#!/bin/env python __author__ = 'dongyun.zdy' import math import numpy as np from scipy.optimize import leastsq from scipy.optimize import curve_fit import sys from lmfit import Model import getopt def io_model_form(args, # Trow_once, # Trow_col, Tio_row, # Tio_col_desc, Tio_row_col_desc, ): ( Nrow, Ncol, ) = args # # total_cost = Tstartup # total_cost += Nrow * (Trow_once + Ncol * Trow_col) io_cost = Nrow * Tio_row # io_cost -= Ncol * Tio_col_desc io_cost -= Nrow * Ncol * Tio_row_col_desc if io_cost < 0: io_cost = 0 total_cost = io_cost return total_cost def io_model_arr(arg_sets, # Tstartup, # Trow_once, # Trow_col, Tio_row, # Tio_col_desc, Tio_row_col_desc ): res = [] for single_arg_set in arg_sets: res.append(io_model_form(single_arg_set, # Tstartup, # Trow_once, # Trow_col, Tio_row, # Tio_col_desc, Tio_row_col_desc )) return np.array(res) io_model = Model(io_model_arr) # io_model.set_param_hint("Tstartup", min=0.0) # io_model.set_param_hint("Trow_once", min=0.0) # io_model.set_param_hint("Trow_col", min=0.0) io_model.set_param_hint("Tio_row", min=0.0) # io_model.set_param_hint("Tio_col_desc", min=0.0) io_model.set_param_hint("Tio_row_col_desc", min=0.0, max=0.07) def extract_info_from_line(line): splited = line.split(",") line_info = [] for item in splited: line_info.append(float(item)) return line_info if __name__ == '__main__': file_name = "scan_model.res.formal.prep" out_file_name = "scan_model.fit" model_file = None # sys.argv.extend("-i scan.W.small.prep -o scan.io.fit".split(" ")) output_fit_res = False wrong_arg = False opts,args = getopt.getopt(sys.argv[1:],"i:o:m:") for op, value in opts: if "-i" == op: file_name = value elif "-o" == op: output_fit_res = True out_file_name = value elif "-m" == op: model_file = value else: wrong_arg = True if wrong_arg: print "wrong arg" sys.exit(1) file = open(file_name, "r") arg_sets = [] times = [] case_params = [] for line in file: if line.startswith('#'): continue case_param = extract_info_from_line(line) case_params.append(case_param) arg_sets.append((case_param[0], case_param[1])) times.append(case_param[6]) file.close() arg_sets_np = np.array(arg_sets) times_np = np.array(times) #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0 result = io_model.fit(times_np, arg_sets=arg_sets_np, # Tstartup=10.0, # Trow_once=10.0, # Trow_col=1.0, Tio_row=1.0, # Tio_col_desc=1.0, Tio_row_col_desc=1.0 ) # Tstartup = result.best_values["Tstartup"] # Trow_once = result.best_values["Trow_once"] # Trow_col = result.best_values["Trow_col"] Tio_row = result.best_values["Tio_row"] # Tio_col_desc = result.best_values["Tio_col_desc"] Tio_row_col_desc = result.best_values["Tio_row_col_desc"] print result.fit_report() fit_res = io_model_arr(arg_sets_np, # Tstartup, # Trow_once, # Trow_col, Tio_row, # Tio_col_desc, Tio_row_col_desc ) if output_fit_res: out_file = open(out_file_name, "w") for i in xrange(len(arg_sets_np)): a = list(arg_sets_np[i]) b = [times_np[i]] c = [fit_res[i]] d = [(fit_res[i] - times_np[i]) * 100 / times_np[i]] out_file.write(','.join([str(i) for i in a + b + c + d]) + "\n") out_file.close() if model_file is not None: mf = open(model_file, 'w') mf.write(','.join([str(i) for i in [ # Tstartup, # Trow_once, # Trow_col, Tio_row, # Tio_col_desc, Tio_row_col_desc ]])) mf.close()