else if (IS_SEMI_ANTI_JOIN(join_type)) { if (IS_LEFT_SEMI_ANTI_JOIN(join_type)) { is_at_most_one_row_ = left_tree->get_is_at_most_one_row(); } else { is_at_most_one_row_ = right_tree->get_is_at_most_one_row(); } } else if (left_tree->get_is_at_most_one_row() && right_tree->get_is_at_most_one_row()) { is_at_most_one_row_ = true; } else if (equal_join_condition.empty()) { /*do nothing*/ } else if (OB_FAIL(left_fd_item_set.assign(left_tree->fd_item_set_)) || OB_FAIL(left_candi_fd_item_set.assign(left_tree->candi_fd_item_set_)) || OB_FAIL(right_fd_item_set.assign(right_tree->fd_item_set_)) || OB_FAIL(right_candi_fd_item_set.assign(right_tree->candi_fd_item_set_)) || OB_FAIL(left_not_null.assign(left_tree->not_null_columns_)) || OB_FAIL(right_not_null.assign(right_tree->not_null_columns_))) { LOG_WARN("failed to append fd item set", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::enhance_fd_item_set(join_condition, left_candi_fd_item_set, left_fd_item_set, left_not_null))) { LOG_WARN("failed to enhance left fd item set", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::enhance_fd_item_set(join_condition, right_candi_fd_item_set, right_fd_item_set, right_not_null))) { LOG_WARN("failed to enhance right fd item set", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_type_safe_join_exprs(equal_join_condition, left_tree->get_tables(), right_tree->get_tables(), left_join_exprs, right_join_exprs, all_left_join_exprs, all_right_join_exprs))) { LOG_WARN("failed to extract join exprs", K(ret)); } else if (left_tree->get_is_at_most_one_row() && (join_type == INNER_JOIN || join_type == LEFT_OUTER_JOIN)) { if (OB_FAIL(ObOptimizerUtil::is_exprs_unique(right_join_exprs, right_tree->get_tables(), right_fd_item_set, right_tree->get_output_equal_sets(), right_tree->get_output_const_exprs(), right_is_unique))) { LOG_WARN("failed to check is order unique", K(ret)); } else { is_at_most_one_row_ = right_is_unique; } } else if (right_tree->get_is_at_most_one_row() && (join_type == INNER_JOIN || join_type == RIGHT_OUTER_JOIN)) { if (OB_FAIL(ObOptimizerUtil::is_exprs_unique(left_join_exprs, left_tree->get_tables(), left_fd_item_set, left_tree->get_output_equal_sets(), left_tree->get_output_const_exprs(), left_is_unique))) { LOG_WARN("failed to check is order unique", K(ret)); } else { is_at_most_one_row_ = left_is_unique; } } else { /*do nothing*/ } LOG_TRACE("succeed to compute one row info for join", K(is_at_most_one_row_)); return ret; } int ObJoinOrder::check_join_interesting_order(Path* path) { int ret = OB_SUCCESS; bool join_math = false; if (OB_ISNULL(path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (!path->has_interesting_order_flag(OrderingFlag::JOIN_MATCH)) { // ordering not used in join, no need to update } else if (OB_FAIL(is_join_match(path->get_ordering(), join_math))) { LOG_WARN("failed to check is join match", K(ret)); } else if (!join_math) { path->clear_interesting_order_flag(OrderingFlag::JOIN_MATCH); } return ret; } InnerPathInfo* ObJoinOrder::get_inner_path_info(const ObIArray &join_conditions) { InnerPathInfo *info = NULL; for (int64_t i = 0; NULL == info && i < inner_path_infos_.count(); ++i) { InnerPathInfo &cur_info = inner_path_infos_.at(i); if (ObOptimizerUtil::same_exprs(join_conditions, cur_info.join_conditions_)) { info = &cur_info; } } return info; } int ObJoinOrder::get_cached_inner_paths(const ObIArray &join_conditions, ObJoinOrder &left_tree, ObJoinOrder &right_tree, const bool force_inner_nl, ObIArray &inner_paths) { int ret = OB_SUCCESS; InnerPathInfo *path_info = right_tree.get_inner_path_info(join_conditions); LOG_TRACE("OPT: find nl with param path", K(left_tree.get_tables()), K(right_tree.get_tables()), K(join_conditions), K(force_inner_nl), K(right_tree.get_inner_path_infos())); if (NULL == path_info) { // inner path not generate yet if (OB_ISNULL(path_info = right_tree.get_inner_path_infos().alloc_place_holder())) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate place holder", K(ret)); } else if (OB_FAIL(path_info->join_conditions_.assign(join_conditions))) { LOG_WARN("failed to assign join conditions", K(ret)); } else if (OB_FALSE_IT(path_info->force_inner_nl_ = force_inner_nl)) { } else if (OB_FAIL(generate_inner_base_paths(join_conditions, left_tree, right_tree, *path_info))) { LOG_WARN("failed to generate inner base paths", K(ret)); } } if (OB_SUCC(ret) && OB_NOT_NULL(path_info)) { if (OB_FAIL(inner_paths.assign(path_info->inner_paths_))) { LOG_WARN("failed to append inner path", K(ret)); } } return ret; } int ObJoinOrder::generate_inner_base_paths(const ObIArray &join_conditions, ObJoinOrder &left_tree, ObJoinOrder &right_tree, InnerPathInfo &inner_path_info) { int ret = OB_SUCCESS; if (ACCESS == right_tree.get_type()) { if (OB_FAIL(generate_inner_base_table_paths(join_conditions, left_tree, right_tree, inner_path_info))) { LOG_WARN("failed to generate inner path for access", K(ret)); } else { LOG_TRACE("OPT: succeed to generate inner path for access" ,K(inner_path_info)); } } else if (SUBQUERY == right_tree.get_type()) { if (OB_FAIL(generate_inner_subquery_paths(join_conditions, left_tree.get_tables(), right_tree, inner_path_info))) { LOG_WARN("failed to generate inner subquery path", K(ret)); } else { LOG_TRACE("OPT: succeed generate inner path for subquery" ,K(inner_path_info)); } } else if (inner_path_info.force_inner_nl_) { if (OB_FAIL(generate_force_inner_path(join_conditions, left_tree.get_tables(), right_tree, inner_path_info))) { LOG_WARN("failed to generate inner path", K(ret)); } else { LOG_TRACE("OPT: succeed generate inner path force" ,K(inner_path_info)); } } else { // todo: @guoping.wgp support join type in future } if (OB_UNLIKELY(OB_ERR_NO_PATH_GENERATED == ret && !inner_path_info.force_inner_nl_)) { ret = OB_SUCCESS; LOG_TRACE("OPT: generate no inner path" , K(right_tree.get_type()), K(inner_path_info)); } return ret; } int ObJoinOrder::generate_inner_base_table_paths(const ObIArray &join_conditions, ObJoinOrder &left_tree, ObJoinOrder &right_tree, InnerPathInfo &inner_path_info) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObSEArray pushdown_quals; PathHelper helper; helper.is_inner_path_ = true; helper.force_inner_nl_ = inner_path_info.force_inner_nl_; helper.table_opt_info_ = &inner_path_info.table_opt_info_; ObSEArray nl_params; bool is_valid = false; LOG_TRACE("OPT: start to create inner path for access", K(right_tree.get_table_id())); if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(stmt)); } else if (OB_FAIL(check_inner_path_valid(join_conditions, left_tree.get_tables(), right_tree, inner_path_info.force_inner_nl_, pushdown_quals, helper.pushdown_filters_, nl_params, helper.subquery_exprs_, is_valid))) { LOG_WARN("failed to check inner path valid", K(ret)); } else if (!is_valid) { // do nothing } else if (OB_FAIL(helper.filters_.assign(right_tree.get_restrict_infos()))) { LOG_WARN("failed to assign restrict infos", K(ret)); } else if (OB_FAIL(remove_redudant_filter(left_tree, right_tree, join_conditions, helper.filters_, helper.equal_param_constraints_))) { LOG_WARN("failed to remove filter", K(ret)); } else if (OB_FAIL(append(helper.filters_, helper.pushdown_filters_))) { LOG_WARN("failed to append pushdown quals", K(ret)); } else if (OB_FAIL(right_tree.generate_base_table_paths(helper))) { LOG_WARN("failed to generate access paths", K(ret)); } else if (helper.inner_paths_.count() <= 0) { // do nothing. // in non static typing engine. if c1 is primary key of t1, when a pushdown qual with // format `c1 (int) = ? (datetime)` appeared, check index match will consider pushdown is // valid. But this qual can't use to extract query range. } else if (OB_FAIL(check_and_fill_inner_path_info(helper, *stmt, right_tree.get_output_equal_sets(), inner_path_info, pushdown_quals, nl_params))) { LOG_WARN("failed to check and fill inner path info", K(ret)); } LOG_TRACE("succeed to create inner access path", K(right_tree.get_table_id()), K(pushdown_quals)); return ret; } int ObJoinOrder::check_inner_path_valid(const ObIArray &join_conditions, const ObRelIds &join_relids, ObJoinOrder &right_tree, const bool force_inner_nl, ObIArray &pushdown_quals, ObIArray ¶m_pushdown_quals, ObIArray &nl_params, ObIArray &subquery_exprs, bool &is_valid) { int ret = OB_SUCCESS; is_valid = false; int64_t table_id = right_tree.get_table_id(); const ObDMLStmt *stmt = NULL; const TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(table_item = stmt->get_table_item_by_id(right_tree.get_table_id()))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(stmt), K(table_item)); } else if (!force_inner_nl && (is_virtual_table(table_item->ref_id_) && !is_oracle_mapping_real_virtual_table(table_item->ref_id_) && table_item->ref_id_ != OB_ALL_VIRTUAL_SQL_AUDIT_TID && table_item->ref_id_ != OB_ALL_VIRTUAL_PLAN_CACHE_PLAN_EXPLAIN_TID)) { /* __all_virtual_sql_audit and GV$OB_PLAN_CACHE_PLAN_EXPLAIN can do table get*/ LOG_TRACE("OPT:skip adding inner access path due to virtual table", K(table_id), K(table_item->ref_id_), K(is_virtual_table(table_item->ref_id_))); } else if (OB_FAIL(extract_pushdown_quals(join_conditions, force_inner_nl, pushdown_quals))) { LOG_WARN("failed to extract pushdown quals", K(ret)); } else if (OB_FAIL(extract_params_for_inner_path(join_relids, nl_params, subquery_exprs, pushdown_quals, param_pushdown_quals))) { LOG_WARN("failed to extract params for inner path", K(ret)); } else if (force_inner_nl) { is_valid = true; } else if (OB_FAIL(ObOptimizerUtil::check_pushdown_filter_to_base_table( *get_plan(), table_item->table_id_, param_pushdown_quals, right_tree.get_restrict_infos(), is_valid))) { LOG_WARN("failed to check pushdown filter for access", K(ret)); } return ret; } int ObJoinOrder::remove_redudant_filter(ObJoinOrder &left_tree, ObJoinOrder &right_tree, const ObIArray &join_conditions, ObIArray &filters, ObIArray &equal_param_constraints) { int ret = OB_SUCCESS; ObSEArray new_filters; ObExprParamCheckContext context; EqualSets input_equal_sets; const ObDMLStmt *stmt = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null param", K(ret)); } else if (OB_FAIL(ObEqualAnalysis::compute_equal_set(allocator_, join_conditions, left_tree.get_output_equal_sets(), input_equal_sets))) { LOG_WARN("failed to compute equal sets for inner join", K(ret)); } else { context.init(&stmt->get_query_ctx()->calculable_items_, &equal_param_constraints, &input_equal_sets); } for (int i = 0; OB_SUCC(ret) && i < filters.count(); ++i) { ObRawExpr *expr = filters.at(i); bool is_redunant = false; if (OB_FAIL(check_filter_is_redundant(left_tree, expr, context, is_redunant))) { LOG_WARN("failed to check filter is redunant", K(ret)); } else if (!is_redunant) { if (OB_FAIL(new_filters.push_back(expr))) { LOG_WARN("failed to push back expr", K(ret)); } } } if (OB_SUCC(ret) && new_filters.count() != filters.count()) { if (OB_FAIL(filters.assign(new_filters))) { LOG_WARN("failed to assign exprs", K(ret)); } } return ret; } int ObJoinOrder::check_filter_is_redundant(ObJoinOrder &left_tree, ObRawExpr *expr, ObExprParamCheckContext &context, bool &is_redunant) { int ret = OB_SUCCESS; if (ACCESS == left_tree.get_type() || SUBQUERY == left_tree.get_type()) { if (ObPredicateDeduce::find_equal_expr(left_tree.get_restrict_infos(), expr, NULL, &context)) { is_redunant = true; } } else if (JOIN == left_tree.get_type()) { if (left_tree.interesting_paths_.empty()) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect empty interesting paths", K(ret)); } else { JoinPath *join_path = static_cast(left_tree.interesting_paths_.at(0)); if (OB_ISNULL(join_path) || OB_ISNULL(join_path->left_path_) || OB_ISNULL(join_path->left_path_->parent_) || OB_ISNULL(join_path->right_path_) || OB_ISNULL(join_path->right_path_->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpect null path", K(ret)); } else if ((INNER_JOIN == join_path->join_type_ || LEFT_OUTER_JOIN == join_path->join_type_ || LEFT_SEMI_JOIN == join_path->join_type_ || LEFT_ANTI_JOIN == join_path->join_type_) && OB_FAIL(SMART_CALL(check_filter_is_redundant(*join_path->left_path_->parent_, expr, context, is_redunant)))) { LOG_WARN("failed to check filter is redunant", K(ret)); } else if (is_redunant) { //do nothing } else if ((INNER_JOIN == join_path->join_type_ || RIGHT_OUTER_JOIN == join_path->join_type_ || RIGHT_SEMI_JOIN == join_path->join_type_ || RIGHT_ANTI_JOIN == join_path->join_type_) && OB_FAIL(SMART_CALL(check_filter_is_redundant(*join_path->right_path_->parent_, expr, context, is_redunant)))) { LOG_WARN("failed to check filter is redunant", K(ret)); } } } return ret; } int ObJoinOrder::generate_inner_subquery_paths(const ObIArray &join_conditions, const ObRelIds &join_relids, ObJoinOrder &right_tree, InnerPathInfo &inner_path_info) { int ret = OB_SUCCESS; const ObDMLStmt *parent_stmt = NULL; ObSEArray pushdown_quals; ObSEArray dummy; LOG_TRACE("OPT:start to generate inner subquery path", K(right_tree.table_id_), K(join_relids)); if (OB_ISNULL(get_plan()) || OB_ISNULL(parent_stmt = get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(get_plan()), K(parent_stmt), K(ret)); } else if (OB_FAIL(extract_pushdown_quals(join_conditions, inner_path_info.force_inner_nl_, pushdown_quals))) { LOG_WARN("failed to extract pushdown quals", K(ret)); } else if (OB_FAIL(append(pushdown_quals, right_tree.get_restrict_infos()))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(right_tree.generate_inner_subquery_paths(*parent_stmt, join_relids, pushdown_quals, inner_path_info))) { LOG_WARN("failed to generate inner subquery path", K(table_id_), K(join_relids), K(pushdown_quals), K(ret)); } else { LOG_TRACE("succeed to generate inner subquery paths", K(table_id_), K(join_relids), K(pushdown_quals)); } return ret; } int ObJoinOrder::generate_inner_subquery_paths(const ObDMLStmt &parent_stmt, const ObRelIds join_relids, const ObIArray &pushdown_quals, InnerPathInfo &inner_path_info) { int ret = OB_SUCCESS; PathHelper helper; bool can_pushdown = false; ObSEArray param_pushdown_quals; ObSEArray candi_pushdown_quals; ObSEArray neccesary_pushdown_quals; ObSEArray candi_nonpushdown_quals; ObSEArray nl_params; ObSQLSessionInfo *session_info = NULL; ObRawExprFactory *expr_factory = NULL; ObSelectStmt *child_stmt = NULL; const TableItem *table_item = NULL; helper.is_inner_path_ = true; if (OB_ISNULL(get_plan()) || OB_ISNULL(session_info = get_plan()->get_optimizer_context().get_session_info()) || OB_ISNULL(expr_factory = &get_plan()->get_optimizer_context().get_expr_factory()) || OB_ISNULL(table_item = parent_stmt.get_table_item_by_id(table_id_)) || OB_ISNULL(child_stmt = table_item->ref_query_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(session_info), K(table_item), K(child_stmt)); } else if (OB_FAIL(extract_params_for_inner_path(join_relids, nl_params, helper.subquery_exprs_, pushdown_quals, param_pushdown_quals))) { LOG_WARN("failed to extract params for inner path", K(ret)); } else if (OB_FAIL(extract_necessary_pushdown_quals(param_pushdown_quals, neccesary_pushdown_quals, candi_nonpushdown_quals))) { LOG_WARN("failed to classify push down quals", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::pushdown_filter_into_subquery(parent_stmt, *child_stmt, get_plan()->get_optimizer_context(), neccesary_pushdown_quals, candi_pushdown_quals, helper.filters_, can_pushdown))) { LOG_WARN("failed to pushdown filter into subquery", K(ret)); } else if (!inner_path_info.force_inner_nl_ && !can_pushdown) { //do thing LOG_TRACE("can not pushdown any filter into subquery"); } else if (OB_FALSE_IT(helper.child_stmt_ = child_stmt)) { } else if (OB_FAIL(ObOptimizerUtil::rename_pushdown_filter(parent_stmt, *child_stmt, table_id_, session_info, *expr_factory, candi_pushdown_quals, helper.pushdown_filters_))) { LOG_WARN("failed to rename pushdown filter", K(ret)); } else if (append(helper.filters_, candi_nonpushdown_quals)) { LOG_WARN("failed to append", K(ret)); } else if (OB_FAIL(generate_subquery_paths(helper))) { LOG_WARN("failed to generate subquery path", K(ret)); } else if (OB_FAIL(check_and_fill_inner_path_info(helper, parent_stmt, get_output_equal_sets(), inner_path_info, pushdown_quals, nl_params))) { LOG_WARN("failed to check and fill inner path info", K(ret)); } return ret; } int ObJoinOrder::check_and_fill_inner_path_info(PathHelper &helper, const ObDMLStmt &stmt, const EqualSets &equal_sets, InnerPathInfo &inner_path_info, const ObIArray &pushdown_quals, ObIArray &nl_params) { int ret = OB_SUCCESS; ObSEArray exec_params; ObSEArray valid_inner_paths; UNUSED(stmt); if (OB_FAIL(append(exec_params, nl_params))) { LOG_WARN("failed to append nl params", K(ret)); } // check inner path valid, and fill other informations for (int64_t i = 0; OB_SUCC(ret) && i < helper.inner_paths_.count(); ++i) { ObSEArray range_exprs; ObSEArray all_table_filters; ObSEArray range_params; ObSEArray all_params; ObSEArray pushdown_params; ObSEArray all_pushdown_params; Path *inner_path = helper.inner_paths_.at(i); if (OB_ISNULL(inner_path) || OB_ISNULL(inner_path->parent_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null path", K(ret)); } else if (OB_FAIL(get_range_params(inner_path, range_exprs, all_table_filters))) { LOG_WARN("failed to get range_exprs", K(ret)); } else if (OB_FAIL(ObRawExprUtils::extract_params(range_exprs, range_params))) { LOG_WARN("failed to extract range params", K(ret)); } else if (OB_FAIL(ObRawExprUtils::extract_params(all_table_filters, all_params))) { LOG_WARN("failed to extract range params", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::intersect(exec_params, range_params, pushdown_params))) { LOG_WARN("failed to get intersect params", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::intersect(exec_params, all_params, all_pushdown_params))) { LOG_WARN("failed to get intersect params", K(ret)); } else if (!inner_path_info.force_inner_nl_ && pushdown_params.empty()) { //pushdown quals do not contribute query range LOG_TRACE("pushdown filters can not extend any query range"); } else if (OB_FAIL(append(inner_path->pushdown_filters_, pushdown_quals))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(append(inner_path->nl_params_, nl_params))) { LOG_WARN("failed to append exprs", K(ret)); } else if (FALSE_IT(inner_path->is_inner_path_ = true)) { /*do nothing*/ } else if (OB_FAIL(valid_inner_paths.push_back(inner_path))) { LOG_WARN("failed to push back inner paths", K(ret)); } else { /*do nothing*/ } } if (OB_SUCC(ret) && !valid_inner_paths.empty()) { ObSEArray, 16> path_list; if (OB_FAIL(classify_paths_based_on_sharding(valid_inner_paths, equal_sets, path_list))) { LOG_WARN("failed to classify paths based on sharding", K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && i < path_list.count(); i++) { Path *temp_path = NULL; if (OB_FAIL(find_best_inner_nl_path(path_list.at(i), temp_path))) { LOG_WARN("failed to find best nl path", K(ret)); } else if (OB_ISNULL(temp_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (OB_FAIL(inner_path_info.inner_paths_.push_back(temp_path))) { LOG_WARN("failed to push back inner paths", K(ret)); } else { /*do nothing*/ } } } } return ret; } int ObJoinOrder::generate_force_inner_path(const ObIArray &join_conditions, const ObRelIds join_relids, ObJoinOrder &right_tree, InnerPathInfo &inner_path_info) { int ret = OB_SUCCESS; ObSEArray pushdown_quals; ObSEArray subquery_exprs; ObSEArray param_pushdown_quals; ObSEArray nl_params; LOG_TRACE("OPT:start to generate force inner path"); if (OB_FAIL(extract_pushdown_quals(join_conditions, inner_path_info.force_inner_nl_, pushdown_quals))) { LOG_WARN("failed to extract pushdown quals", K(ret)); } else if (OB_FAIL(extract_params_for_inner_path(join_relids, nl_params, subquery_exprs, pushdown_quals, param_pushdown_quals))) { LOG_WARN("failed to extract params for inner path", K(ret)); } else if (OB_FAIL(inner_path_info.join_conditions_.assign(join_conditions))) { LOG_WARN("failed to assign join condition", K(ret)); } for (int64_t i = 0; OB_SUCC(ret) && i < right_tree.get_interesting_paths().count(); ++i) { Path *right_path = right_tree.get_interesting_paths().at(i); Path *inner_path = NULL; if (OB_ISNULL(right_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null path", K(ret)); } else if (OB_FAIL(copy_path(*right_path, inner_path))) { LOG_WARN("failed to copy path", K(ret)); } else if (OB_ISNULL(inner_path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null path", K(ret)); } else if (OB_FAIL(append(inner_path->pushdown_filters_, pushdown_quals))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(append(inner_path->filter_, param_pushdown_quals))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(append(inner_path->nl_params_, nl_params))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(append(inner_path->subquery_exprs_, subquery_exprs))) { LOG_WARN("failed to append exprs", K(ret)); } else if (OB_FAIL(inner_path_info.inner_paths_.push_back(inner_path))) { LOG_WARN("failed to push back path", K(ret)); } else { inner_path->is_inner_path_ = true; inner_path->inner_row_count_ = right_tree.get_output_rows(); inner_path->log_op_ = NULL; } } return ret; } int ObJoinOrder::copy_path(const Path& src_path, Path* &dst_path) { int ret = OB_SUCCESS; dst_path = NULL; if (OB_ISNULL(allocator_)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected null allocator", K(ret)); } else if (src_path.is_join_path()) { const JoinPath &join_path = static_cast(src_path); JoinPath *new_join_path = NULL; if (OB_ISNULL(new_join_path = static_cast(allocator_->alloc(sizeof(JoinPath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to alloc a join path", K(ret)); } else { new_join_path = new (new_join_path) JoinPath(); if (OB_FAIL(new_join_path->assign(join_path, allocator_))) { LOG_WARN("failed to assign join path", K(ret)); } else { dst_path = new_join_path; } } } else if (src_path.is_subquery_path()) { const SubQueryPath &subquery_path = static_cast(src_path); SubQueryPath *new_subquery_path = NULL; if (OB_ISNULL(new_subquery_path = static_cast(allocator_->alloc(sizeof(SubQueryPath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate subquery path", K(ret)); } else { new_subquery_path = new (new_subquery_path) SubQueryPath(); if (OB_FAIL(new_subquery_path->assign(subquery_path, allocator_))) { LOG_WARN("failed to assign subquery path", K(ret)); } else { dst_path = new_subquery_path; } } } else if (src_path.is_access_path()) { const AccessPath &access_path = static_cast(src_path); AccessPath *new_access_path = NULL; if (OB_ISNULL(new_access_path = reinterpret_cast(allocator_->alloc(sizeof(AccessPath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an AccessPath", K(ret)); } else { new_access_path = new(new_access_path) AccessPath(OB_INVALID_ID, OB_INVALID_ID, OB_INVALID_ID, NULL, UNORDERED); if (OB_FAIL(new_access_path->assign(access_path, allocator_))) { LOG_WARN("failed to assign access path", K(ret)); } else { dst_path = new_access_path; } } } else if (src_path.is_function_table_path()) { const FunctionTablePath &func_path = static_cast(src_path); FunctionTablePath *new_func_path = NULL; if (OB_ISNULL(new_func_path = reinterpret_cast(allocator_->alloc(sizeof(FunctionTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an FunctionTablePath", K(ret)); } else { new_func_path = new(new_func_path) FunctionTablePath(); if (OB_FAIL(new_func_path->assign(func_path, allocator_))) { LOG_WARN("failed to assign access path", K(ret)); } else { dst_path = new_func_path; } } } else if (src_path.is_json_table_path()) { const JsonTablePath &json_table_path = static_cast(src_path); JsonTablePath *new_jt_path = NULL; if (OB_ISNULL(new_jt_path = static_cast(allocator_->alloc(sizeof(JsonTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an JsonTablePath", K(ret)); } else { new_jt_path = new(new_jt_path) JsonTablePath(); if (OB_FAIL(new_jt_path->assign(json_table_path, allocator_))) { LOG_WARN("failed to assign access path", K(ret)); } else { dst_path = new_jt_path; } } } else if (src_path.is_temp_table_path()) { const TempTablePath &temp_path = static_cast(src_path); TempTablePath *new_temp_table = NULL; if (OB_ISNULL(new_temp_table = reinterpret_cast(allocator_->alloc(sizeof(TempTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an TempTablePath", K(ret)); } else { new_temp_table = new(new_temp_table) TempTablePath(); if (OB_FAIL(new_temp_table->assign(temp_path, allocator_))) { LOG_WARN("failed to assign access path", K(ret)); } else { dst_path = new_temp_table; } } } else if (src_path.is_cte_path()) { const CteTablePath &cte_path = static_cast(src_path); CteTablePath *new_cte_path = NULL; if (OB_ISNULL(new_cte_path = reinterpret_cast(allocator_->alloc(sizeof(CteTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an CteTablePath", K(ret)); } else { new_cte_path = new(new_cte_path) CteTablePath(); if (OB_FAIL(new_cte_path->assign(cte_path, allocator_))) { LOG_WARN("failed to assign access path", K(ret)); } else { dst_path = new_cte_path; } } } else if (src_path.is_values_table_path()) { const ValuesTablePath &values_table_path = static_cast(src_path); ValuesTablePath *new_values_table_path = NULL; if (OB_ISNULL(new_values_table_path = reinterpret_cast(allocator_->alloc(sizeof(ValuesTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_ERROR("failed to allocate an ValuesTablePath", K(ret)); } else { new_values_table_path = new(new_values_table_path) ValuesTablePath(); if (OB_FAIL(new_values_table_path->assign(values_table_path, allocator_))) { LOG_WARN("failed to assign access path", K(ret)); } else { dst_path = new_values_table_path; } } } else { ret = OB_ERR_UNEXPECTED; LOG_WARN("unexpected path type", K(ret)); } return ret; } int ObJoinOrder::extract_pushdown_quals(const ObIArray &quals, const bool force_inner_nl, ObIArray &pushdown_quals) { int ret = OB_SUCCESS; for (int64_t i = 0; OB_SUCC(ret) && i < quals.count(); ++i) { ObRawExpr *qual = quals.at(i); if (OB_ISNULL(qual)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(qual), K(ret)); // can not push down expr with subquery } else if (qual->has_flag(CNT_ROWNUM)) { if (force_inner_nl && qual->has_flag(CNT_SUB_QUERY)) { ret = OB_NOT_SUPPORTED; LOG_USER_ERROR(OB_NOT_SUPPORTED, "join condition contains rownum and subquery"); } } else if (T_OP_NE == qual->get_expr_type() && !force_inner_nl) { //do nothing } else if (OB_FAIL(pushdown_quals.push_back(qual))) { LOG_WARN("failed to push back qual", K(ret)); } else { /*do nothing*/ } } return ret; } int ObJoinOrder::DeducedExprInfo::assign(const DeducedExprInfo &other) { int ret = OB_SUCCESS; deduced_expr_ = other.deduced_expr_; deduced_from_expr_ = other.deduced_from_expr_; is_precise_ = other.is_precise_; if (OB_FAIL(const_param_constraints_.assign(other.const_param_constraints_))) { LOG_WARN("failed to assign pc constraint", K(ret)); } return ret; } int ObJoinOrder::add_deduced_expr(ObRawExpr *deduced_expr, ObRawExpr *deduce_from, bool is_persistent) { ObExprEqualCheckContext equal_ctx; return add_deduced_expr(deduced_expr, deduce_from, is_persistent, equal_ctx); } int ObJoinOrder::add_deduced_expr(ObRawExpr *deduced_expr, ObRawExpr *deduced_from, bool is_precise, ObExprEqualCheckContext &equal_ctx) { int ret = OB_SUCCESS; ObPhysicalPlanCtx *phy_plan_ctx = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(OPT_CTX.get_exec_ctx()) || OB_ISNULL(phy_plan_ctx = OPT_CTX.get_exec_ctx()->get_physical_plan_ctx())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(ret)); } else { DeducedExprInfo deduced_expr_info; deduced_expr_info.deduced_expr_ = deduced_expr; deduced_expr_info.deduced_from_expr_ = deduced_from; deduced_expr_info.is_precise_ = is_precise; for(int64_t i = 0; OB_SUCC(ret) && i < equal_ctx.param_expr_.count(); i++) { int64_t param_idx = equal_ctx.param_expr_.at(i).param_idx_; ObPCConstParamInfo param_info; if (OB_UNLIKELY(param_idx < 0 || param_idx >= phy_plan_ctx->get_param_store().count())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected error", K(ret), K(param_idx), K(phy_plan_ctx->get_param_store().count())); } else if (OB_FAIL(param_info.const_idx_.push_back(param_idx))) { LOG_WARN("failed to push back param idx", K(ret)); } else if (OB_FAIL(param_info.const_params_.push_back( phy_plan_ctx->get_param_store().at(param_idx)))) { LOG_WARN("failed to push back value", K(ret)); } else if (OB_FAIL(deduced_expr_info.const_param_constraints_.push_back(param_info))) { LOG_WARN("failed to push back param info", K(ret)); } } if (OB_FAIL(ret)) { //do nothing } else if (OB_FAIL(deduced_exprs_info_.push_back(deduced_expr_info))) { LOG_WARN("push back failed", K(ret)); } } return ret; } int ObJoinOrder::get_generated_col_index_qual(const int64_t table_id, ObIArray &quals, PathHelper &helper) { int ret = OB_SUCCESS; const TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(table_item = get_plan()->get_stmt()->get_table_item_by_id(table_id))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("table item is null", K(ret)); } else { int64_t N = quals.count(); deduced_exprs_info_.reset(); bool is_persistent = false; for (int64_t i = 0; OB_SUCC(ret) && i < N; i++) { ObRawExpr *new_qual = NULL; ObSEArray new_quals; ObRawExpr *qual = quals.at(i); if (OB_ISNULL(qual)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("table item is null", K(ret)); } else if (OB_FAIL(deduce_prefix_str_idx_exprs(qual, table_item, new_quals, helper))) { LOG_WARN("deduce prefix str failed", K(ret)); } else if (!new_quals.empty()) { if (OB_FAIL(append(quals, new_quals))) { LOG_WARN("push back failed", K(ret)); } LOG_TRACE("deduce gen col of prefix str", K(new_quals), KPC(qual)); } if (OB_FAIL(ret)) { } else if (OB_FAIL(deduce_common_gen_col_index_expr(qual, table_item, new_qual))) { LOG_WARN("deduce expr failed", K(ret)); } else if (new_qual != NULL) { if (OB_FAIL(quals.push_back(new_qual))) { LOG_WARN("push back failed", K(ret)); } LOG_TRACE("deduce gen col of common", KPC(new_qual), KPC(qual)); } else { //do nothing } } } return ret; } int ObJoinOrder::deduce_prefix_str_idx_exprs(ObRawExpr *expr, const TableItem *table_item, ObIArray &new_exprs, PathHelper &helper) { int ret = OB_SUCCESS; if (OB_ISNULL(expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is null", K(ret)); } else { ObColumnRefRawExpr *column_expr = NULL; ObRawExpr *value_expr = NULL; ObRawExpr *escape_expr = NULL; ObRawExpr *param_expr1 = NULL; ObRawExpr *param_expr2 = NULL; ObItemType type = expr->get_expr_type(); if (IS_BASIC_CMP_OP(expr->get_expr_type()) || IS_SINGLE_VALUE_OP(expr->get_expr_type())) { //only =//>=/IN/like can deduce generated exprs if (OB_ISNULL(param_expr1 = expr->get_param_expr(0)) || OB_ISNULL(param_expr2 = expr->get_param_expr(1))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is null", K(*expr), K(expr->get_param_expr(0)), K(expr->get_param_expr(1)), K(ret)); } else if (T_OP_LIKE == expr->get_expr_type()) { if (3 != expr->get_param_count() || OB_ISNULL(expr->get_param_expr(2))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("escape param is unexpected null", K(ret)); } else if (param_expr1->is_column_ref_expr() && param_expr1->get_result_type().is_string_type() && param_expr2->get_result_type().is_string_type() && expr->get_param_expr(1)->is_static_scalar_const_expr() && expr->get_param_expr(2)->is_static_scalar_const_expr()) { column_expr = static_cast(expr->get_param_expr(0)); value_expr = expr->get_param_expr(1); escape_expr = expr->get_param_expr(2); } } else if (T_OP_IN == expr->get_expr_type()) { if (T_OP_ROW == param_expr2->get_expr_type() && !param_expr2->has_generalized_column() && param_expr1->get_result_type().is_string_type() && param_expr1->is_column_ref_expr()) { bool all_match = true; for (int64_t j = 0; OB_SUCC(ret) && all_match && j < param_expr2->get_param_count(); ++j) { if (OB_ISNULL(param_expr2->get_param_expr(j))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("param expr2 is null"); } else if (!param_expr2->get_param_expr(j)->get_result_type().is_string_type() || param_expr2->get_param_expr(j)->get_collation_type() != param_expr1->get_collation_type()) { all_match = false; } } if (OB_SUCC(ret) && all_match && expr->get_param_expr(0)->is_column_ref_expr()) { column_expr = static_cast(expr->get_param_expr(0)); value_expr = expr->get_param_expr(1); } } } else if (param_expr1->is_column_ref_expr() && param_expr2->is_static_scalar_const_expr()) { if (param_expr1->get_result_type().is_string_type() //only for string and same collation && param_expr2->get_result_type().is_string_type() && param_expr1->get_collation_type() == param_expr2->get_collation_type()) { column_expr = static_cast(expr->get_param_expr(0)); value_expr = expr->get_param_expr(1); } } else if (param_expr1->is_static_scalar_const_expr() && param_expr2->is_column_ref_expr()) { if (param_expr1->get_result_type().is_string_type() && param_expr2->get_result_type().is_string_type()) { type = get_opposite_compare_type(expr->get_expr_type()); column_expr = static_cast(expr->get_param_expr(1)); value_expr = expr->get_param_expr(0); } } else if (param_expr1->is_column_ref_expr() && param_expr2->is_column_ref_expr()) { //do nothing } if (OB_SUCC(ret) && column_expr != NULL && value_expr != NULL && column_expr->get_table_id() == table_item->table_id_ && OB_FAIL(get_prefix_str_idx_exprs(expr, column_expr, value_expr, escape_expr, table_item, type, new_exprs, helper))) { LOG_WARN("get_prefix str idx exprs failed", K(ret)); } else { //do nothing } } } return ret; } int ObJoinOrder::get_prefix_str_idx_exprs(ObRawExpr *expr, ObColumnRefRawExpr *column_expr, ObRawExpr *value_expr, ObRawExpr *escape_expr, const TableItem *table_item, ObItemType type, ObIArray &new_exprs, PathHelper &helper) { int ret = OB_SUCCESS; if (OB_ISNULL(expr) || OB_ISNULL(table_item) || OB_ISNULL(get_plan()) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is null", K(ret)); } else if (OB_ISNULL(column_expr) || OB_ISNULL(value_expr )) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is null", K(ret)); } else if (column_expr->has_generated_column_deps()) { ObSEArray column_exprs; if (OB_FAIL(get_plan()->get_stmt()->get_column_exprs(table_item->table_id_, column_exprs))) { LOG_WARN("failed to get column exprs", K(ret)); } for (int64_t j = 0; OB_SUCC(ret) && j < column_exprs.count(); ++j) { ObRawExpr *new_expr = NULL; ObColumnRefRawExpr *gen_column_expr = column_exprs.at(j); if (OB_ISNULL(gen_column_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is null", K(ret)); } else if (!gen_column_expr->is_generated_column()) { //do nothing } else { const ObRawExpr *dep_expr = gen_column_expr->get_dependant_expr(); const ObRawExpr *substr_expr = NULL; if (OB_ISNULL(dep_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("generated column expr is null", K(*gen_column_expr), K(j), K(ret)); } else if (ObRawExprUtils::has_prefix_str_expr(*dep_expr, *column_expr, substr_expr)) { ObItemType gen_type = type; if (T_OP_GT == type) { gen_type = T_OP_GE; } else if (T_OP_LT == type) { gen_type = T_OP_LE; } if (OB_FAIL(ret)) { } else if (OB_FAIL(build_prefix_index_compare_expr(*gen_column_expr, const_cast(substr_expr), gen_type, *value_expr, escape_expr, new_expr, helper))) { LOG_WARN("build prefix index compare expr failed", K(ret)); } else if (OB_ISNULL(new_expr)) { //do nothing } else if (OB_FAIL(new_expr->formalize(get_plan()->get_optimizer_context().get_session_info()))) { LOG_WARN("formalize failed", K(ret)); } else if (OB_FAIL(new_expr->pull_relation_id())) { LOG_WARN("pullup relids and level failed", K(ret)); } else if (OB_FAIL(add_deduced_expr(new_expr, expr, false))) { LOG_WARN("push back failed", K(ret)); } else if (OB_FAIL(new_exprs.push_back(new_expr))) { LOG_WARN("push back failed", K(ret)); } else { gen_column_expr->set_explicited_reference(); } } } } } return ret; } int ObJoinOrder::build_prefix_index_compare_expr(ObRawExpr &column_expr, ObRawExpr *prefix_expr, ObItemType type, ObRawExpr &value_expr, ObRawExpr *escape_expr, ObRawExpr *&new_op_expr, PathHelper &helper) { int ret = OB_SUCCESS; ObSysFunRawExpr *substr_expr = NULL; bool got_result = false; if (T_OP_LIKE == type) { //build value substr expr ObOpRawExpr *like_expr = NULL; bool got_result = false; ObObj result; ObOptimizerContext *opt_ctx = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(opt_ctx = &get_plan()->get_optimizer_context()) || OB_ISNULL(allocator_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(opt_ctx), K(ret)); } else if (OB_FAIL(ObRawExprUtils::create_prefix_pattern_expr(get_plan()->get_optimizer_context().get_expr_factory(), get_plan()->get_optimizer_context().get_session_info(), &value_expr, prefix_expr->get_param_expr(2), escape_expr, substr_expr))) { LOG_WARN("create substr expr failed", K(ret)); } else if (OB_FAIL(ObSQLUtils::calc_const_or_calculable_expr(opt_ctx->get_exec_ctx(), substr_expr, result, got_result, *allocator_))) { LOG_WARN("fail to calc prefix pattern expr", K(ret)); } else if (!got_result || result.is_null()) { // prefix pattern is invalid, do nothing } else if (OB_FAIL(ObRawExprUtils::build_like_expr(get_plan()->get_optimizer_context().get_expr_factory(), get_plan()->get_optimizer_context().get_session_info(), &column_expr, substr_expr, escape_expr, like_expr))) { LOG_WARN("build like expr failed", K(ret)); } else if (OB_FAIL(like_expr->extract_info())) { LOG_WARN("extract info failed", K(ret)); } else if (OB_FAIL(like_expr->pull_relation_id())) { LOG_WARN("pullup rel ids failed", K(ret)); } else { new_op_expr = like_expr; } } else { ObRawExpr *right_expr = NULL; if (T_OP_IN == type) { ObOpRawExpr *row_expr = NULL; if (OB_FAIL(get_plan()->get_optimizer_context().get_expr_factory().create_raw_expr(T_OP_ROW, row_expr))) { LOG_WARN("create to_type expr failed", K(ret)); } else if (OB_ISNULL(row_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("to_type is null"); } else { right_expr = row_expr; for (int64_t k = 0; OB_SUCC(ret) && k < value_expr.get_param_count(); ++k) { if (OB_FAIL(ObRawExprUtils::create_substr_expr(get_plan()->get_optimizer_context().get_expr_factory(), get_plan()->get_optimizer_context().get_session_info(), value_expr.get_param_expr(k), prefix_expr->get_param_expr(1), prefix_expr->get_param_expr(2), substr_expr))) { LOG_WARN("create substr expr failed", K(ret)); } else if (OB_FAIL(row_expr->add_param_expr(substr_expr))) { LOG_WARN("set param expr failed", K(ret)); } } } } else { if (OB_FAIL(ObRawExprUtils::create_substr_expr(get_plan()->get_optimizer_context().get_expr_factory(), get_plan()->get_optimizer_context().get_session_info(), &value_expr, prefix_expr->get_param_expr(1), prefix_expr->get_param_expr(2), substr_expr))) { LOG_WARN("create substr expr failed", K(ret)); } else { right_expr = substr_expr; } } // change to const if (OB_SUCC(ret)) { ObObj result; ObConstRawExpr *c_expr = NULL; if (OB_FAIL(substr_expr->extract_info())) { LOG_WARN("extract info failed", K(ret)); } else if (OB_FAIL(ObRawExprUtils::create_double_op_expr(get_plan()->get_optimizer_context().get_expr_factory(), get_plan()->get_optimizer_context().get_session_info(), type, new_op_expr, &column_expr, right_expr))) { LOG_WARN("failed to create double op expr", K(ret), K(type), K(column_expr), KPC(right_expr)); } else if (OB_FAIL(new_op_expr->extract_info())) { LOG_WARN("extract info failed", K(ret)); } else if (OB_FAIL(new_op_expr->pull_relation_id())) { LOG_WARN("pullup rel ids failed", K(ret)); } } } return ret; } int ObJoinOrder::deduce_common_gen_col_index_expr(ObRawExpr *qual, const TableItem *table_item, ObRawExpr *&new_qual) { int ret = OB_SUCCESS; ObSEArray column_exprs; new_qual = NULL; if (OB_ISNULL(qual) || OB_ISNULL(get_plan()->get_stmt())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("qual is null", K(ret)); } else if (qual->get_expr_class() != ObRawExpr::EXPR_OPERATOR) { // these can extract query range //do nothing } else if (!qual->has_flag(CNT_COLUMN)) { //do nothing } else if (OB_FAIL(get_plan()->get_stmt()->get_column_exprs(table_item->table_id_, column_exprs))) { LOG_WARN("failed to get column exprs", K(ret)); } else { for (int64_t i = 0; OB_SUCC(ret) && i < column_exprs.count(); i++) { ObColumnRefRawExpr *column_expr = column_exprs.at(i); if (OB_ISNULL(column_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("col is null", K(ret)); } else if (!column_expr->is_generated_column()) { //do nothing } else { ObRawExpr* depend_expr = column_expr->get_dependant_expr(); bool is_lossless = true; bool is_valid = true; if (OB_ISNULL(depend_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("depend epxr is null", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::is_lossless_column_conv(depend_expr, is_lossless))) { LOG_WARN("check depend epxr lossless failed", K(ret)); } else if(is_lossless) { depend_expr = depend_expr->get_param_expr(4); } if (OB_FAIL(ret)) { } else if (OB_FAIL(ObOptimizerUtil::is_lossless_column_cast(depend_expr, is_lossless))) { LOG_WARN("check depend epxr lossless failed", K(ret)); } else if(is_lossless) { depend_expr = depend_expr->get_param_expr(0); } if (OB_FAIL(ret)) { } else if (OB_ISNULL(depend_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("depend epxr is null", K(ret)); } else if (OB_FAIL(try_get_generated_col_index_expr(qual, depend_expr, column_expr, new_qual))) { LOG_WARN("try get expr failed", K(ret)); } else if (new_qual != NULL) { break; } } } //end for } //end loop return ret; } int ObJoinOrder::try_get_generated_col_index_expr(ObRawExpr *qual, ObRawExpr *depend_expr, ObColumnRefRawExpr *col_expr, ObRawExpr *&new_qual) { int ret = OB_SUCCESS; if (OB_ISNULL(qual) || OB_ISNULL(depend_expr) || OB_ISNULL(get_plan()->get_stmt()) || OB_ISNULL(col_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("qual is null", K(ret)); } else { ObRawExprFactory &expr_factory = OPT_CTX.get_expr_factory(); for (int64_t j = 0; OB_SUCC(ret) && new_qual == NULL && j < qual->get_param_count(); j++) { ObRawExpr *child = qual->get_param_expr(j); //to replace the j-th child //remove inner cast's influence. ObExprEqualCheckContext equal_ctx; equal_ctx.override_const_compare_ = true; bool is_same = false; if (OB_ISNULL(child)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("child is null", K(ret)); } else if (OB_FAIL(ObOptimizerUtil::get_expr_without_lossless_cast(child, child))) { LOG_WARN("fail to get real child without lossless cast", K(ret)); } else if (OB_ISNULL(child)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("real child is null", K(ret)); } else if (depend_expr->same_as(*child, &equal_ctx)) { is_same = true; } else { equal_ctx.reset(); equal_ctx.override_const_compare_ = true; if (OB_FAIL(check_match_to_type(depend_expr, child, is_same, equal_ctx))) { LOG_WARN("fail to check if to_ expr can be extracted", K(ret)); } } if (OB_SUCC(ret) && is_same) { ObRawExprCopier copier(expr_factory); ObSEArray column_exprs; if (OB_FAIL(ObRawExprUtils::extract_column_exprs(qual, column_exprs))) { LOG_WARN("extract_column_exprs error", K(ret)); } else if (OB_FAIL(copier.add_skipped_expr(column_exprs))) { LOG_WARN("failed to add skipped exprs", K(ret)); } else if (OB_FAIL(copier.copy(qual, new_qual))) { LOG_WARN("failed to copy expr node", K(ret)); //depend_expr's res type may be diff from its column's. copy real_qual and deduce type again. } else if (OB_FAIL(static_cast(new_qual)->replace_param_expr(j, col_expr))) { LOG_WARN("replace failed", K(ret)); } else if (OB_FAIL(new_qual->formalize(OPT_CTX.get_session_info()))) { if (ret != OB_SUCCESS) { //probably type deduced failed. do nothing LOG_WARN("new qual is not formalized correctly", K(ret), K(*new_qual)); ret = OB_SUCCESS; new_qual = NULL; continue; //do not add this expr. } } else if (OB_FAIL(new_qual->pull_relation_id())) { LOG_WARN("pull up rel and level failed", K(ret)); } else if (FALSE_IT(col_expr->set_explicited_reference())) { //do nothing } else if (OB_FAIL(add_deduced_expr(new_qual, qual, true, equal_ctx))) { LOG_WARN("push back failed", K(ret)); } } } } return ret; } int ObJoinOrder::check_match_to_type(ObRawExpr *to_type_expr, ObRawExpr *candi_expr, bool &is_same, ObExprEqualCheckContext &equal_ctx) { int ret = OB_SUCCESS; bool is_valid = false; is_same = false; ObRawExpr *to_type_child = NULL; //check expr type and param type of to_ expr if (OB_ISNULL(to_type_expr) || OB_ISNULL(candi_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("expr is unexpected null", K(ret), K(to_type_expr), K(candi_expr)); } else { ObItemType type = to_type_expr->get_expr_type(); ObItemType candi_type = candi_expr->get_expr_type(); if (T_FUN_SYS_TO_CHAR == type || T_FUN_SYS_TO_NCHAR == type || T_FUN_SYS_TO_NUMBER == type || T_FUN_SYS_TO_BINARY_FLOAT == type || T_FUN_SYS_TO_BINARY_DOUBLE == type || T_FUN_SYS_DATE == type || T_FUN_SYS_TO_BINARY_DOUBLE == type) { is_valid = true; } else if (T_FUN_SYS_TO_CHAR == candi_type || T_FUN_SYS_TO_NCHAR == candi_type || T_FUN_SYS_TO_NUMBER == candi_type || T_FUN_SYS_TO_BINARY_FLOAT == candi_type || T_FUN_SYS_TO_BINARY_DOUBLE == candi_type || T_FUN_SYS_DATE == candi_type || T_FUN_SYS_TO_BINARY_DOUBLE == candi_type) { std::swap(to_type_expr, candi_expr); is_valid = true; } if (is_valid && to_type_expr->get_param_count() > 1) { is_valid = false; //TODO: if the fmt param is same as session default fmt, to_date/to_char/to_timestamp/to_timestamp_tz is the same as cast expr } } if (OB_SUCC(ret) && is_valid) { if (OB_ISNULL(to_type_child = to_type_expr->get_param_expr(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null",K(ret)); } else if (ObOptimizerUtil::is_lossless_type_conv(to_type_child->get_result_type(),to_type_expr->get_result_type())) { if (ObOptimizerUtil::get_expr_without_lossless_cast(to_type_child, to_type_child)) { LOG_WARN("fail to get real child without lossless cast", K(ret)); } else if (OB_ISNULL(to_type_child) || OB_ISNULL(candi_expr)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret), K(to_type_child), K(candi_expr)); } else { is_same = to_type_child->same_as(*candi_expr, &equal_ctx); } } else if (to_type_expr->get_result_type().get_type() == candi_expr->get_result_type().get_type() && T_FUN_SYS_CAST == candi_expr->get_expr_type()) { if (ob_is_string_tc(to_type_expr->get_result_type().get_type())) { if (to_type_expr->get_result_type().get_accuracy() == candi_expr->get_result_type().get_accuracy() && to_type_expr->get_result_type().get_collation_type() == candi_expr->get_result_type().get_collation_type()) { is_same = true; } } else if (to_type_expr->get_result_type().get_scale() == candi_expr->get_result_type().get_scale() && to_type_expr->get_result_type().get_precision() == candi_expr->get_result_type().get_precision()) { is_same = true; } if (is_same) { is_same = to_type_child->same_as(*(candi_expr->get_param_expr(0)), &equal_ctx); } } } return ret; } int ObJoinOrder::get_range_params(const Path *path, ObIArray &range_exprs, ObIArray &all_table_filters) { int ret = OB_SUCCESS; if (OB_ISNULL(path)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (path->is_access_path()) { const AccessPath *access_path = static_cast(path); if (OB_FAIL(append(range_exprs, access_path->est_cost_info_.pushdown_prefix_filters_))) { LOG_WARN("failed to append pushdown prefix filters", K(ret)); } else if (OB_FAIL(append(all_table_filters, access_path->est_cost_info_.pushdown_prefix_filters_))) { LOG_WARN("failed to append pushdown prefix filters", K(ret)); } else if (OB_FAIL(append(all_table_filters, access_path->est_cost_info_.postfix_filters_))) { LOG_WARN("failed to append pushdown prefix filters", K(ret)); } else if (OB_FAIL(append(all_table_filters, access_path->est_cost_info_.table_filters_))) { LOG_WARN("failed to append pushdown prefix filters", K(ret)); } } else if (path->is_subquery_path()) { const SubQueryPath *sub_path = static_cast(path); if (OB_FAIL(ObOptimizerUtil::get_range_params(sub_path->root_, range_exprs, all_table_filters))) { LOG_WARN("failed to get range params", K(ret)); } } return ret; } int ObJoinOrder::extract_real_join_keys(ObIArray &join_keys) { int ret = OB_SUCCESS; for (int64_t i = 0; OB_SUCC(ret) && i < join_keys.count(); ++i) { ObRawExpr *&expr = join_keys.at(i); bool is_lossless = false; if (OB_FAIL(ObOptimizerUtil::is_lossless_column_cast(expr, is_lossless))) { LOG_WARN("failed to check lossless column cast", K(ret)); } else if (is_lossless) { expr = expr->get_param_expr(0); } } return ret; } int ObJoinOrder::find_best_inner_nl_path(const ObIArray &inner_paths, Path *&best_nl_path) { int ret = OB_SUCCESS; best_nl_path = NULL; for (int64_t i = 0; OB_SUCC(ret) && i < inner_paths.count(); ++i) { Path *nl_path = NULL; bool is_subset = false; bool need_replace = false; if (OB_ISNULL(nl_path = inner_paths.at(i))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("right inner path is null", K(ret), K(nl_path)); } else if (best_nl_path == NULL) { need_replace = true; } else if (nl_path->is_access_path()) { AccessPath *access_nl_path = static_cast(nl_path); AccessPath *best_access_nl_path = static_cast(best_nl_path); if (access_nl_path->est_cost_info_.is_unique_) { need_replace = (!best_access_nl_path->est_cost_info_.is_unique_) || (best_access_nl_path->get_cost() > access_nl_path->get_cost()); } else if (best_access_nl_path->est_cost_info_.is_unique_) { need_replace = false; } else if (OB_FAIL(ObOptimizerUtil::prefix_subset_exprs(best_access_nl_path->index_keys_, best_access_nl_path->range_prefix_count_, access_nl_path->index_keys_, access_nl_path->range_prefix_count_, is_subset))) { LOG_WARN("failed to check prefix subset exprs", K(ret)); } else if (is_subset && best_access_nl_path->range_prefix_count_ < access_nl_path->range_prefix_count_ && ((!access_nl_path->est_cost_info_.index_meta_info_.is_index_back_) || (best_access_nl_path->est_cost_info_.index_meta_info_.is_index_back_ == access_nl_path->est_cost_info_.index_meta_info_.is_index_back_))) { need_replace = true; } else { need_replace = best_access_nl_path->get_cost() > access_nl_path->get_cost(); } } else { need_replace = best_nl_path->get_cost() > nl_path->get_cost(); } if (OB_SUCC(ret) && need_replace) { best_nl_path = nl_path; } } return ret; } int ObJoinOrder::extract_naaj_join_conditions(const ObIArray &join_quals, const ObRelIds &left_tables, const ObRelIds &right_tables, ObIArray &equal_join_conditions, NullAwareAntiJoinInfo &naaj_info) { int ret = OB_SUCCESS; ObRawExpr *cur_expr = NULL; ObSEArray join_quals_naaj; ObSEArray join_other_naaj; if (1 != join_quals.count()) { // null aware anti join can only process single join equal cond } else if (OB_ISNULL(join_quals.at(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(join_quals.at(0)), K(ret)); } else if (T_OP_OR == join_quals.at(0)->get_expr_type()) { for (int64_t i = 0; OB_SUCC(ret) && i < join_quals.at(0)->get_param_count(); ++i) { bool is_equal_cond = false; cur_expr = join_quals.at(0)->get_param_expr(i); if (OB_FAIL(check_is_join_equal_conditions(cur_expr, left_tables, right_tables, is_equal_cond))) { LOG_WARN("failed to check equal cond", K(cur_expr), K(ret)); } else if (is_equal_cond) { if (OB_FAIL(join_quals_naaj.push_back(cur_expr))) { LOG_WARN("failed to push back", K(ret)); } } else { if (cur_expr->get_relation_ids().is_subset(get_tables()) && OB_FAIL(join_other_naaj.push_back(cur_expr))) { LOG_WARN("failed to push back", K(ret)); } } } if (OB_SUCC(ret) && 1 == join_quals_naaj.count()) { const ObRawExpr *left_join_key = join_quals_naaj.at(0)->get_param_expr(0); const ObRawExpr *right_join_key = join_quals_naaj.at(0)->get_param_expr(1); if (left_join_key->get_relation_ids().is_subset(right_tables)) { left_join_key = join_quals_naaj.at(0)->get_param_expr(1); right_join_key = join_quals_naaj.at(0)->get_param_expr(0); } bool left_has_is_null = false; bool right_has_is_null = false; bool is_valid = true; for (int64_t i = 0; OB_SUCC(ret) && is_valid && i < join_other_naaj.count(); ++i) { //eliminate join_key is null cur_expr = join_other_naaj.at(i); if (T_OP_IS == cur_expr->get_expr_type() && ObNullType == cur_expr->get_param_expr(1)->get_result_type().get_type()) { if (left_join_key == cur_expr->get_param_expr(0)) { left_has_is_null = true; } else if (right_join_key == cur_expr->get_param_expr(0)) { right_has_is_null = true; } else { is_valid = false; } } else { is_valid = false; } } if (OB_FAIL(ret) || !is_valid) { // do nothing } else if (left_has_is_null && right_has_is_null) { // Both "is null" was eliminated // anti join na // e.g. (a = b) or (a is null) or (b is null) naaj_info.is_naaj_ = true; if (OB_FAIL(equal_join_conditions.push_back(join_quals_naaj.at(0)))) { LOG_WARN("failed to push back", K(ret)); } } else if (left_has_is_null || right_has_is_null) { // Only one "is null" was eliminated, // Other side should be not null // e.g. ((a = b) or (a is null)) and (b is not null) // <=> ((a = b) or (a is null) or (b is null)) and (b is not null) ObNotNullContext not_null_ctx(get_plan()->get_optimizer_context().get_exec_ctx(), &get_plan()->get_allocator(), get_plan()->get_stmt()); ObArray constraints; if (OB_FAIL(not_null_ctx.generate_stmt_context(NULLABLE_SCOPE::NS_WHERE))) { LOG_WARN("failed to generate stmt context", K(ret)); } else if (OB_FAIL(not_null_ctx.remove_filter(join_quals.at(0)))){ LOG_WARN("failed to remove filter", K(ret)); } else if (!left_has_is_null && OB_FAIL(ObTransformUtils::is_expr_not_null(not_null_ctx, left_join_key, naaj_info.left_side_not_null_, &constraints))) { LOG_WARN("failed to check is expr not null"); } else if (!right_has_is_null && OB_FAIL(ObTransformUtils::is_expr_not_null(not_null_ctx, right_join_key, naaj_info.right_side_not_null_, &constraints))) { LOG_WARN("failed to check is expr not null"); } else if (OB_FAIL(ObTransformUtils::add_param_not_null_constraint(naaj_info.expr_constraints_, constraints))) { LOG_WARN("append expr constraints failed", K(ret)); } else if (naaj_info.left_side_not_null_ || naaj_info.right_side_not_null_) { naaj_info.is_naaj_ = true; if (OB_FAIL(equal_join_conditions.push_back(join_quals_naaj.at(0)))) { LOG_WARN("failed to push back", K(ret)); } } } } LOG_TRACE("extract naaj info", K(naaj_info), K(equal_join_conditions)); } return ret; } int ObJoinOrder::check_can_use_global_stat_instead(const uint64_t ref_table_id, const ObTableSchema &table_schema, ObIArray &all_used_parts, ObIArray &all_used_tablets, bool &can_use, ObIArray &global_part_ids, double &scale_ratio) { int ret = OB_SUCCESS; bool is_global_stat_valid = false; int64_t global_part_id = -1; can_use = false; scale_ratio = 1.0; ObSQLSessionInfo *session_info = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(session_info = get_plan()->get_optimizer_context().get_session_info()) || OB_ISNULL(OPT_CTX.get_exec_ctx()) || OB_ISNULL(OPT_CTX.get_opt_stat_manager())) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(ret)); } else if (!table_schema.is_partitioned_table()) { //do nothing } else if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->check_opt_stat_validity(*(OPT_CTX.get_exec_ctx()), session_info->get_effective_tenant_id(), ref_table_id, global_part_id, is_global_stat_valid))) { LOG_WARN("failed to check stat version", K(ret)); } else if (PARTITION_LEVEL_ONE == table_schema.get_part_level()) { if (!is_global_stat_valid) { //do nothing } else if (OB_FAIL(global_part_ids.push_back(global_part_id))) { LOG_WARN("failed to push back global partition id", K(ret)); } else { can_use = true; scale_ratio = ObOptSelectivity::revise_between_0_1(1.0 * all_used_parts.count() / table_schema.get_all_part_num()); } } else if (PARTITION_LEVEL_TWO == table_schema.get_part_level()) { int64_t total_subpart_cnt = 0; bool is_opt_stat_valid = true; for (int64_t i = 0; OB_SUCC(ret) && is_opt_stat_valid && i < all_used_tablets.count(); ++i) { int64_t part_id = OB_INVALID_ID; int64_t subpart_id = OB_INVALID_ID; ObArray subpart_ids; if (OB_FAIL(table_schema.get_part_id_by_tablet(all_used_tablets.at(i), part_id, subpart_id))) { LOG_WARN("failed to get part id by tablet", K(ret), K(all_used_tablets.at(i))); } else if (!ObOptimizerUtil::find_item(global_part_ids, part_id)) { if (OB_FAIL(OPT_CTX.get_opt_stat_manager()->check_opt_stat_validity(*(OPT_CTX.get_exec_ctx()), session_info->get_effective_tenant_id(), ref_table_id, part_id, is_opt_stat_valid))) { LOG_WARN("failed to get stat version", K(ret)); } else if (!is_opt_stat_valid) { //do nothing } else if (OB_FAIL(global_part_ids.push_back(part_id))) { LOG_WARN("failed to push back part id", K(ret)); } else if (OB_FAIL(table_schema.get_subpart_ids(part_id, subpart_ids))) { LOG_WARN("failed to get subpart ids", K(ret)); } else { total_subpart_cnt += subpart_ids.count(); } } } if (OB_SUCC(ret)) { if (!is_opt_stat_valid || (total_subpart_cnt == table_schema.get_all_part_num() && is_global_stat_valid)) { global_part_ids.reset(); if (!is_global_stat_valid) { //do nothing } else if (OB_FAIL(global_part_ids.push_back(global_part_id))) { LOG_WARN("failed to push back global partition id", K(ret)); } else { can_use = true; scale_ratio = ObOptSelectivity::revise_between_0_1(1.0 * all_used_parts.count() / table_schema.get_all_part_num()); } } else { can_use = true; scale_ratio = ObOptSelectivity::revise_between_0_1(1.0 * all_used_parts.count() / total_subpart_cnt); } } } LOG_TRACE("succeed to check can use global stat instead", K(all_used_parts), K(all_used_tablets), K(can_use), K(global_part_ids), K(scale_ratio)); return ret; } int ObJoinOrder::is_valid_range_expr_for_oracle_agent_table(const ObRawExpr *range_expr, bool &is_valid) { int ret = OB_SUCCESS; is_valid = false; bool is_stack_overflow = false; if (OB_FAIL(check_stack_overflow(is_stack_overflow))) { LOG_WARN("failed to do stack overflow check", K(ret)); } else if (is_stack_overflow) { ret = OB_SIZE_OVERFLOW; LOG_WARN("stack overflow", K(ret)); } else if (OB_NOT_NULL(range_expr) && range_expr->is_op_expr()) { const ObOpRawExpr *expr = static_cast(range_expr); if (IS_BASIC_CMP_OP(expr->get_expr_type()) && T_OP_EQ == expr->get_expr_type()) { is_valid = true; } else if (T_OP_IS == expr->get_expr_type() || T_OP_IN == expr->get_expr_type()) { is_valid = true; } else if (T_OP_AND == expr->get_expr_type()) { is_valid = true; for (int64_t i = 0; OB_SUCC(ret) && is_valid && i < expr->get_param_count(); ++i) { if (OB_FAIL(is_valid_range_expr_for_oracle_agent_table(expr->get_param_expr(i), is_valid))) { LOG_WARN("failed to check expr", K(ret)); } } } else if (T_OP_OR == expr->get_expr_type()) { is_valid = true; for (int64_t i = 0; OB_SUCC(ret) && is_valid && i < expr->get_param_count(); ++i) { if (OB_NOT_NULL(expr->get_param_expr(i)) && (T_OP_AND == expr->get_param_expr(i)->get_expr_type() || T_OP_OR == expr->get_param_expr(i)->get_expr_type() || expr->get_param_expr(i)->get_expr_type() != expr->get_param_expr(0)->get_expr_type())) { is_valid = false; LOG_TRACE("invalid expr type for oracle agent table range", K(expr->get_param_expr(i)->get_expr_type()), K(expr->get_param_expr(0)->get_expr_type())); } else if (OB_FAIL(is_valid_range_expr_for_oracle_agent_table(expr->get_param_expr(i), is_valid))) { LOG_WARN("failed to check expr", K(ret)); } } } else { LOG_TRACE("invalid expr type for oracle agent table range", K(expr->get_expr_type())); } } return ret; } int ObJoinOrder::extract_valid_range_expr_for_oracle_agent_table(const ObIArray &filters, ObIArray &new_filters) { int ret = OB_SUCCESS; for (int64_t i = 0; OB_SUCC(ret) && i < filters.count(); ++i) { bool is_valid_expr = false; if (OB_FAIL(is_valid_range_expr_for_oracle_agent_table(filters.at(i), is_valid_expr))) { LOG_WARN("failed to check range expr", K(ret)); } else if (!is_valid_expr) { // skip } else if (OB_FAIL(new_filters.push_back(filters.at(i)))) { LOG_WARN("failed to push back filter exprs", K(ret)); } } return ret; } static uint64_t virtual_table_index_scan_white_list[2]{ OB_ALL_VIRTUAL_ASH_ALL_VIRTUAL_ASH_I1_TID, OB_ALL_VIRTUAL_ASH_ORA_ALL_VIRTUAL_ASH_I1_TID}; bool ObJoinOrder::virtual_table_index_can_range_scan(uint64_t table_id) { bool bret = false; for (int i = 0; i < sizeof(virtual_table_index_scan_white_list); i++) { if (table_id == virtual_table_index_scan_white_list[i]) { bret = true; break; } } return bret; } int ValuesTablePath::assign(const ValuesTablePath &other, common::ObIAllocator *allocator) { int ret = OB_SUCCESS; if (OB_FAIL(Path::assign(other, allocator))) { LOG_WARN("failed to assgin", K(ret)); } else { table_id_ = other.table_id_; } return ret; } int ValuesTablePath::estimate_cost() { int ret = OB_SUCCESS; if (OB_ISNULL(parent_) || OB_ISNULL(parent_->get_plan())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(parent_), K(ret)); } else { ObOptimizerContext &opt_ctx = parent_->get_plan()->get_optimizer_context(); cost_ = ObOptEstCost::cost_get_rows(get_path_output_rows(), opt_ctx); op_cost_ = cost_; } return ret; } int ObJoinOrder::generate_values_table_paths() { int ret = OB_SUCCESS; ValuesTablePath *values_path = NULL; const ObDMLStmt *stmt = NULL; TableItem *table_item = NULL; if (OB_ISNULL(get_plan()) || OB_ISNULL(stmt = get_plan()->get_stmt()) || OB_ISNULL(allocator_)) { ret = OB_INVALID_ARGUMENT; LOG_WARN("get unexpected null", K(get_plan()), K(stmt), K(allocator_), K(ret)); } else if (OB_ISNULL(table_item = stmt->get_table_item_by_id(table_id_)) || OB_UNLIKELY(!table_item->is_values_table() || stmt->get_column_size(table_id_) == 0 || table_item->table_values_.empty() || table_item->table_values_.count() % stmt->get_column_size(table_id_) != 0)) { ret = OB_ERR_UNEXPECTED; LOG_WARN("get unexpected null", K(table_id_), KPC(stmt), K(ret)); } else if (OB_ISNULL(values_path = reinterpret_cast( allocator_->alloc(sizeof(ValuesTablePath))))) { ret = OB_ALLOCATE_MEMORY_FAILED; LOG_WARN("failed to allocate values path", K(ret)); } else { values_path = new(values_path) ValuesTablePath(); values_path->table_id_ = table_id_; values_path->parent_ = this; ObSEArray nl_params; output_rows_ = table_item->table_values_.count() / stmt->get_column_size(table_id_); values_path->strong_sharding_ = get_plan()->get_optimizer_context().get_match_all_sharding(); if (OB_FAIL(values_path->set_parallel_and_server_info_for_match_all())) { LOG_WARN("failed set parallel and server info for match all", K(ret)); } else if (OB_FAIL(append(values_path->filter_, get_restrict_infos()))) { LOG_WARN("failed to append filter", K(ret)); } else if (OB_FAIL(ObOptEstCost::estimate_width_for_table(get_plan()->get_basic_table_metas(), get_plan()->get_selectivity_ctx(), stmt->get_column_items(), table_id_, output_row_size_))) { LOG_WARN("estimate width of row failed", K(table_id_), K(ret)); } else if (OB_FAIL(param_values_table_expr(table_item->table_values_, nl_params, values_path->subquery_exprs_))) { LOG_WARN("failed to extract param for values table expr", K(ret)); } else if (OB_FAIL(values_path->nl_params_.assign(nl_params))) { LOG_WARN("failed to assign nl params", K(ret)); } else if (OB_FAIL(values_path->estimate_cost())) { LOG_WARN("failed to estimate cost", K(ret)); } else if (OB_FAIL(values_path->compute_pipeline_info())) { LOG_WARN("failed to compute pipelined path", K(ret)); } else if (OB_FAIL(add_path(values_path))) { LOG_WARN("failed to add path", K(ret)); } else { /*do nothing*/ } } return ret; } int ObJoinOrder::param_values_table_expr(ObIArray &values_vector, ObIArray &nl_params, ObIArray &subquery_exprs) { int ret = OB_SUCCESS; const ObDMLStmt *stmt = NULL; ObLogPlan *plan = get_plan(); for (int64_t i = 0; OB_SUCC(ret) && i < values_vector.count(); ++i) { ObSEArray old_values_exprs; ObSEArray new_values_exprs; ObSEArray tmp_nl_params; if (OB_ISNULL(plan = get_plan()) || OB_ISNULL(stmt = plan->get_stmt())) { ret = OB_INVALID_ARGUMENT; LOG_WARN("NULL pointer error", K(plan), K(ret)); } else if (OB_FAIL(old_values_exprs.push_back(values_vector.at(i)))) { LOG_WARN("failed to push back function table expr", K(ret)); } else if (OB_FAIL(extract_params_for_inner_path(values_vector.at(i)->get_relation_ids(), tmp_nl_params, subquery_exprs, old_values_exprs, new_values_exprs))) { LOG_WARN("failed to extract params", K(ret)); } else if (OB_UNLIKELY(new_values_exprs.count() != 1) || OB_ISNULL(new_values_exprs.at(0))) { ret = OB_ERR_UNEXPECTED; LOG_WARN("new values table expr is invalid", K(ret), K(new_values_exprs)); } else if (OB_FAIL(append(nl_params, tmp_nl_params))) { LOG_WARN("failed to append", K(ret)); } else { values_vector.at(i) = new_values_exprs.at(0); } } return ret; }