#!/bin/env python __author__ = 'dongyun.zdy' import math import numpy as np from scipy.optimize import leastsq from scipy.optimize import curve_fit import sys from lmfit import Model import getopt def get_row_size(col): size = 16 size += col * (3 + 8 + 4 + 8 + 16 + 32 + 64 + 128) size += col return size def round_wasted_spave(rsize, psize): nr = math.floor(float(psize / rsize)) waste = psize - nr * rsize return rsize + waste / nr def get_miss_prob(Nrow, Ncol, Turn): total_size = Nrow * get_row_size(Ncol) TLBcovered = Turn if TLBcovered >= 0.9 * total_size: hit = 0.9 else: hit = TLBcovered / total_size return 1 - hit def sort_model_form(args, Tmiss, Turn ): ( Nrow, Ncol, ) = args total_cost = 0 total_cost += Nrow * Tmiss * Ncol * get_miss_prob(Nrow, Ncol, Turn) return total_cost def sort_model_arr(arg_sets, Tmiss, Turn, ): res = [] for single_arg_set in arg_sets: res.append(sort_model_form(single_arg_set, Tmiss, Turn, )) return np.array(res) sort_model = Model(sort_model_arr) sort_model.set_param_hint("Tmiss", min=0.0) sort_model.set_param_hint("Turn", min=2097152.0, max=2097153.0) # sort_model.set_param_hint("Tmiss_K2", min=0.0) def extract_info_from_line(line): splited = line.split(",") line_info = [] for item in splited: line_info.append(float(item)) return line_info if __name__ == '__main__': file_name = "miss.prep.1" out_file_name = "miss.model" # sys.argv.extend("-i sort.prep.bigint -o sort.model".split(" ")) output_fit_res = False wrong_arg = False opts,args = getopt.getopt(sys.argv[1:],"i:o:R:C:") for op, value in opts: if "-i" == op: file_name = value elif "-o" == op: output_fit_res = True out_file_name = value elif "-R" == op: MATERIAL_ROW_ONCE = float(value) elif "-C" == op: MATERIAL_ROW_COL = float(value) else: wrong_arg = True if wrong_arg: print "wrong arg" sys.exit(1) file = open(file_name, "r") arg_sets = [] times = [] case_params = [] for line in file: if line.startswith('#'): continue case_param = extract_info_from_line(line) case_params.append(case_param) arg_sets.append((case_param[0], case_param[1])) times.append(case_param[3]) file.close() arg_sets_np = np.array(arg_sets) times_np = np.array(times) #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0 result = sort_model.fit(times_np, arg_sets=arg_sets_np, Tmiss=1.0, Turn=2097152, ) Tmiss = result.best_values["Tmiss"] Turn = result.best_values["Turn"] res_line = str(Tmiss) + "," res_line += str(Turn) # res_line += str(result.best_values["Tmiss_K2"]) print result.fit_report() if output_fit_res: out_file = open(out_file_name, "w") out_file.write(res_line) out_file.close() for i, args in enumerate(arg_sets): cost = sort_model_form(args, Tmiss, Turn) time = times[i] print "\t".join([str(args), str(time), str(cost)])