Files
oceanbase/deps/oblib/unittest/common/test_smart_call.cpp

221 lines
6.3 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <gtest/gtest.h>
#include "common/ob_smart_call.h"
#include "lib/utility/ob_hang_fatal_error.h"
using namespace std;
namespace oceanbase
{
namespace common
{
#define TEST_SMART_CALL(func, addr) \
({ \
int ret = OB_SUCCESS; \
std::function<int()> f = [&]() { \
int ret = OB_SUCCESS; \
try { \
in_try_stmt = true; \
ret = func; \
in_try_stmt = false; \
} catch (OB_BASE_EXCEPTION &except) { \
ret = except.get_errno(); \
in_try_stmt = false; \
} \
return ret; \
}; \
int(*func_) (void*) = [](void *arg) { return (*(decltype(f)*)(arg))(); };\
void * arg_ = &f; \
ret = jump_call(arg_, func_, addr); \
ret; \
})
int dec(int &i)
{
if (i <= 0) {
return OB_SUCCESS;
} else {
return dec(--i);
}
}
TEST(sc, usability)
{
int ret = OB_SUCCESS;
static constexpr int stack_size = 1024 * 1024 * 2;
char stack1[stack_size];
char stack2[stack_size];
// global function
{
int i = 10;
ret = TEST_SMART_CALL(dec(i), (char *)stack1 + stack_size);
EXPECT_EQ(ret, OB_SUCCESS);
EXPECT_EQ(i, 0);
}
// member function
{
class Foo {
public:
int dec() {
if (i_ <= 0) {
return OB_SUCCESS;
} else {
--i_;
return SMART_CALL(dec());
}
}
int i_ = 10;
};
Foo foo;
EXPECT_EQ(OB_SUCCESS, SMART_CALL(foo.dec()));
EXPECT_EQ(foo.i_, 0);
}
// lambda && error code
EXPECT_EQ(OB_ERR_UNEXPECTED, SMART_CALL([]() { return OB_ERR_UNEXPECTED;}()));
// nested SMART_CALL
{
std::function<int(int &)> nested_dec = [&](int &i) {
int ret = OB_SUCCESS;
int backup = i;
ret = dec(i);
i = backup;
ret = TEST_SMART_CALL(dec(i), (char *)stack2 + stack_size);
return ret;
};
int i = 10;
ret = TEST_SMART_CALL(nested_dec(i), (char *)stack1 + stack_size);
EXPECT_EQ(ret, OB_SUCCESS);
EXPECT_EQ(i, 0);
}
}
void *cur_stack_addr = nullptr;
size_t cur_stack_size = 0;
int stack_change_cnt = 0;
#define STACK_PER_EXTEND_SIZE STACK_PER_EXTEND
const int64_t s_size = STACK_PER_EXTEND_SIZE;
int test(int &i, int once_invoke_hold)
{
int ret = OB_SUCCESS;
void *stack_addr = nullptr;
size_t stack_size = 0;
get_stackattr(stack_addr, stack_size);
if (stack_addr != cur_stack_addr) {
if (stack_size != STACK_PER_EXTEND_SIZE) {
ret = OB_ERR_UNEXPECTED;
} else {
char tmp = '\0';
bool is_overflow = false;
if (&tmp < (char*)stack_addr || &tmp > (char*)stack_addr + stack_size) {
ret = OB_ERR_UNEXPECTED;
} else if (OB_FAIL(check_stack_overflow(is_overflow))) {
} else if (is_overflow) {
ret = OB_ERR_UNEXPECTED;
} else {
stack_change_cnt += 1;
cur_stack_addr = stack_addr;
cur_stack_size = stack_size;
}
}
}
if (OB_SUCC(ret)) {
if (i <= 0) {
ret = OB_SUCCESS;
} else {
char buf[once_invoke_hold];
memset(buf, reinterpret_cast<std::uintptr_t>(&buf[0]) & 0xFF, once_invoke_hold); // disable compiler optimize out
ret = SMART_CALL(test(--i, once_invoke_hold));
void *stack_addr_after = nullptr;
size_t stack_size_after = 0;
get_stackattr(stack_addr_after, stack_size_after);
if (stack_addr_after != stack_addr || stack_size_after != stack_size) {
ret = OB_ERR_UNEXPECTED;
}
}
}
return ret;
}
void *run(void *)
{
int ret = OB_SUCCESS;
// half, single, double
for (int k = 0; k < 3; k++)
{
int i = s_size/STACK_RESERVED_SIZE * 0.5 * (1<<k);
size_t stack_size = 0;
get_stackattr(cur_stack_addr, stack_size);
stack_change_cnt = 0;
ret = test(i, STACK_RESERVED_SIZE);
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(0, i);
EXPECT_EQ(stack_change_cnt, k);
}
// total size overflow
{
int i = ALL_STACK_LIMIT / STACK_RESERVED_SIZE;
size_t stack_size = 0;
get_stackattr(cur_stack_addr, stack_size);
stack_change_cnt = 0;
ret = test(i, STACK_RESERVED_SIZE);
EXPECT_EQ(OB_SIZE_OVERFLOW, ret);
EXPECT_EQ(1 + stack_change_cnt, 1 + (ALL_STACK_LIMIT - stack_size)/STACK_PER_EXTEND_SIZE);
}
void *stack_addr= nullptr;
size_t stack_size = 0;
get_stackattr(stack_addr, stack_size);
EXPECT_EQ(all_stack_size, stack_size);
return nullptr;
}
TEST(sc, thread)
{
pthread_t th;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, s_size);
pthread_create(&th, &attr, oceanbase::common::run, nullptr);
pthread_join(th, nullptr);
pthread_attr_destroy(&attr);
}
TEST(sc, coro)
{
global_thread_stack_size = s_size;
class: public lib::Threads
{
void run(int64_t) final
{
oceanbase::common::run(nullptr);
}
} th;
th.start();
th.wait();
}
} // end namespace common
} // end namespace oceanbase
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc,argv);
return RUN_ALL_TESTS();
}