#!/bin/env python __author__ = 'dongyun.zdy' import math import numpy as np from scipy.optimize import leastsq from scipy.optimize import curve_fit import sys from lmfit import Model import getopt def nl_model_form(args, Tstartup, #Tqual, Tres, Tfail, Tleft_row, Tright_row ): ( Nrow_res, Nrow_left, Nrow_right, Nright_cache_in, Nright_cache_out, Nright_cache_clear, Nequal_cond ) = args total_cost = Tstartup total_cost += Nrow_res * Tres #total_cost += Nequal_cond * Tqual total_cost += (Nequal_cond - Nrow_res) * Tfail total_cost += Nrow_left * Tleft_row total_cost += Nrow_right * Tright_row return total_cost eval_count = 0 def nl_model_arr(arg_sets, Tstartup, #Tqual, Tres, Tfail, Tleft_row, Tright_row ): res = [nl_model_form(single_arg_set, Tstartup, #Tqual, Tres, Tfail, Tleft_row, Tright_row ) for single_arg_set in arg_sets] global eval_count eval_count += 1 return np.array(res) nl_model = Model(nl_model_arr) nl_model.set_param_hint("Tstartup", min=0.0, max = 50) #nl_model.set_param_hint("Tqual", min=0.0) nl_model.set_param_hint("Tres", min=0.0) nl_model.set_param_hint("Tfail", min=0.0) nl_model.set_param_hint("Tleft_row", min=0.0) nl_model.set_param_hint("Tright_row", min=0.0) def extract_info_from_line(line): splited = line.split(",") line_info = [] for item in splited: line_info.append(float(item)) return line_info if __name__ == '__main__': file_name = "scan_model.res.formal.prep" out_file_name = "scan_model.fit" sys.argv.extend("-i nl.prep -o nl.model".split(" ")) output_fit_res = False wrong_arg = False opts,args = getopt.getopt(sys.argv[1:],"i:o:") for op, value in opts: if "-i" == op: file_name = value elif "-o" == op: output_fit_res = True out_file_name = value else: wrong_arg = True if wrong_arg: print "wrong arg" sys.exit(1) file = open(file_name, "r") arg_sets = [] times = [] case_params = [] for line in file: case_param = extract_info_from_line(line) case_params.append(case_param) arg_sets.append((case_param[6], #Nrow_res case_param[0], #Nrow_left case_param[1], #Nrow_right case_param[-3], #Nright_cache_in case_param[-2], #Nright_cache_out case_param[-1], #Nright_cache_clear case_param[8] #Nequal_cond )) times.append(case_param[7]) file.close() arg_sets_np = np.array(arg_sets) times_np = np.array(times) #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0 result = nl_model.fit(times_np, arg_sets=arg_sets_np, Tstartup=50.0, #Tqual=0.1, Tres=0.3, Tfail=0.3, Tleft_row=0.3, Tright_row=0.3 ) res_line = str(result.best_values["Tstartup"]) + "," #res_line += str(result.best_values["Tqual"]) + "," res_line += str(result.best_values["Tres"]) + "," res_line += str(result.best_values["Tfail"]) + "," res_line += str(result.best_values["Tleft_row"]) + "," res_line += str(result.best_values["Tright_row"]) print result.fit_report() if output_fit_res: out_file = open(out_file_name, "w") out_file.write(res_line) out_file.close()