Files
oceanbase/unittest/share/scheduler/test_tenant_dag_scheduler.cpp
wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

2412 lines
87 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <getopt.h>
#include <unistd.h>
#include <gtest/gtest.h>
#define protected public
#define private public
#include "share/scheduler/ob_tenant_dag_scheduler.h"
#include "share/scheduler/ob_worker_obj_pool.h"
#include "lib/atomic/ob_atomic.h"
#include "observer/omt/ob_tenant_node_balancer.h"
#include "share/scheduler/ob_dag_type.h"
int64_t dag_cnt = 1;
int64_t stress_time= 5; // 500ms
char log_level[20] = "INFO";
uint32_t time_slice = 20 * 1000; // 5ms
uint32_t sleep_slice = 2 * time_slice;
const int64_t CHECK_TIMEOUT = 1 * 1000 * 1000;
#define CHECK_EQ_UTIL_TIMEOUT(expected, expr) \
{ \
int64_t start_time = oceanbase::common::ObTimeUtility::current_time(); \
auto expr_result = (expr); \
do { \
if ((expected) == (expr_result)) { \
break; \
} else { \
expr_result = (expr); \
}\
} while(oceanbase::common::ObTimeUtility::current_time() - start_time < CHECK_TIMEOUT); \
EXPECT_EQ((expected), (expr_result)); \
}
namespace oceanbase
{
using namespace common;
using namespace share;
using namespace omt;
namespace unittest
{
static const int64_t SLEEP_SLICE = 100;
class TypeIdTask : public ObITaskNew
{
public:
TypeIdTask() : ObITaskNew(0), cnt_(0), seq_(0) {}
~TypeIdTask() {}
void init(int seq, int cnt)
{
seq_ = seq;
cnt_ = cnt;
}
virtual int generate_next_task(ObITaskNew *&next_task)
{
int ret = OB_SUCCESS;
if (seq_ >= cnt_ - 1) {
ret = OB_ITER_END;
COMMON_LOG(INFO, "generate task end", K_(seq), K_(cnt));
} else {
ObIDagNew *dag = get_dag();
TypeIdTask *ntask = NULL;
if (NULL == dag) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else if (OB_FAIL(dag->alloc_task(ntask))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == ntask) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
ntask->init(seq_ + 1, cnt_);
if (OB_FAIL(ret)) {
dag->free_task(*ntask);
} else {
next_task = ntask;
}
}
}
return ret;
}
virtual int process()
{
::usleep(SLEEP_SLICE);
return OB_SUCCESS;
}
private:
int32_t cnt_;
int32_t seq_;
};
class BasicTask : public ObITaskNew
{
public:
BasicTask() : ObITaskNew(0), basic_id_(0) {}
~BasicTask() {}
int process() { return OB_SUCCESS; }
int basic_id_;
};
class TestAddTask : public ObITaskNew
{
public:
TestAddTask()
: ObITaskNew(0), counter_(NULL),
adder_(), seq_(0), task_cnt_(0), sleep_us_(0)
{}
~TestAddTask() {}
int init(int64_t *counter, int64_t adder, int64_t seq, int64_t task_cnt, int sleep_us = 0)
{
int ret = OB_SUCCESS;
counter_ = counter;
adder_ = adder;
seq_ = seq;
task_cnt_ = task_cnt;
sleep_us_ = sleep_us;
return ret;
}
virtual int generate_next_task(ObITaskNew *&next_task)
{
int ret = OB_SUCCESS;
if (seq_ >= task_cnt_ - 1) {
ret = OB_ITER_END;
COMMON_LOG(INFO, "generate task end", K_(seq), K_(task_cnt));
} else {
ObIDagNew *dag = get_dag();
TestAddTask *ntask = NULL;
if (NULL == dag) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else if (OB_FAIL(dag->alloc_task(ntask))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == ntask) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
if (OB_FAIL(ntask->init(counter_, adder_, seq_ + 1, task_cnt_, sleep_us_))) {
COMMON_LOG(WARN, "failed to init addtask", K(ret));
}
if (OB_FAIL(ret)) {
dag->free_task(*ntask);
} else {
next_task = ntask;
}
}
}
return ret;
}
virtual int process()
{
::usleep(sleep_us_);
(void)ATOMIC_AAF(counter_, adder_);
return OB_SUCCESS;
}
VIRTUAL_TO_STRING_KV(KP_(counter), K_(seq), K_(task_cnt));
private:
int64_t *counter_;
int64_t adder_;
int64_t seq_;
int64_t task_cnt_;
int sleep_us_;
private:
DISALLOW_COPY_AND_ASSIGN(TestAddTask);
};
class TestMulTask : public ObITaskNew
{
public:
TestMulTask()
: ObITaskNew(0), counter_(NULL), sleep_us_(0)
{}
~TestMulTask() {}
int init(int64_t *counter, int sleep_us = 0)
{
int ret = OB_SUCCESS;
counter_ = counter;
sleep_us_ = sleep_us;
return ret;
}
virtual int process() { ::usleep(sleep_us_); *counter_ = *counter_ * 2; return OB_SUCCESS;}
VIRTUAL_TO_STRING_KV(KP_(counter));
private:
int64_t *counter_;
int sleep_us_;
private:
DISALLOW_COPY_AND_ASSIGN(TestMulTask);
};
class AtomicOperator
{
public:
AtomicOperator() : v_(0) {}
AtomicOperator(int64_t v) : v_(v) {}
void inc()
{
lib::ObMutexGuard guard(lock_);
++v_;
}
void mul(int64_t m)
{
lib::ObMutexGuard guard(lock_);
v_ *= m;
}
int64_t value()
{
return v_;
}
void reset()
{
v_ = 0;
}
private:
lib::ObMutex lock_;
int64_t v_;
};
class AtomicMulTask : public ObITaskNew
{
public:
AtomicMulTask() :
ObITaskNew(0), seq_(0), cnt_(0), error_seq_(-1), op_(NULL), sleep_us_(0)
{}
int init(int64_t seq, int64_t cnt, AtomicOperator &op, int sleep_us = 0, int64_t error_seq = -1)
{
seq_ = seq;
cnt_ = cnt;
error_seq_ = error_seq;
op_ = &op;
sleep_us_ = sleep_us;
return OB_SUCCESS;
}
virtual int generate_next_task(ObITaskNew *&task)
{
int ret = OB_SUCCESS;
ObIDagNew *dag = NULL;
AtomicMulTask *ntask = NULL;
if (seq_ >= cnt_) {
return OB_ITER_END;
} else if (OB_ISNULL(dag = get_dag())) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is NULL", K(ret));
} else if (OB_FAIL(dag->alloc_task(ntask))){
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (OB_ISNULL(ntask)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "ntask is NULL", K(ret));
} else {
COMMON_LOG(INFO, "a task is generated", K(seq_));
ntask->init(seq_ + 1, cnt_, *op_, sleep_us_, error_seq_);
task = ntask;
}
return ret;
}
virtual int process()
{
int ret = OB_SUCCESS;
int64_t cnt = sleep_us_ / SLEEP_SLICE;
for (int64_t i = 0; i < cnt; ++i) {
yield();
::usleep(SLEEP_SLICE);
}
if (seq_ == error_seq_) {
COMMON_LOG(WARN, "process task meet an error", K(seq_), K(error_seq_));
ret = OB_ERR_UNEXPECTED;
} else {
op_->mul(2);
}
return ret;
}
VIRTUAL_TO_STRING_KV("type", "AtomicMul", K(*dag_), K_(seq), K_(cnt), KP_(op), K_(error_seq), K_(sleep_us));
private:
int64_t seq_;
int64_t cnt_;
int64_t error_seq_;
AtomicOperator *op_;
int sleep_us_;
};
class AtomicIncTask : public ObITaskNew
{
public:
AtomicIncTask() :
ObITaskNew(0), seq_(0), cnt_(0), error_seq_(-1), op_(NULL), sleep_us_(0)
{}
int init(int64_t seq, int64_t cnt, AtomicOperator &op, int sleep_us = 0, int64_t error_seq = -1)
{
seq_ = seq;
cnt_ = cnt;
error_seq_ = error_seq;
op_ = &op;
sleep_us_ = sleep_us;
return OB_SUCCESS;
}
virtual int generate_next_task(ObITaskNew *&task)
{
int ret = OB_SUCCESS;
ObIDagNew *dag = NULL;
AtomicIncTask *ntask = NULL;
if (seq_ >= cnt_) {
return OB_ITER_END;
} else if (OB_ISNULL(dag = get_dag())) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is NULL", K(ret));
} else if (OB_FAIL(dag->alloc_task(ntask))){
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (OB_ISNULL(ntask)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "ntask is NULL", K(ret));
} else {
COMMON_LOG(INFO, "a task is generated", K(seq_));
ntask->init(seq_ + 1, cnt_, *op_, sleep_us_, error_seq_);
task = ntask;
}
return ret;
}
virtual int process()
{
int ret = OB_SUCCESS;
int time_slice = 20;
int64_t cnt = sleep_us_ / time_slice;
for (int64_t i = 0; i < cnt; ++i) {
yield();
::usleep(time_slice);
}
if (seq_ == error_seq_) {
COMMON_LOG(WARN, "process task meet an error", K(seq_), K(error_seq_));
return OB_ERR_UNEXPECTED;
} else {
op_->inc();
}
return ret;
}
VIRTUAL_TO_STRING_KV("type", "AtomicInc", K(dag_), K_(seq), K_(cnt), KP_(op), K_(error_seq), K_(sleep_us));
private:
int64_t seq_;
int64_t cnt_;
int64_t error_seq_;
AtomicOperator *op_;
int sleep_us_;
};
template<class T>
int alloc_task(ObIDagNew &dag, T *&task) {
int ret = OB_SUCCESS;
task = NULL;
if (OB_FAIL(dag.alloc_task(task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (OB_ISNULL(task)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is NULL", K(ret));
}
return ret;
}
void wait_scheduler(ObDagSchedulerNew &scheduler) {
while (!scheduler.is_empty()) {
::usleep(1000);
}
}
class BasicDag : public ObIDagNew
{
public:
BasicDag()
: ObIDagNew(0, DAG_PRIO_MAX)
{
ObAddr addr(1683068975, 9999);
if (OB_SUCCESS != (ObSysTaskStatMgr::get_instance().set_self_addr(addr))) {
COMMON_LOG(WARN, "failed to add sys task", K(addr));
}
}
~BasicDag()
{
}
void set_type_id(int type_id) { type_id_ = type_id; }
int64_t hash() const { return murmurhash(&type_id_, sizeof(type_id_), 0); }
int fill_comment(char *buf, const int64_t size) const
{
int ret = OB_SUCCESS;
if (OB_ISNULL(buf) || size < 0) {
COMMON_LOG(INFO, "buf is NULL", K(ret), K(size));
}
return ret;
}
int64_t get_tenant_id() const { return 0 ;}
int64_t get_compat_mode() const override { return static_cast<int64_t>(lib::Worker::CompatMode::MYSQL); }
virtual bool operator == (const ObIDagNew &other) const
{
bool bret = false;
if (get_type_id() == other.get_type_id() && this == &other) {
bret = true;
}
return bret;
}
};
class TestDag : public ObIDagNew
{
public:
TestDag() :
ObIDagNew(0, DAG_PRIO_4), set_id_(0), expect_(-1), expect_ret_(0), running_(false), tester_(NULL) { }
explicit TestDag(int64_t type_id, ObIDagNewPriority prio) :
ObIDagNew(type_id, prio), set_id_(0), expect_(-1), expect_ret_(0), running_(false), tester_(NULL) { }
virtual ~TestDag()
{
if (get_dag_status() == ObIDagNew::DAG_STATUS_FINISH
|| get_dag_status() == ObIDagNew::DAG_STATUS_NODE_FAILED) {
if (running_ && -1 != expect_) {
if (op_.value() != expect_
|| get_dag_ret() != expect_ret_) {
if (OB_ALLOCATE_MEMORY_FAILED != get_dag_ret()) {
if (NULL != tester_) {
tester_->stop();
}
COMMON_LOG(ERROR, "FATAL ERROR!!!", K_(expect), K(op_.value()), K_(expect_ret),
K(get_dag_ret()), K_(id));
common::right_to_die_or_duty_to_live();
}
}
}
}
}
int init(int64_t id, int expect_ret = 0, int64_t expect = -1, lib::ThreadPool *tester = NULL)
{
set_id_ = id;
expect_ret_ = expect_ret;
expect_ = expect;
tester_ = tester;
ObAddr addr(1683068975,9999);
if (OB_SUCCESS != (ObSysTaskStatMgr::get_instance().set_self_addr(addr))) {
COMMON_LOG(WARN, "failed to add sys task", K(addr));
}
return OB_SUCCESS;
}
void set_type_id(int type_id) { type_id_ = type_id; }
virtual int64_t hash() const { return murmurhash(&set_id_, sizeof(set_id_), 0);}
virtual bool operator == (const ObIDagNew &other) const
{
bool bret = false;
if (get_type_id() == other.get_type_id()) {
const TestDag &dag = static_cast<const TestDag &>(other);
bret = set_id_ == dag.set_id_;
}
return bret;
}
int64_t get_set_id() { return set_id_; }
AtomicOperator &get_op() { return op_; }
void set_running() { running_ = true; }
int64_t get_tenant_id() const { return 0 ;}
int fill_comment(char *buf,const int64_t size) const {
int ret = OB_SUCCESS;
if (OB_ISNULL(buf) || size <0) {
COMMON_LOG(INFO,"buf is NULL",K(ret),K(size));
}
return ret;
}
int64_t get_compat_mode() const override { return static_cast<int64_t>(lib::Worker::CompatMode::MYSQL); }
VIRTUAL_TO_STRING_KV(K_(is_inited), K_(type_id), K_(id), K(task_list_.get_size()));
int64_t set_id_;
protected:
int64_t expect_;
int expect_ret_;
AtomicOperator op_;
bool running_;
lib::ThreadPool *tester_;
private:
DISALLOW_COPY_AND_ASSIGN(TestDag);
};
class TestPrepareTask : public ObITaskNew
{
static const int64_t inc_task_cnt = 8;
static const int64_t mul_task_cnt = 6;
public:
TestPrepareTask() : ObITaskNew(0), dag_id_(0), is_error_(false), sleep_us_(0), op_(NULL)
{}
int init(int64_t dag_id, AtomicOperator *op = NULL, bool is_error = false, int sleep_us = 0)
{
int ret = OB_SUCCESS;
dag_id_ = dag_id;
is_error_ = is_error;
sleep_us_ = sleep_us;
if (NULL != op) {
op_ = op;
} else {
TestDag *dag = static_cast<TestDag*>(get_dag());
if (OB_ISNULL(dag)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
op_ = &dag->get_op();
}
}
return OB_SUCCESS;
}
int process()
{
int ret = OB_SUCCESS;
TestDag*dag = static_cast<TestDag*>(get_dag());
AtomicIncTask *inc_task = NULL;
AtomicMulTask *mul_task = NULL;
AtomicMulTask *mul_task1 = NULL;
if (OB_ISNULL(dag)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else if (OB_FAIL(alloc_task(*dag, inc_task))) {
COMMON_LOG(WARN, "failed to alloc inc_task", K(ret));
} else if (OB_FAIL(inc_task->init(1, inc_task_cnt, *op_))) {
} else if (OB_FAIL(alloc_task(*dag, mul_task))){
COMMON_LOG(WARN, "failed to alloc mul task", K(ret));
} else if (OB_FAIL(mul_task->init(1, mul_task_cnt, *op_, 0,
is_error_ ? 1 + (dag_id_ % mul_task_cnt) : -1))){
} else if (OB_FAIL(alloc_task(*dag, mul_task1))){
COMMON_LOG(WARN, "failed to alloc mul task", K(ret));
} else if (OB_FAIL(mul_task1->init(1, mul_task_cnt, *op_))){
} else if (OB_FAIL(mul_task->add_child(*inc_task))) {
COMMON_LOG(WARN, "failed to add child", K(ret));
} else if (OB_FAIL(mul_task1->add_child(*inc_task))) {
COMMON_LOG(WARN, "failed to add child", K(ret));
} else if (OB_FAIL(add_child(*mul_task))) {
COMMON_LOG(WARN, "failed to add child to self", K(ret));
} else if (OB_FAIL(add_child(*mul_task1))) {
COMMON_LOG(WARN, "failed to add child to self", K(ret));
} else if (OB_FAIL(dag->add_task(*inc_task))) {
COMMON_LOG(WARN, "failed to add_task", K(ret));
} else if (OB_FAIL(dag->add_task(*mul_task1))) {
COMMON_LOG(WARN, "failed to add_task", K(ret));
} else if (OB_FAIL(dag->add_task(*mul_task))) {
COMMON_LOG(WARN, "failed to add_task", K(ret));
} else {
dag->set_running();
}
if (sleep_us_ > 0) {
::usleep(sleep_us_);
if (is_error_) {
ret = OB_ERR_UNEXPECTED;
}
}
return ret;
}
private:
int64_t dag_id_;
bool is_error_;
int sleep_us_;
AtomicOperator *op_;
};
class TestCyclePrepare : public ObITaskNew
{
public:
TestCyclePrepare()
: ObITaskNew(0), op_(NULL) {}
int init(AtomicOperator *op = NULL)
{
int ret = OB_SUCCESS;
if (NULL != op) {
op_ = op;
} else {
TestDag *dag = static_cast<TestDag*>(get_dag());
if (OB_ISNULL(dag)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
op_ = &dag->get_op();
}
}
return OB_SUCCESS;
}
int process()
{
int ret = OB_SUCCESS;
TestDag*dag = static_cast<TestDag*>(get_dag());
AtomicIncTask *inc_task = NULL;
AtomicMulTask *mul_task = NULL;
AtomicMulTask *mul_task1 = NULL;
if (OB_ISNULL(dag)) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else if (OB_FAIL(alloc_task(*dag, inc_task))) {
COMMON_LOG(WARN, "failed to alloc inc_task", K(ret));
} else if (OB_FAIL(inc_task->init(1, 5, *op_))) {
} else if (OB_FAIL(alloc_task(*dag, mul_task))){
COMMON_LOG(WARN, "failed to alloc mul task", K(ret));
} else if (OB_FAIL(mul_task->init(1, 5, *op_))){
} else if (OB_FAIL(alloc_task(*dag, mul_task1))){
COMMON_LOG(WARN, "failed to alloc mul task", K(ret));
} else if (OB_FAIL(mul_task1->init(1, 5, *op_))){
} else if (OB_FAIL(mul_task->add_child(*inc_task))) {
COMMON_LOG(WARN, "failed to add child", K(ret));
} else if (OB_FAIL(mul_task1->add_child(*inc_task))) {
COMMON_LOG(WARN, "failed to add child", K(ret));
} else if (OB_FAIL(inc_task->add_child(*mul_task))) {
COMMON_LOG(WARN, "failed to add child", K(ret));
} else if (OB_FAIL(add_child(*mul_task))) {
COMMON_LOG(WARN, "failed to add child to self", K(ret));
} else if (OB_FAIL(add_child(*mul_task1))) {
COMMON_LOG(WARN, "failed to add child to self", K(ret));
} else if (OB_FAIL(dag->add_task(*inc_task))) {
COMMON_LOG(WARN, "failed to add_task", K(ret));
} else if (OB_FAIL(dag->add_task(*mul_task1))) {
COMMON_LOG(WARN, "failed to add_task", K(ret));
} else if (OB_FAIL(dag->add_task(*mul_task))) {
//COMMON_LOG(WARN, "KKKKKK", K(*mul_task), K(*mul_task1), K(*inc_task));
dag->free_task(*mul_task);
//COMMON_LOG(WARN, "failed to add_task", K(ret));
}
return ret;
}
private:
AtomicOperator *op_;
};
// for test_switch_task
class SwitchFromTask : public ObITaskNew
{
public:
SwitchFromTask() : ObITaskNew(0), flag_(NULL) {}
~SwitchFromTask() {}
void init(int *flag) { flag_ = flag; }
int process()
{
int ret = OB_SUCCESS;
while (flag_ && 1 != *flag_) {
yield();
::usleep(SLEEP_SLICE * 3);
}
return ret;
}
private:
int *flag_;
};
// for test_switch_task
class SwitchToTask : public ObITaskNew
{
public:
SwitchToTask() : ObITaskNew(0), flag_(NULL) {}
~SwitchToTask() {}
void init(int *flag) { flag_ = flag; }
int process()
{
int ret = OB_SUCCESS;
if (flag_) {
*flag_ = 1;
}
return ret;
}
private:
int *flag_;
};
class DagSchedulerStressTester : public lib::ThreadPool
{
static const int64_t STRESS_THREAD_NUM = 16;
public:
DagSchedulerStressTester()
: dag_cnt_(0),
test_time_(0),
tenant_id_(0),
max_type_id_(0)
{
}
int init(int64_t test_time)
{
test_time_ = test_time * 1000;
return OB_SUCCESS;
}
int do_stress()
{
int ret = OB_SUCCESS;
set_thread_count(STRESS_THREAD_NUM);
int64_t start_time = ObTimeUtility::current_time();
start();
ObDagSchedulerNew::get_instance().start_run();
wait();
int64_t elapsed_time = ObTimeUtility::current_time() - start_time;
COMMON_LOG(INFO, "stress test finished", K(elapsed_time / 1000));
/* int ret_code = system("grep ERROR test_tenant_dag_scheduler.log -q");
ret_code = WEXITSTATUS(ret_code);
if (ret_code == 0)
ret = OB_ERR_UNEXPECTED;
*/
return ret;
}
void run1()
{
int64_t start_time = ObTimeUtility::current_time();
int ret = OB_SUCCESS;
int tmp_ret = OB_SUCCESS;
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
while (!has_set_stop() && OB_SUCC(ret)
&& (ObTimeUtility::current_time() - start_time < test_time_)) {
const int64_t dag_id = get_dag_id();
TestDag *dag = NULL;
TestPrepareTask *task = NULL;
int expect_ret = (dag_id % 10 == 0 ? OB_ERR_UNEXPECTED : OB_SUCCESS);
int64_t expect_value = (dag_id % 10 == 0 ? 0 : 8);
if (OB_SUCCESS != (tmp_ret = scheduler.alloc_dag(tenant_id_, dag))) {
if (OB_ALLOCATE_MEMORY_FAILED != tmp_ret) {
ret = tmp_ret;
COMMON_LOG(ERROR, "failed to allocate dag", K(ret));
} else {
COMMON_LOG(WARN, "out of memory");
}
} else {
dag->set_priority((ObIDagNew::ObIDagNewPriority)(dag_id % ObIDagNew::DAG_PRIO_MAX));
dag->set_type_id(dag_id % max_type_id_);
}
if (OB_SUCCESS != tmp_ret) {
continue;
}
if (OB_FAIL(dag->init(dag_id, expect_ret, expect_value, this))) {
COMMON_LOG(WARN, "failed to init dag", K(ret));
} else if (OB_SUCCESS != (tmp_ret = alloc_task(*dag, task))) {
COMMON_LOG(WARN, "failed to alloc task", K(tmp_ret));
} else if (OB_FAIL(task->init(dag_id, NULL, expect_ret != OB_SUCCESS))) {
COMMON_LOG(WARN, "failed to init task", K(ret));
} else if (OB_FAIL(dag->add_task(*task))) {
COMMON_LOG(WARN, "failed to add task", K(ret));
} else {
if (OB_SUCCESS != (tmp_ret = scheduler.add_dag_in_tenant(tenant_id_, dag))) {
if (OB_SIZE_OVERFLOW != tmp_ret) {
COMMON_LOG(ERROR, "failed to add dag", K(tmp_ret), K(*dag));
}
scheduler.free_dag(tenant_id_, dag);
} else {
++dag_cnt_;
}
}
}
}
int64_t get_dag_id()
{
return ATOMIC_FAA(&counter_, 1);
}
void set_tenant_id(const int64_t tenant_id) { tenant_id_ = tenant_id; }
void set_max_type_id(const int64_t type_id) { max_type_id_ = type_id; }
int64_t get_dag_cnt() const { return dag_cnt_; }
private:
static int64_t counter_;
int64_t dag_cnt_;
int64_t test_time_;
int64_t tenant_id_;
int64_t max_type_id_;
};
int64_t DagSchedulerStressTester::counter_ = 0;
class TestDagScheduler : public ::testing::Test
{
public:
TestDagScheduler() {}
~TestDagScheduler() {}
void SetUp()
{
ObUnitInfoGetter::ObTenantConfig unit_config;
unit_config.mode_ = lib::Worker::CompatMode::MYSQL;
unit_config.tenant_id_ = 0;
TenantUnits units;
ASSERT_EQ(OB_SUCCESS, units.push_back(unit_config));
//ASSERT_EQ(OB_SUCCESS, ObTenantNodeBalancer::get_instance().load_tenant(units));
}
void TearDown() {}
private:
DISALLOW_COPY_AND_ASSIGN(TestDagScheduler);
};
/*
TEST_F(TestDagScheduler, test_init)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
int64_t schedule_period = 10000;
// invalid thread cnt
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.init(schedule_period, -1));
// invalid dag_limit
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.init(schedule_period, 0, 0));
// invalid total_mem_limit
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.init(schedule_period, 0, 10,0));
// invalid hold_mem_limit
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.init(schedule_period, 10,1024, 0));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.init(schedule_period, 10,1024, 2048));
EXPECT_EQ(OB_SUCCESS, scheduler.init(schedule_period, 100, 50));
EXPECT_EQ(OB_INIT_TWICE, scheduler.init());
scheduler.destroy();
}
TEST_F(TestDagScheduler, test_sort_list_task)
{
ObSortList<ObITaskNew> task_list;
EXPECT_EQ(true, task_list.is_empty());
int size = 5;
TypeIdTask * task[size];
const int type_ids[] = {4, 2, 5, 1, 3};
const int64_t sort_ids[] = {5,4,3,2,1};
for (int i = 0; i < size; ++i) {
task[i] = new TypeIdTask();
task[i]->set_type_id(type_ids[i]);
}
for (int i = 0; i < size; ++i) {
task_list.insert(task[i]);
}
// get list to check sort list
common::ObDList<ObITaskNew>& list = task_list.get_list();
ObITaskNew * cur = list.get_first();
ObITaskNew * head = list.get_header();
int index = 0;
while (NULL != cur && head != cur){
EXPECT_EQ(sort_ids[index++], cur->get_type_id());
cur = cur->get_next();
}
EXPECT_EQ(true, task_list.find(task[2]));
// new task
TypeIdTask * other_task = new TypeIdTask();
other_task->set_type_id(888);
EXPECT_EQ(false, task_list.find(other_task));
EXPECT_EQ(size, task_list.get_size());
task_list.insert(other_task);
EXPECT_EQ(size + 1, task_list.get_size());
EXPECT_EQ(true, task_list.find(other_task));
EXPECT_EQ(other_task->get_type_id(), task_list.get_first()->get_type_id());
// test remove
EXPECT_EQ(true, task_list.remove(other_task));
EXPECT_EQ(sort_ids[0], task_list.get_first()->get_type_id());
EXPECT_EQ(false, task_list.remove(other_task));
delete(other_task);
task_list.reset();
for (int i = 0; i < size; ++i) {
delete(task[i]);
}
}
TEST_F(TestDagScheduler, test_sort_list_dynamic_score)
{
typedef ObTenantThreadPool::DynamicScore DynamicScore;
ObSortList<DynamicScore> dynamic_score_list;
int size = 5;
DynamicScore *score_list[size];
const int scores[] = {4, 2, 5, 1, 3};
const int64_t sort_scores[] = {5, 4, 3, 2, 1};
for (int i = 0; i < size; ++i) {
score_list[i] = new DynamicScore();
score_list[i]->d_score_ = scores[i] * 1.8;
}
for (int i = 0; i < size; ++i) {
dynamic_score_list.insert(score_list[i]);
}
common::ObDList<DynamicScore>& list = dynamic_score_list.get_list();
DynamicScore * cur = list.get_first();
DynamicScore * head = list.get_header();
int index = 0;
while (NULL != cur && head != cur){
EXPECT_EQ(sort_scores[index++] * 1.8, cur->d_score_);
cur = cur->get_next();
}
EXPECT_EQ(true, dynamic_score_list.find(score_list[1]));
EXPECT_EQ(true, dynamic_score_list.find(score_list[3]));
// test adjust_last
dynamic_score_list.get_last()->d_score_ = 999;
dynamic_score_list.adjust(dynamic_score_list.get_last());
EXPECT_EQ(999, dynamic_score_list.get_first()->d_score_);
dynamic_score_list.reset();
for (int i = 0; i < size; ++i) {
delete(score_list[i]);
}
}
TEST_F(TestDagScheduler, test_worker_obj_pool)
{
ObWorkerObjPool &obj_pool = ObWorkerObjPool::get_instance();
obj_pool.destroy();
// test init
obj_pool.init();
EXPECT_EQ(0, obj_pool.get_init_worker_cnt());
EXPECT_EQ(0, obj_pool.get_worker_cnt());
// empty pool to get worker obj
ObDagWorkerNew * worker = NULL;
EXPECT_EQ(OB_BUF_NOT_ENOUGH, obj_pool.get_worker_obj(worker));
int size = 5;
int32_t cnt[] = {1, 5, 15, 9, 10};
int32_t tmp = 0;
for (int i = 0; i < size; ++i) {
EXPECT_EQ(OB_SUCCESS, obj_pool.set_init_worker_cnt_inc(cnt[i]));
tmp += cnt[i];
EXPECT_EQ(tmp, obj_pool.get_init_worker_cnt());
EXPECT_EQ(OB_SUCCESS, obj_pool.adjust_worker_cnt());
EXPECT_EQ(static_cast<int>(tmp * ObWorkerObjPool::OBJ_CREATE_PERCENT), obj_pool.get_worker_cnt());
}
int32_t neg_cnt[] = {-3, -2, -8, -7, -15};
int last_worker_cnt = obj_pool.get_init_worker_cnt() * ObWorkerObjPool::OBJ_CREATE_PERCENT;
for (int i = 0; i < size; ++i) {
EXPECT_EQ(OB_SUCCESS, obj_pool.set_init_worker_cnt_inc(neg_cnt[i]));
tmp = tmp + neg_cnt[i];
EXPECT_EQ(tmp, obj_pool.get_init_worker_cnt());
EXPECT_EQ(OB_SUCCESS, obj_pool.adjust_worker_cnt());
if (tmp * ObWorkerObjPool::OBJ_RELEASE_PERCENT < last_worker_cnt) {
EXPECT_EQ(static_cast<int>(tmp * ObWorkerObjPool::OBJ_RELEASE_PERCENT), obj_pool.get_worker_cnt());
last_worker_cnt = tmp * ObWorkerObjPool::OBJ_RELEASE_PERCENT;
} else {
EXPECT_EQ(last_worker_cnt, obj_pool.get_worker_cnt());
}
}
// test get_worker_obj & release_worker_obj
EXPECT_EQ(OB_SUCCESS, obj_pool.set_init_worker_cnt_inc(1 - tmp));
EXPECT_EQ(1, obj_pool.get_init_worker_cnt());
EXPECT_EQ(OB_SUCCESS, obj_pool.adjust_worker_cnt());
EXPECT_EQ(OB_SUCCESS, obj_pool.get_worker_obj(worker));
EXPECT_EQ(true, !OB_ISNULL(worker));
EXPECT_EQ(OB_SUCCESS, obj_pool.release_worker_obj(worker));
int uplimit = ObWorkerObjPool::OBJ_UP_LIMIT_PERCENT;
ObDagWorkerNew * workerList[uplimit];
for (int i = 0; i < uplimit; ++i) {
EXPECT_EQ(OB_SUCCESS, obj_pool.get_worker_obj(workerList[i]));
}
EXPECT_EQ(OB_BUF_NOT_ENOUGH, obj_pool.get_worker_obj(worker));
for (int i = 0; i < uplimit; ++i) {
EXPECT_EQ(OB_SUCCESS, obj_pool.release_worker_obj(workerList[i]));
}
obj_pool.destroy();
}
TEST_F(TestDagScheduler, add_tenant)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int size = 5;
int64_t tenant_id_list[] = {111, 222, 333, 444, 555};
int64_t other_tenant = 999;
// test add tenant
for (int i = 0; i < size; ++i) {
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id_list[i]));
}
EXPECT_EQ(OB_ENTRY_EXIST, scheduler.add_tenant_thread_pool(tenant_id_list[2]));
// test set max thread number
int max_thread_num = 8;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id_list[0], max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
EXPECT_EQ(ObWorkerObjPool::get_instance().get_init_worker_cnt(), max_thread_num);
max_thread_num = 3;
tenant_settings.reset();
tenant_settings.push_back(ObTenantSetting(tenant_id_list[0], max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
EXPECT_EQ(ObWorkerObjPool::get_instance().get_init_worker_cnt(), max_thread_num);
// non-existent tenant
tenant_settings.reset();
tenant_settings.push_back(ObTenantSetting(other_tenant, max_thread_num));
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.set_tenant_setting(tenant_settings));
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, del_tenant)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 8127;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int max_thread_num = 2;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
BasicDag * dag = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag)); // alloc dag
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.add_dag_in_tenant(tenant_id, dag)); // empty dag
AtomicMulTask * mul_task = NULL;
EXPECT_EQ(OB_SUCCESS, dag->alloc_task(mul_task));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag));
EXPECT_EQ(OB_SUCCESS, scheduler.del_tenant_thread_pool(tenant_id));
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.alloc_dag(tenant_id, dag));
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.set_tenant_setting(tenant_settings));
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, add_dag)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 123;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int max_thread_num = 2;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
int size = 1;
BasicDag *dag[size];
BasicTask * task[size];
int ret = OB_SUCCESS;
for (int i = 0; i < size; ++i) {
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag[i]))) { // alloc dag
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag[i]) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
if (OB_FAIL(dag[i]->alloc_task(task[i]))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == task[i]) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
dag[i]->add_task(*task[i]); // task_list_ of dag can't be empty
dag[i]->set_priority((ObIDagNew::ObIDagNewPriority)i);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag[i]));
EXPECT_EQ(i + 1, scheduler.get_dag_count_in_tenant(tenant_id, 0));
}
}
}
BasicDag * invalid_dag = NULL;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, invalid_dag))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else {
invalid_dag->set_type_id(888);
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.add_dag_in_tenant(tenant_id, invalid_dag)); // invalid type id
scheduler.free_dag(tenant_id, invalid_dag);
}
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
wait_scheduler(scheduler);
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
*/
/*
TEST_F(TestDagScheduler, test_add_type)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init(ObAddr(2, 2)));
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 123;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int type_id = 0;
common::ObArray<ObDagSchedulerNew::TypeBasicSetting> type_array;
type_array.push_back(ObDagSchedulerNew::TypeBasicSetting(type_id, 2));
EXPECT_EQ(OB_SUCCESS, scheduler.add_types(type_array));
EXPECT_EQ(OB_EAGAIN, scheduler.add_types(type_array)); // same type id
int invalid_type_id = -1;
type_array.reset();
type_array.push_back(ObDagSchedulerNew::TypeBasicSetting(invalid_type_id, 2));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.add_types(type_array));
type_array.reset();
type_array.push_back(ObDagSchedulerNew::TypeBasicSetting(type_id + 1, -2));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.add_types(type_array));
type_array.reset();
type_array.push_back(ObDagSchedulerNew::TypeBasicSetting(type_id + 2, 0));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.add_types(type_array));
type_array.reset();
type_array.push_back(ObDagSchedulerNew::TypeBasicSetting(type_id + 3, 2));
EXPECT_EQ(OB_SUCCESS, scheduler.add_types(type_array));
scheduler.destroy();
}
TEST_F(TestDagScheduler, test_set_type_score)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init(ObAddr(2, 2)));
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 123;
int64_t score = 0;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int64_t type_id = 0;
int64_t invalid_type_id = 999;
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_score_in_tenant(tenant_id, type_id, score));
EXPECT_EQ(2, score);
EXPECT_EQ(OB_SUCCESS, scheduler.set_type_score_in_tenant(tenant_id, type_id, 8));
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_score_in_tenant(tenant_id, type_id, score));
EXPECT_EQ(8, score);
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_type_score_in_tenant(tenant_id, type_id, -1));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_type_score_in_tenant(tenant_id, invalid_type_id, 6));
int invalid_tenant_id = 999;
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.set_type_score_in_tenant(invalid_tenant_id, type_id, 8));
scheduler.destroy();
}
TEST_F(TestDagScheduler, test_set_type_uplimit)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init(ObAddr(2, 2)));
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 123;
int64_t uplimit = 0;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int64_t type_id = 0;
int64_t invalid_type_id = 999;
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_uplimit_in_tenant(tenant_id, type_id, uplimit));
EXPECT_EQ(INT_MAX, uplimit);
EXPECT_EQ(OB_SUCCESS, scheduler.set_type_uplimit_in_tenant(tenant_id, type_id, 8));
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_uplimit_in_tenant(tenant_id, type_id, uplimit));
EXPECT_EQ(8, uplimit);
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_type_uplimit_in_tenant(tenant_id, type_id, -1));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_type_uplimit_in_tenant(tenant_id, invalid_type_id, 6));
int invalid_tenant_id = 999;
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.set_type_uplimit_in_tenant(invalid_tenant_id, type_id, 8));
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_set_type_setting)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init(ObAddr(2, 2)));
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 123;
int64_t uplimit = 0;
int64_t score = 0;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int64_t type_id = 0;
int64_t invalid_type_id = 999;
common::ObArray<ObDagSchedulerNew::TypeTenantSetting> tenant_setting_array;
// set score
int set_score = 88;
tenant_setting_array.push_back(ObDagSchedulerNew::TypeTenantSetting(tenant_id, type_id, set_score));
EXPECT_EQ(OB_SUCCESS, scheduler.set_type_setting(tenant_setting_array));
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_uplimit_in_tenant(tenant_id, type_id, uplimit));
EXPECT_EQ(INT_MAX, uplimit);
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_score_in_tenant(tenant_id, type_id, score));
EXPECT_EQ(set_score, score);
// set score and uplimit
int set_up_limit = 10;
tenant_setting_array.push_back(ObDagSchedulerNew::TypeTenantSetting(tenant_id, type_id, set_score, set_up_limit));
EXPECT_EQ(OB_SUCCESS, scheduler.set_type_setting(tenant_setting_array));
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_uplimit_in_tenant(tenant_id, type_id, uplimit));
EXPECT_EQ(set_up_limit, uplimit);
EXPECT_EQ(OB_SUCCESS, scheduler.get_type_score_in_tenant(tenant_id, type_id, score));
EXPECT_EQ(set_score, score);
// two tenant
int64_t tenant_id2 = 8878;
tenant_setting_array.reset();
tenant_setting_array.push_back(ObDagSchedulerNew::TypeTenantSetting(tenant_id, type_id, set_score, set_up_limit));
EXPECT_EQ(OB_SUCCESS, scheduler.set_type_setting(tenant_setting_array));
tenant_setting_array.reset();
tenant_setting_array.push_back(ObDagSchedulerNew::TypeTenantSetting(tenant_id2, type_id, set_score, set_up_limit));
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.set_type_setting(tenant_setting_array));
// add tenant
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id2));
EXPECT_EQ(OB_SUCCESS, scheduler.set_type_setting(tenant_setting_array));
// invalid score
tenant_setting_array.reset();
int invalid_score = -1;
tenant_setting_array.push_back(ObDagSchedulerNew::TypeTenantSetting(tenant_id, type_id, invalid_score, set_up_limit));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_type_setting(tenant_setting_array));
// invalid uplimit
int invalid_uplimit = 0;
tenant_setting_array.reset();
tenant_setting_array.push_back(ObDagSchedulerNew::TypeTenantSetting(tenant_id, type_id, set_score, invalid_uplimit));
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_type_setting(tenant_setting_array));
scheduler.destroy();
}
*/
/*
TEST_F(TestDagScheduler, test_set_tenant_setting)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 123;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int64_t type_id = 0;
int64_t invalid_type_id = 999;
common::ObArray<ObTenantSetting> tenant_setting_array;
int max_thread_num = 3;
// set score
int set_score = 88;
ObTenantSetting tenant_setting(tenant_id, max_thread_num);
tenant_setting.type_settings_.push_back(
ObTenantTypeSetting(type_id, set_score));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
ObTenantSetting get_tenant_setting;
EXPECT_EQ(OB_SUCCESS, scheduler.get_tenant_setting_by_id(tenant_id, get_tenant_setting));
EXPECT_EQ(ObDagTypeIds::TYPE_SETTING_END, get_tenant_setting.type_settings_.size());
EXPECT_EQ(INT_MAX, get_tenant_setting.type_settings_.at(type_id).up_limit_);
EXPECT_EQ(set_score, get_tenant_setting.type_settings_.at(type_id).score_);
// set score and uplimit
int set_up_limit = 10;
tenant_setting_array.reset();
tenant_setting.type_settings_.clear();
tenant_setting.type_settings_.push_back(
ObTenantTypeSetting(type_id, set_score, set_up_limit));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
get_tenant_setting.type_settings_.clear();
EXPECT_EQ(OB_SUCCESS, scheduler.get_tenant_setting_by_id(tenant_id, get_tenant_setting));
EXPECT_EQ(ObDagTypeIds::TYPE_SETTING_END, get_tenant_setting.type_settings_.size());
EXPECT_EQ(set_up_limit, get_tenant_setting.type_settings_.at(type_id).up_limit_);
EXPECT_EQ(set_score, get_tenant_setting.type_settings_.at(type_id).score_);
// two tenant
int64_t tenant_id2 = 8878;
tenant_setting_array.reset();
tenant_setting.tenant_id_ = tenant_id2;
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_ENTRY_NOT_EXIST, scheduler.set_tenant_setting(tenant_setting_array));
// add tenant
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id2));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
// invalid score
int invalid_score = -1;
tenant_setting_array.reset();
tenant_setting.type_settings_.clear();
tenant_setting.type_settings_.push_back(
ObTenantTypeSetting(type_id, invalid_score, set_up_limit));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_tenant_setting(tenant_setting_array));
// invalid uplimit
int invalid_uplimit = 0;
tenant_setting_array.reset();
tenant_setting.type_settings_.clear();
tenant_setting.type_settings_.push_back(
ObTenantTypeSetting(type_id, set_score, invalid_uplimit));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_tenant_setting(tenant_setting_array));
// invalid max_thread_num
tenant_setting_array.reset();
tenant_setting.max_thread_num_ = 0;
tenant_setting.type_settings_.clear();
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_INVALID_ARGUMENT, scheduler.set_tenant_setting(tenant_setting_array));
scheduler.destroy();
}
TEST_F(TestDagScheduler, test_cycle)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 111;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
TestDag *dag = NULL;
int64_t counter = 0;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
TestAddTask *add_task = NULL;
TestMulTask *mul_task = NULL;
if (OB_FAIL(dag->alloc_task(mul_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == mul_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
if (OB_FAIL(mul_task->init(&counter))) {
COMMON_LOG(WARN, "failed to init add task", K(ret));
}
EXPECT_EQ(OB_INVALID_ARGUMENT, mul_task->add_child(*mul_task)); // test self loop
if (OB_SUCC(ret)) {
if (OB_FAIL(dag->alloc_task(add_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == add_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
add_task->init(&counter, 1, 0, 3);
add_task->add_child(*mul_task);
mul_task->add_child(*add_task); // mul->add add->mul cycle
}
EXPECT_EQ(OB_SUCCESS, dag->add_task(*mul_task));
COMMON_LOG(INFO, "mul_task", K(mul_task));
COMMON_LOG(INFO, "add_task", K(add_task));
EXPECT_EQ(OB_INVALID_ARGUMENT, dag->add_task(*add_task));
dag->free_task(*add_task);
scheduler.free_dag(tenant_id, dag);
}
}
}
TestCyclePrepare *prepare_task = NULL;
AtomicOperator op;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag)); // dag:TestDag type_id=0
int64_t type_id = 0;
int max_thread_num = 1;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
// init dag
EXPECT_EQ(OB_SUCCESS, dag->init(1, OB_INVALID_ARGUMENT, 0));
EXPECT_EQ(OB_SUCCESS, dag->alloc_task(prepare_task));
EXPECT_EQ(OB_SUCCESS, prepare_task->init(&op));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*prepare_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag));
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
wait_scheduler(scheduler);
EXPECT_EQ(0, op.value());
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_task_list_op)
{
ObTenantThreadPool::TaskList list(0, NULL, ObModIds::OB_SCHEDULER);
ObTenantThreadPool pool(888);
pool.init();
int size = 10;
BasicTask * task[size];
for (int i = 0; i < size; ++i) {
task[i] = new BasicTask();
task[i]->basic_id_ = i;
list.push_back(task[i]);
}
ObTenantThreadPool::TaskListIterator found_iter = NULL;
EXPECT_EQ(OB_SUCCESS, pool.find_in_task_list_(task[2], &list, found_iter));
EXPECT_EQ(2, static_cast<BasicTask *>(*found_iter)->basic_id_);
EXPECT_EQ(OB_SUCCESS, pool.find_in_task_list_(task[1], &list, found_iter));
EXPECT_EQ(1, static_cast<BasicTask *>(*found_iter)->basic_id_);
EXPECT_EQ(size, list.count());
EXPECT_EQ(OB_SUCCESS, pool.remove_from_task_list_(task[2], &list));
EXPECT_EQ(size - 1, list.count());
EXPECT_EQ(OB_SUCCESS, pool.remove_from_task_list_(task[0], &list));
EXPECT_EQ(size - 2, list.count());
found_iter = NULL;
EXPECT_EQ(OB_ENTRY_NOT_EXIST, pool.find_in_task_list_(task[2], &list, found_iter));
for (int i = 0; i < size; ++i) {
delete(task[i]);
}
pool.destroy();
}
TEST_F(TestDagScheduler, basic_test)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init(500));
ObWorkerObjPool::get_instance().destroy();
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 879;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int64_t type_id = 0;
int max_thread_num = 10;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
int ret = OB_SUCCESS;
TestDag *dag = NULL;
TestDag *dup_dag = NULL;
int64_t counter = 0;
//simple two-level dag
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else if (OB_FAIL(dag->init(8))) {
COMMON_LOG(WARN, "failed to init dag", K(ret));
} else {
TestAddTask *add_task = NULL;
TestMulTask *mul_task = NULL;
if (OB_FAIL(dag->alloc_task(mul_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == mul_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
if (OB_FAIL(mul_task->init(&counter))) {
COMMON_LOG(WARN, "failed to init add task", K(ret));
} else if (OB_FAIL(dag->add_task(*mul_task))) {
COMMON_LOG(WARN, "failed to add task", K(ret));
}
if (OB_FAIL(ret)) {
dag->free_task(*mul_task);
} else {
if (OB_FAIL(dag->alloc_task(add_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == add_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
if (OB_FAIL(add_task->init(&counter, 1, 0, 10, 200 * 1000))) {
COMMON_LOG(WARN, "failed to init add task", K(ret));
} else if (OB_FAIL(add_task->add_child(*mul_task))) {
COMMON_LOG(WARN, "failed to add child", K(ret));
} else if (OB_FAIL(dag->add_task(*add_task))) {
COMMON_LOG(WARN, "failed to add task");
}
if (OB_FAIL(ret)) {
dag->free_task(*add_task);
}
}
}
}
}
// check deduplication functionality
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dup_dag))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dup_dag) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else if (OB_FAIL(dup_dag->init(8))) {
COMMON_LOG(WARN, "failed to init dag", K(ret));
} else {
TestMulTask *mul_task = NULL;
if (OB_FAIL(dup_dag->alloc_task(mul_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == mul_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else {
if (OB_FAIL(mul_task->init(&counter))) {
COMMON_LOG(WARN, "failed to init add task", K(ret));
} else if (OB_FAIL(dup_dag->add_task(*mul_task))) {
COMMON_LOG(WARN, "failed to add task", K(ret));
}
if (OB_FAIL(ret)) {
dag->free_task(*mul_task);
}
}
}
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag));
EXPECT_EQ(OB_EAGAIN, scheduler.add_dag_in_tenant(tenant_id, dup_dag)); // same hash value and same id_
scheduler.free_dag(tenant_id, dup_dag);
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
wait_scheduler(scheduler);
EXPECT_EQ(counter, 20);
// three level dag that each level would generate dynamic tasks
AtomicOperator op(0);
TestDag *dag1 = NULL;
AtomicIncTask *inc_task = NULL;
AtomicIncTask *inc_task1 = NULL;
AtomicMulTask *mul_task = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, 4, op));
EXPECT_EQ(OB_SUCCESS, mul_task->add_child(*inc_task));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task1));
EXPECT_EQ(OB_SUCCESS, inc_task1->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, inc_task1->add_child(*mul_task));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
wait_scheduler(scheduler);
EXPECT_EQ(170, op.value());
// two-level dag with 2 tasks on the first level
op.reset();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
//add mul task
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, 4, op));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*mul_task));
// add inc task
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task1));
EXPECT_EQ(OB_SUCCESS, inc_task1->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, inc_task1->add_child(*mul_task));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task1));
// add another inc task
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task1));
EXPECT_EQ(OB_SUCCESS, inc_task1->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, inc_task1->add_child(*mul_task));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
wait_scheduler(scheduler);
EXPECT_EQ(320, op.value());
// a dag with single task which generate all other tasks while processing
TestPrepareTask *prepare_task = NULL;
op.reset();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, prepare_task));
EXPECT_EQ(OB_SUCCESS, prepare_task->init(1, &op));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*prepare_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
wait_scheduler(scheduler);
EXPECT_EQ(8, op.value());
op.reset();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, prepare_task));
EXPECT_EQ(OB_SUCCESS, prepare_task->init(1, &op, false, 1000*1000));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*prepare_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
wait_scheduler(scheduler);
EXPECT_EQ(8, op.value());
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_switch_task)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 221;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
int64_t type_id = 0;
int max_thread_num = 1;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
BasicDag *dag = NULL;
int flag = 0;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
dag->set_priority(ObIDagNew::DAG_PRIO_1);
SwitchFromTask *from_task = NULL;
if (OB_FAIL(dag->alloc_task(from_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == from_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else if (OB_FAIL(dag->add_task(*from_task))){
COMMON_LOG(WARN, "add task failed", K(ret));
} else {
from_task->init(&flag);
}
}
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag));
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
::usleep(10000); // make sure the SwitchFromTask is running
BasicDag *dag2 = NULL;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag2))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag2) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
dag2->set_priority(ObIDagNew::DAG_PRIO_2);
SwitchToTask *to_task = NULL;
if (OB_FAIL(dag2->alloc_task(to_task))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == to_task) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else if (OB_FAIL(dag2->add_task(*to_task))){
COMMON_LOG(WARN, "add task failed", K(ret));
} else {
to_task->init(&flag);
}
}
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag2));
wait_scheduler(scheduler);
EXPECT_EQ(flag, 1);
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_score_penalty)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 221;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
// set type setting
common::ObArray<ObTenantSetting> tenant_setting_array;
int max_thread_num = 10;
ObTenantSetting tenant_setting(tenant_id, max_thread_num);
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(0, 2));
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(1, 3));
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(2, 5));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
BasicDag *dag_a = NULL;
int generate_size = 3;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag_a))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag_a) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
dag_a->set_priority(ObIDagNew::DAG_PRIO_1);
dag_a->set_type_id(0); // test_score_penalty_a score = 2
TypeIdTask *task_a = NULL;
if (OB_FAIL(dag_a->alloc_task(task_a))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == task_a) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else if (OB_FAIL(dag_a->add_task(*task_a))) {
COMMON_LOG(WARN, "add task failed", K(ret));
} else {
task_a->init(0, generate_size);
}
}
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag_a));
BasicDag *dag_b = NULL;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag_b))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag_b) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
dag_b->set_priority(ObIDagNew::DAG_PRIO_1);
dag_b->set_type_id(1); // test_score_penalty_b score = 3
TypeIdTask *task_b = NULL;
if (OB_FAIL(dag_b->alloc_task(task_b))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == task_b) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else if (OB_FAIL(dag_b->add_task(*task_b))) {
COMMON_LOG(WARN, "add task failed", K(ret));
} else {
task_b->init(0, generate_size);
}
}
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag_b));
BasicDag *dag_c = NULL;
if (OB_FAIL(scheduler.alloc_dag(tenant_id, dag_c))) {
COMMON_LOG(WARN, "failed to alloc dag");
} else if (NULL == dag_c) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "dag is null", K(ret));
} else {
dag_c->set_priority(ObIDagNew::DAG_PRIO_1);
dag_c->set_type_id(2); // test_score_penalty_c score = 5
TypeIdTask *task_c = NULL;
if (OB_FAIL(dag_c->alloc_task(task_c))) {
COMMON_LOG(WARN, "failed to alloc task", K(ret));
} else if (NULL == task_c) {
ret = OB_ERR_UNEXPECTED;
COMMON_LOG(WARN, "task is null", K(ret));
} else if (OB_FAIL(dag_c->add_task(*task_c))) {
COMMON_LOG(WARN, "add task failed", K(ret));
} else {
task_c->init(0, generate_size);
}
}
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag_c));
GetScheduleInfo schedule_info;
scheduler.set_sche_info(tenant_id, &schedule_info);
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
wait_scheduler(scheduler);
// check
int count = schedule_info.choose_type_id_list_.size();
int64_t exp[] = {2, 2, 1, 0, 2,
1, 2, 2, 0, 1};
for(int i = 0; i < 10 && i < count; ++i) {
EXPECT_EQ(exp[i], schedule_info.choose_type_id_list_[i]);
}
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_error_handling)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 221;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
int max_thread_num = 3;
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
AtomicOperator op(0);
TestDag *dag = NULL;
AtomicMulTask *mul_task = NULL;
AtomicIncTask *inc_task = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag));
EXPECT_EQ(OB_SUCCESS, dag->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, 10, op, 0, 8));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, mul_task->add_child(*inc_task));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag));
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
wait_scheduler(scheduler);
EXPECT_EQ(0, op.value());
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag));
EXPECT_EQ(OB_SUCCESS, dag->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, 1, op, 0, 1));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, inc_task->add_child(*mul_task));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, 10, op));
EXPECT_EQ(OB_SUCCESS, mul_task->add_child(*inc_task));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag));
wait_scheduler(scheduler);
EXPECT_EQ(10, op.value());
TestDag *dag1 = NULL;
TestPrepareTask *prepare_task = NULL;
op.reset();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, prepare_task));
EXPECT_EQ(OB_SUCCESS, prepare_task->init(1, &op, true));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*prepare_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
wait_scheduler(scheduler);
EXPECT_EQ(0, op.value());
op.reset();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, prepare_task));
EXPECT_EQ(OB_SUCCESS, prepare_task->init(1, &op, true, 1000*1000));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*prepare_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
wait_scheduler(scheduler);
EXPECT_EQ(0, op.value());
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, stress_test)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().init();
int64_t tenant_id1 = 221;
int64_t tenant_id2 = 334;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id2));
int ret = OB_SUCCESS;
// set type setting
common::ObArray<ObTenantSetting> tenant_setting_array;
int max_thread_num = 16;
ObTenantSetting tenant_setting(tenant_id1, max_thread_num);
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(0, 2));
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(1, 3));
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(2, 5));
tenant_setting_array.push_back(tenant_setting);
tenant_setting.tenant_id_ = tenant_id2;
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
DagSchedulerStressTester tester1;
tester1.init(stress_time);
tester1.set_max_type_id(3);
tester1.set_tenant_id(tenant_id1);
EXPECT_EQ(OB_SUCCESS, tester1.do_stress());
DagSchedulerStressTester tester2;
tester2.init(stress_time);
tester2.set_max_type_id(3);
tester2.set_tenant_id(tenant_id2);
EXPECT_EQ(OB_SUCCESS, tester2.do_stress());
wait_scheduler(ObDagSchedulerNew::get_instance());
COMMON_LOG(INFO, "test finished", "stress dag create dag count:",tester1.get_dag_cnt());
COMMON_LOG(INFO, "test finished", "stress dag create dag count:",tester2.get_dag_cnt());
ObDagSchedulerNew::get_instance().destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, stress_test_with_error)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().init();
int64_t tenant_id1 = 221;
int64_t tenant_id2 = 334;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id2));
int ret = OB_SUCCESS;
// set type setting
common::ObArray<ObTenantSetting> tenant_setting_array;
int max_thread_num = 16;
ObTenantSetting tenant_setting(tenant_id1, max_thread_num);
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(0, 2));
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(1, 3));
tenant_setting.type_settings_.push_back(ObTenantTypeSetting(2, 5));
tenant_setting_array.push_back(tenant_setting);
tenant_setting.tenant_id_ = tenant_id2;
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
DagSchedulerStressTester tester1;
tester1.init(stress_time);
tester1.set_max_type_id(6); // can generate dag with unregistered type
tester1.set_tenant_id(tenant_id1);
EXPECT_EQ(OB_SUCCESS, tester1.do_stress());
DagSchedulerStressTester tester2;
tester2.init(stress_time);
tester2.set_max_type_id(4); // can generate dag with unregistered type
tester2.set_tenant_id(tenant_id2);
EXPECT_EQ(OB_SUCCESS, tester2.do_stress());
wait_scheduler(ObDagSchedulerNew::get_instance());
COMMON_LOG(INFO, "test finished", "stress dag create dag count:",tester1.get_dag_cnt());
COMMON_LOG(INFO, "test finished", "stress dag create dag count:",tester2.get_dag_cnt());
ObDagSchedulerNew::get_instance().destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_destroy_when_running)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init());
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 221;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
AtomicOperator op(0);
TestDag *dag1 = NULL;
AtomicIncTask *inc_task = NULL;
int cnt = 20;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, cnt, op, 4*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
TestDag *dag2 = NULL;
AtomicMulTask *mul_task = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag2));
EXPECT_EQ(OB_SUCCESS, dag2->init(2));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag2, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, cnt, op, 3*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag2->add_task(*mul_task));
TestDag *dag3 = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag3));
EXPECT_EQ(OB_SUCCESS, dag3->init(3));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag3, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, cnt, op, 2*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag3->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag2));
// high priority preempt quotas from low priority, low priority run at min thread
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag3));
// set type setting
common::ObArray<ObTenantSetting> tenant_setting_array;
int max_thread_num = 16;
ObTenantSetting tenant_setting(tenant_id, max_thread_num);
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
::usleep(50000);
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_max_thread_num)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
int check_period = 100; // schdule period
EXPECT_EQ(OB_SUCCESS, scheduler.init(check_period));
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 221;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
int max_thread_num[] = {5, 16, 2, 32};
common::ObArray<ObTenantSetting> tenant_settings;
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num[0]));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
TestDag *dag1 = NULL;
AtomicOperator op(0);
op.reset();
AtomicIncTask *inc_task = NULL;
AtomicIncTask *inc_task1 = NULL;
AtomicMulTask *mul_task = NULL;
int cnt = 100;
int sleep_us = 20000;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, cnt, op, sleep_us));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, cnt, op, sleep_us));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task1));
EXPECT_EQ(OB_SUCCESS, inc_task1->init(1, cnt, op, sleep_us));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
GetScheduleInfo schedule_info;
scheduler.set_sche_info(tenant_id, &schedule_info);
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
::usleep(300 * 1000);
tenant_settings.reset();
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num[1]));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
::usleep(400 * 1000);
tenant_settings.reset();
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num[2]));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
::usleep(300 * 1000);
tenant_settings.reset();
tenant_settings.push_back(ObTenantSetting(tenant_id, max_thread_num[3]));
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_settings));
wait_scheduler(scheduler);
for (int i = 0; i < schedule_info.running_tasks_cnt_.size(); ++i) {
COMMON_LOG(INFO, "schedule_info", "cnt", schedule_info.running_tasks_cnt_[i]);
}
int before = 0;
for (int i = 0; i < schedule_info.running_tasks_cnt_.size(); ++i) { // 5
if (max_thread_num[0] == schedule_info.running_tasks_cnt_[i]) {
while (i < schedule_info.running_tasks_cnt_.size()
&& schedule_info.running_tasks_cnt_[i] < max_thread_num[1]) {
EXPECT_EQ(max_thread_num[0], schedule_info.running_tasks_cnt_[i]);
++i;
}
} else if (max_thread_num[1] == schedule_info.running_tasks_cnt_[i]) { // monotonically decreasing
before = max_thread_num[1];
while (i < schedule_info.running_tasks_cnt_.size()
&& schedule_info.running_tasks_cnt_[i] != max_thread_num[2]) {
EXPECT_EQ(true, before >= schedule_info.running_tasks_cnt_[i]);
before = schedule_info.running_tasks_cnt_[i];
++i;
}
} else if (max_thread_num[2] == schedule_info.running_tasks_cnt_[i]) { // 2
while (i < schedule_info.running_tasks_cnt_.size()
&& schedule_info.running_tasks_cnt_[i] != max_thread_num[3]) {
EXPECT_EQ(max_thread_num[2], schedule_info.running_tasks_cnt_[i]);
++i;
}
} else if (max_thread_num[3] == schedule_info.running_tasks_cnt_[i]) { // monotonically decreasing
before = max_thread_num[3];
while (i < schedule_info.running_tasks_cnt_.size()
&& schedule_info.running_tasks_cnt_[i] != 0) {
EXPECT_EQ(true, before >= schedule_info.running_tasks_cnt_[i]);
before = schedule_info.running_tasks_cnt_[i];
++i;
}
}
}
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
TEST_F(TestDagScheduler, test_set_uplimit_when_running)
{
ObDagSchedulerNew &scheduler = ObDagSchedulerNew::get_instance();
scheduler.destroy();
int check_period = 100; // schdule period
EXPECT_EQ(OB_SUCCESS, scheduler.init(check_period));
ObWorkerObjPool::get_instance().init();
int64_t tenant_id = 221;
EXPECT_EQ(OB_SUCCESS, scheduler.add_tenant_thread_pool(tenant_id));
int ret = OB_SUCCESS;
int type_id = 0;
int max_thread_num = 16;
int uplimit[] = {10, 5};
common::ObArray<ObTenantSetting> tenant_setting_array;
ObTenantSetting tenant_setting(tenant_id, max_thread_num);
tenant_setting.type_settings_.push_back(
ObTenantTypeSetting(type_id, ObTenantSetting::NOT_SET, uplimit[0]));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
TestDag *dag1 = NULL;
AtomicOperator op(0);
op.reset();
AtomicIncTask *inc_task = NULL;
AtomicIncTask *inc_task1 = NULL;
AtomicMulTask *mul_task = NULL;
int cnt = 150;
int sleep_us = 20000;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(tenant_id, dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, cnt, op, sleep_us));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, cnt, op, sleep_us));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task1));
EXPECT_EQ(OB_SUCCESS, inc_task1->init(1, cnt, op, sleep_us));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task1));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag_in_tenant(tenant_id, dag1));
GetScheduleInfo schedule_info;
scheduler.set_sche_info(tenant_id, &schedule_info);
EXPECT_EQ(OB_SUCCESS, scheduler.start_run());
::usleep(800 * 1000); // wait
COMMON_LOG(INFO, "!!!!!!~~~~~~~~~~s");
tenant_setting_array.reset();
tenant_setting.type_settings_.clear();
tenant_setting.type_settings_.push_back(
ObTenantTypeSetting(type_id, ObTenantSetting::NOT_SET, uplimit[1]));
tenant_setting_array.push_back(tenant_setting);
EXPECT_EQ(OB_SUCCESS, scheduler.set_tenant_setting(tenant_setting_array));
COMMON_LOG(INFO, "!!!!!!~~~~~~~~~~s");
wait_scheduler(scheduler);
for (int i = 0; i < schedule_info.running_tasks_cnt_.size(); ++i) {
COMMON_LOG(INFO, "schedule_info", "cnt",
schedule_info.running_tasks_cnt_[i]);
}
for (int i = 0; i < schedule_info.running_tasks_cnt_.size(); ++i) {
if (uplimit[0] == schedule_info.running_tasks_cnt_[i]) {
while (i < schedule_info.running_tasks_cnt_.size()
&& schedule_info.running_tasks_cnt_[i] > uplimit[1]) {
EXPECT_EQ(uplimit[0], schedule_info.running_tasks_cnt_[i]);
++i;
}
} else if (uplimit[1] == schedule_info.running_tasks_cnt_[i]) { // monotonically decreasing
while (i < schedule_info.running_tasks_cnt_.size()) {
EXPECT_EQ(true, schedule_info.running_tasks_cnt_[i] <= uplimit[1]);
++i;
}
}
}
scheduler.destroy();
ObWorkerObjPool::get_instance().destroy();
}
*/
/*
TEST_F(TestDagScheduler, test_priority)
{
ObDagScheduler &scheduler = ObDagScheduler::get_instance();
scheduler.destroy();
scheduler.init(ObAddr(1,1), time_slice);
AtomicOperator op(0);
TestLPDag *dag1 = NULL;
AtomicIncTask *inc_task = NULL;
int32_t thread_cnt = scheduler.get_work_thread_num();
for (int64_t i = 0; i < ObIDag::DAG_ULT_MAX; ++i) {
scheduler.set_max_thread(i, thread_cnt);
}
EXPECT_EQ(thread_cnt, scheduler.get_work_thread_num());
int32_t lp_min = scheduler.DEFAULT_LOW_LIMIT[ObIDag::DAG_PRIO_DDL];
int32_t mp_min = scheduler.DEFAULT_LOW_LIMIT[ObIDag::DAG_PRIO_SSTABLE_MAJOR_MERGE];
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, thread_cnt, op, 8*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
TestHPDag *dag2 = NULL;
AtomicMulTask *mul_task = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag2));
EXPECT_EQ(OB_SUCCESS, dag2->init(2));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag2, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, thread_cnt, op, 6*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag2->add_task(*mul_task));
TestMPDag *dag3 = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag3));
EXPECT_EQ(OB_SUCCESS, dag3->init(3));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag3, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, thread_cnt, op, 4*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag3->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag1));
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_DDL));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag2));
// high priority preempt quotas from low priority, low priority run at min thread
CHECK_EQ_UTIL_TIMEOUT(lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_DDL));
EXPECT_EQ(thread_cnt - lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_SSTABLE_MINOR_MERGE));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag3));
// medium priority takes the min_thread quotas belong to him
CHECK_EQ_UTIL_TIMEOUT(lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_DDL));
CHECK_EQ_UTIL_TIMEOUT(mp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_SSTABLE_MAJOR_MERGE));
CHECK_EQ_UTIL_TIMEOUT(thread_cnt - lp_min -mp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_SSTABLE_MINOR_MERGE));
CHECK_EQ_UTIL_TIMEOUT(thread_cnt * 2 - lp_min + mp_min, scheduler.total_worker_cnt_);
wait_scheduler(scheduler);
// check if excessive threads are reclaimed
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.total_worker_cnt_);
COMMON_LOG(INFO, "start test priority case 2");
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, thread_cnt, op, 10*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag2));
EXPECT_EQ(OB_SUCCESS, dag2->init(2));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag2, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, thread_cnt - lp_min, op, 5*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag2->add_task(*mul_task));
// low priority run at max speed
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag1));
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_DDL));
// high priority preempt quotas from low priority, low priority run at min thread
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag2));
CHECK_EQ_UTIL_TIMEOUT(lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_DDL));
EXPECT_EQ(thread_cnt - lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_SSTABLE_MINOR_MERGE));
// when high priority finishes, low priority will bounce back to full speed
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_DDL));
wait_scheduler(scheduler);
}
void print_state(int64_t idx)
{
ObDagScheduler &scheduler = ObDagScheduler::get_instance();
COMMON_LOG(INFO, "scheduler state: ", K(scheduler.total_running_task_cnt_), K(scheduler.work_thread_num_),
K(scheduler.total_worker_cnt_), K(scheduler.low_limits_[idx]), K(scheduler.up_limits_[idx]), K(scheduler.running_task_cnts_[idx]));
}
TEST_F(TestDagScheduler, test_set_concurrency)
{
ObDagScheduler &scheduler = ObDagScheduler::get_instance();
scheduler.destroy();
int32_t thread_cnt = ObDagScheduler::DEFAULT_UP_LIMIT[ObIDag::DAG_ULT_MINOR_MERGE];
EXPECT_EQ(OB_SUCCESS, scheduler.init(ObAddr(1,1), thread_cnt));
TestHPDag *dag = NULL;
AtomicIncTask *inc_task = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag));
EXPECT_EQ(OB_SUCCESS, dag->init(1));
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, thread_cnt * 2, dag->get_op(), 10 * sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag));
int64_t idx = ObIDag::DAG_PRIO_SSTABLE_MINOR_MERGE;
CHECK_EQ_UTIL_TIMEOUT(scheduler.DEFAULT_LOW_LIMIT[idx], scheduler.low_limits_[idx]);
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.up_limits_[ObDagScheduler::UP_LIMIT_MAP[idx]]);
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.total_running_task_cnt_);
EXPECT_TRUE(thread_cnt <= scheduler.work_thread_num_);
// set max to 20
EXPECT_EQ(OB_SUCCESS, scheduler.set_max_thread(ObDagScheduler::UP_LIMIT_MAP[idx], 20));
EXPECT_EQ(scheduler.DEFAULT_LOW_LIMIT[idx], scheduler.low_limits_[idx]);
EXPECT_EQ(20, scheduler.up_limits_[ObDagScheduler::UP_LIMIT_MAP[idx]]);
CHECK_EQ_UTIL_TIMEOUT(20, scheduler.total_running_task_cnt_);
EXPECT_EQ(20, scheduler.work_thread_num_);
// set to 1
EXPECT_EQ(OB_SUCCESS, scheduler.set_max_thread(ObDagScheduler::UP_LIMIT_MAP[idx], 1));
print_state(idx);
EXPECT_EQ(1, scheduler.low_limits_[idx]);
EXPECT_EQ(1, scheduler.up_limits_[ObDagScheduler::UP_LIMIT_MAP[idx]]);
CHECK_EQ_UTIL_TIMEOUT(1, scheduler.total_running_task_cnt_);
EXPECT_TRUE(thread_cnt <= scheduler.work_thread_num_);
// set to 2
EXPECT_EQ(OB_SUCCESS, scheduler.set_max_thread(ObDagScheduler::UP_LIMIT_MAP[idx], 2));
print_state(idx);
EXPECT_EQ(1, scheduler.low_limits_[idx]);
EXPECT_EQ(2, scheduler.up_limits_[ObDagScheduler::UP_LIMIT_MAP[idx]]);
CHECK_EQ_UTIL_TIMEOUT(2, scheduler.total_running_task_cnt_);
EXPECT_TRUE(thread_cnt <= scheduler.work_thread_num_);
// set to 5
EXPECT_EQ(OB_SUCCESS, scheduler.set_max_thread(ObDagScheduler::UP_LIMIT_MAP[idx], 5));
print_state(idx);
EXPECT_EQ(1, scheduler.low_limits_[idx]);
EXPECT_EQ(5, scheduler.up_limits_[ObDagScheduler::UP_LIMIT_MAP[idx]]);
CHECK_EQ_UTIL_TIMEOUT(5, scheduler.total_running_task_cnt_);
EXPECT_TRUE(thread_cnt <= scheduler.work_thread_num_);
// set to 0
EXPECT_EQ(OB_SUCCESS, scheduler.set_max_thread(ObDagScheduler::UP_LIMIT_MAP[idx], 0));
print_state(idx);
EXPECT_EQ(1, scheduler.low_limits_[idx]);
EXPECT_EQ(scheduler.up_limits_[ObDagScheduler::UP_LIMIT_MAP[idx]], ObDagScheduler::DEFAULT_UP_LIMIT[ObDagScheduler::UP_LIMIT_MAP[idx]]);
CHECK_EQ_UTIL_TIMEOUT(thread_cnt, scheduler.total_running_task_cnt_);
EXPECT_TRUE(thread_cnt <= scheduler.work_thread_num_);
wait_scheduler(scheduler);
}
TEST_F(TestDagScheduler, test_get_dag_count)
{
ObDagScheduler &scheduler = ObDagScheduler::get_instance();
TestMPDag *dag = NULL;
TestMPDag *dag2 = NULL;
TestMulTask *mul_task = NULL;
TestMulTask *mul_task2 = NULL;
int64_t counter = 1;
scheduler.destroy();
EXPECT_EQ(OB_SUCCESS, scheduler.init(ObAddr(1,1), time_slice));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_UT));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MAJOR_MERGE));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MINOR_MERGE));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_DDL));
EXPECT_EQ(-1, scheduler.get_dag_count(ObIDag::DAG_TYPE_MAX));
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag));
EXPECT_EQ(OB_SUCCESS, dag->init(1));
EXPECT_EQ(OB_SUCCESS, dag->alloc_task(mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(&counter));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag));
sleep(1);
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_UT));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MINOR_MERGE));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MAJOR_MERGE));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_DDL));
EXPECT_EQ(-1, scheduler.get_dag_count(ObIDag::DAG_TYPE_MAX));
scheduler.stop();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag));
EXPECT_EQ(OB_SUCCESS, dag->init(1));
EXPECT_EQ(OB_SUCCESS, dag->alloc_task(mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(&counter));
EXPECT_EQ(OB_SUCCESS, dag->add_task(*mul_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_UT));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MINOR_MERGE));
EXPECT_EQ(1, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MAJOR_MERGE));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_DDL));
EXPECT_EQ(-1, scheduler.get_dag_count(ObIDag::DAG_TYPE_MAX));
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag2));
EXPECT_EQ(OB_SUCCESS, dag2->init(2));
EXPECT_EQ(OB_SUCCESS, dag2->alloc_task(mul_task2));
EXPECT_EQ(OB_SUCCESS, mul_task2->init(&counter));
EXPECT_EQ(OB_SUCCESS, dag2->add_task(*mul_task2));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag2));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_UT));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MINOR_MERGE));
EXPECT_EQ(2, scheduler.get_dag_count(ObIDag::DAG_TYPE_SSTABLE_MAJOR_MERGE));
EXPECT_EQ(0, scheduler.get_dag_count(ObIDag::DAG_TYPE_DDL));
EXPECT_EQ(-1, scheduler.get_dag_count(ObIDag::DAG_TYPE_MAX));
scheduler.destroy();
}
TEST_F(TestDagScheduler, test_up_limit)
{
ObDagScheduler &scheduler = ObDagScheduler::get_instance();
scheduler.destroy();
scheduler.init(ObAddr(1,1), 64);
AtomicOperator op(0);
TestLPDag *dag1 = NULL;
AtomicIncTask *inc_task = NULL;
const int32_t lp_min = scheduler.low_limits_[ObIDag::DAG_PRIO_MIGRATE_LOW];
const int32_t mp_min = scheduler.low_limits_[ObIDag::DAG_PRIO_MIGRATE_MID];
const int32_t up_limit = scheduler.up_limits_[ObIDag::DAG_ULT_MIGRATE];
scheduler.dump_dag_status();
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag1));
EXPECT_EQ(OB_SUCCESS, dag1->init(1));
dag1->set_priority(ObIDag::DAG_PRIO_MIGRATE_LOW);
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag1, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, up_limit, op, 4*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag1->add_task(*inc_task));
TestHPDag *dag2 = NULL;
AtomicMulTask *mul_task = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag2));
EXPECT_EQ(OB_SUCCESS, dag2->init(2));
dag2->set_priority(ObIDag::DAG_PRIO_MIGRATE_HIGH);
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag2, mul_task));
EXPECT_EQ(OB_SUCCESS, mul_task->init(1, up_limit, op, 3*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag2->add_task(*mul_task));
TestMPDag *dag3 = NULL;
EXPECT_EQ(OB_SUCCESS, scheduler.alloc_dag(dag3));
EXPECT_EQ(OB_SUCCESS, dag3->init(3));
dag3->set_priority(ObIDag::DAG_PRIO_MIGRATE_MID);
EXPECT_EQ(OB_SUCCESS, alloc_task(*dag3, inc_task));
EXPECT_EQ(OB_SUCCESS, inc_task->init(1, up_limit, op, 2*sleep_slice));
EXPECT_EQ(OB_SUCCESS, dag3->add_task(*inc_task));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag1));
CHECK_EQ_UTIL_TIMEOUT(up_limit, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_MIGRATE_LOW));
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag2));
// high priority preempt quotas from low priority, low priority run at min thread
CHECK_EQ_UTIL_TIMEOUT(lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_MIGRATE_LOW));
EXPECT_EQ(up_limit- lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_MIGRATE_HIGH));
EXPECT_EQ(up_limit, scheduler.total_running_task_cnt_);
EXPECT_EQ(OB_SUCCESS, scheduler.add_dag(dag3));
CHECK_EQ_UTIL_TIMEOUT(lp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_MIGRATE_LOW));
CHECK_EQ_UTIL_TIMEOUT(mp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_MIGRATE_MID));
EXPECT_EQ(up_limit - lp_min - mp_min, scheduler.get_running_task_cnt(ObIDag::DAG_PRIO_MIGRATE_HIGH));
EXPECT_EQ(up_limit, scheduler.total_running_task_cnt_);
wait_scheduler(scheduler);
}*/
}
}
void parse_cmd_arg(int argc, char **argv)
{
int opt = 0;
const char *opt_string = "p:s:l:";
struct option longopts[] = {
{"dag cnt for performance test", 1, NULL, 'p'},
{"stress test time", 1, NULL, 's'},
{"log level", 1, NULL, 'l'},
{0,0,0,0} };
while (-1 != (opt = getopt_long(argc, argv, opt_string, longopts, NULL))) {
switch(opt) {
case 'p':
dag_cnt = strtoll(optarg, NULL, 10);
break;
case 's':
stress_time = strtoll(optarg, NULL, 10);
break;
case 'l':
snprintf(log_level, 20, "%s", optarg);
break;
default:
break;
}
}
}
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
parse_cmd_arg(argc, argv);
OB_LOGGER.set_log_level(log_level);
OB_LOGGER.set_max_file_size(256*1024*1024);
// char filename[128];
// snprintf(filename, 128, "test_dag_scheduler.log");
system("rm -f test_tenant_dag_scheduler.log*");
OB_LOGGER.set_file_name("test_tenant_dag_scheduler.log");
return RUN_ALL_TESTS();
}