/** * Copyright (c) 2021 OceanBase * OceanBase CE is licensed under Mulan PubL v2. * You can use this software according to the terms and conditions of the Mulan PubL v2. * You may obtain a copy of Mulan PubL v2 at: * http://license.coscl.org.cn/MulanPubL-2.0 * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * See the Mulan PubL v2 for more details. */ #include #include "ob_concurrent_seq_queue.h" #include "share/ob_define.h" #include "lib/time/ob_time_utility.h" #include "lib/atomic/ob_atomic.h" namespace oceanbase { namespace common { class TestConSeqQueue : public ::testing::Test { public: static const int64_t RUN_TIME = 1L * 60L * 60L * 1000L * 1000L; static const int64_t THREAD_NUM = 20; static const int64_t STAT_INTERVAL = 5 * 1000 * 1000; public: TestConSeqQueue() {} ~TestConSeqQueue() {} virtual void SetUp() { ASSERT_EQ(0, queue_.init(1024)); produce_seq_ = 0; consume_seq_ = 0; consume_thread_counter_ = 0; consume_task_count_ = 0; last_stat_time_ = 0; last_consume_task_count_ = 0; stop_flag_ = false; } virtual void TearDown() { queue_.destroy(); } static void *produce_thread_func(void *args); static void *consume_thread_func(void *args); void run_produce(); void run_consume(); public: pthread_t produce_threads_[THREAD_NUM]; pthread_t consume_threads_[THREAD_NUM]; int64_t consume_thread_counter_; ObConcurrentSeqQueue queue_; int64_t produce_seq_ CACHE_ALIGNED; int64_t consume_seq_ CACHE_ALIGNED; int64_t consume_task_count_ CACHE_ALIGNED; int64_t last_consume_task_count_ CACHE_ALIGNED; int64_t last_stat_time_ CACHE_ALIGNED; volatile bool stop_flag_ CACHE_ALIGNED; }; TEST_F(TestConSeqQueue, basic) { ObConcurrentSeqQueue queue; void *data = 0; EXPECT_EQ(0, queue.init(1024)); EXPECT_EQ(0, queue.push((void*)0, 0, 0)); EXPECT_EQ(0, queue.push((void*)1, 1, 0)); EXPECT_EQ(0, queue.push((void*)2, 2, 0)); EXPECT_EQ(0, queue.pop(data, 0, 0)); EXPECT_EQ(0, (int64_t)data); EXPECT_EQ(0, queue.pop(data, 1, 0)); EXPECT_EQ(1, (int64_t)data); EXPECT_EQ(0, queue.pop(data, 2, 0)); EXPECT_EQ(2, (int64_t)data); // Failed to push and pop elements with the same serial number again EXPECT_NE(0, queue.push((void*)0, 0, 0)); EXPECT_NE(0, queue.push((void*)1, 1, 0)); EXPECT_NE(0, queue.push((void*)2, 2, 0)); EXPECT_NE(0, queue.pop(data, 0, 0)); EXPECT_NE(0, queue.pop(data, 1, 0)); EXPECT_NE(0, queue.pop(data, 2, 0)); } void *TestConSeqQueue::produce_thread_func(void *args) { if (NULL != args) { ((TestConSeqQueue *)args)->run_produce(); } return NULL; } void TestConSeqQueue::run_produce() { int ret = OB_SUCCESS; int64_t batch_count = 1000; while (OB_SUCCESS == ret && ! stop_flag_) { for (int64_t index = 0; OB_SUCCESS == ret && index < batch_count; index++) { int64_t seq = ATOMIC_FAA(&produce_seq_, 1); while (! stop_flag_ && OB_TIMEOUT == (ret = queue_.push((void*)seq, seq, 1 * 1000 * 1000))); if (! stop_flag_) { EXPECT_EQ(OB_SUCCESS, ret); } } } } void *TestConSeqQueue::consume_thread_func(void *args) { if (NULL != args) { ((TestConSeqQueue *)args)->run_consume(); } return NULL; } void TestConSeqQueue::run_consume() { int ret = OB_SUCCESS; int64_t batch_count = 1000; int64_t end_time = ObTimeUtility::current_time(); int64_t thread_index = ATOMIC_FAA(&consume_thread_counter_, 0); while (OB_SUCCESS == ret && !stop_flag_) { for (int64_t index = 0; OB_SUCCESS == ret && index < batch_count; index++) { int64_t seq = ATOMIC_FAA(&consume_seq_, 1); void *data = NULL; while (! stop_flag_ && OB_TIMEOUT == (ret = queue_.pop(data, seq, 1 * 1000 * 1000))); if (! stop_flag_) { EXPECT_EQ(OB_SUCCESS, ret); EXPECT_EQ(seq, (int64_t)data); ATOMIC_INC(&consume_task_count_); } } int64_t cur_time = ObTimeUtility::current_time(); if (OB_UNLIKELY(0 == thread_index) && cur_time - last_stat_time_ > STAT_INTERVAL) { int64_t task_count = ATOMIC_LOAD(&consume_task_count_); int64_t consume_seq = ATOMIC_LOAD(&consume_seq_); int64_t produce_seq = ATOMIC_LOAD(&produce_seq_); if (0 != last_stat_time_) { int64_t delta_task_count = task_count - last_consume_task_count_; int64_t delta_time_sec = (cur_time - last_stat_time_)/1000000; LIB_LOG(INFO, "STAT", "POP_TPS", delta_task_count/delta_time_sec, K(delta_task_count), K(consume_seq), K(produce_seq), K(INT32_MAX)); } last_stat_time_ = cur_time; last_consume_task_count_ = task_count; } if (end_time - cur_time <= 0) { stop_flag_ = true; } } } TEST_F(TestConSeqQueue, thread) { for (int64_t index = 0; index < THREAD_NUM; index++) { ASSERT_EQ(0, pthread_create(produce_threads_ + index, NULL, produce_thread_func, this)); } for (int64_t index = 0; index < THREAD_NUM; index++) { ASSERT_EQ(0, pthread_create(consume_threads_ + index, NULL, consume_thread_func, this)); } for (int64_t index = 0; index < THREAD_NUM; index++) { pthread_join(produce_threads_[index], NULL); produce_threads_[index] = 0; } for (int64_t index = 0; index < THREAD_NUM; index++) { pthread_join(consume_threads_[index], NULL); consume_threads_[index] = 0; } } } } int main(int argc, char **argv) { oceanbase::common::ObLogger::get_logger().set_log_level("INFO"); OB_LOGGER.set_log_level("INFO"); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }