#!/bin/env python __author__ = 'dongyun.zdy' import math import numpy as np from scipy.optimize import leastsq from scipy.optimize import curve_fit import sys from lmfit import Model import getopt def material_model_form(args, # Tstartup, Trow_once, Trow_col): ( Nrow, Ncol, ) = args total_cost = 0 #Tstartup total_cost += Nrow * (Trow_once + Ncol * Trow_col) return total_cost def material_model_arr(arg_sets, # Tstartup, Trow_once, Trow_col): res = [] for single_arg_set in arg_sets: res.append(material_model_form(single_arg_set, # Tstartup, Trow_once, Trow_col)) return np.array(res) material_model = Model(material_model_arr) # material_model.set_param_hint("Tstartup", min=0.0) material_model.set_param_hint("Trow_once", min=0.0) material_model.set_param_hint("Trow_col", min=0.0) def extract_info_from_line(line): splited = line.split(",") line_info = [] for item in splited: line_info.append(float(item)) return line_info if __name__ == '__main__': file_name = "scan_model.res.formal.prep" out_file_name = "scan_model.fit" # sys.argv.extend("-i rowstore.prepare.bigint -o rowstore.model".split(" ")) output_fit_res = False wrong_arg = False opts,args = getopt.getopt(sys.argv[1:],"i:o:") for op, value in opts: if "-i" == op: file_name = value elif "-o" == op: output_fit_res = True out_file_name = value else: wrong_arg = True if wrong_arg: print "wrong arg" sys.exit(1) file = open(file_name, "r") arg_sets = [] times = [] case_params = [] for line in file: if line.startswith('#'): continue case_param = extract_info_from_line(line) case_params.append(case_param) arg_sets.append((case_param[0], case_param[1])) times.append(case_param[3]) file.close() arg_sets_np = np.array(arg_sets) times_np = np.array(times) #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0 result = material_model.fit(times_np, arg_sets=arg_sets_np, # Tstartup=10.0, Trow_once=10.0, Trow_col=1.0 ) # res_line = str(result.best_values["Tstartup"]) + "," res_line = str(result.best_values["Trow_once"]) + "," res_line += str(result.best_values["Trow_col"]) print result.fit_report() if output_fit_res: out_file = open(out_file_name, "w") out_file.write(res_line) out_file.close()