Files
oceanbase/src/sql/optimizer/ob_px_resource_analyzer.cpp
oceanbase-admin cea7de1475 init push
2021-05-31 22:56:52 +08:00

382 lines
13 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#define USING_LOG_PREFIX SQL_OPT
#include "sql/optimizer/ob_px_resource_analyzer.h"
#include "sql/optimizer/ob_logical_operator.h"
#include "sql/optimizer/ob_log_exchange.h"
#include "common/ob_smart_call.h"
using namespace oceanbase::common;
using namespace oceanbase::sql;
using namespace oceanbase::sql::log_op_def;
namespace oceanbase {
namespace sql {
template <class T>
class DfoTreeNormalizer {
public:
static int normalize(T& root);
};
template <class T>
int DfoTreeNormalizer<T>::normalize(T& root)
{
int ret = OB_SUCCESS;
int64_t non_leaf_cnt = 0;
int64_t non_leaf_pos = -1;
ARRAY_FOREACH_X(root.child_dfos_, idx, cnt, OB_SUCC(ret))
{
DfoInfo* dfo = root.child_dfos_.at(idx);
if (0 < dfo->get_child_count()) {
non_leaf_cnt++;
if (-1 == non_leaf_pos) {
non_leaf_pos = idx;
}
}
}
if (non_leaf_cnt > 1) {
// sched as the tree shape in bushy tree scenario
} else if (1 == non_leaf_pos) {
/*
* swap dfos to reorder schedule seq
*
* simple mode:
*
* inode inode
* / \ ===> / \
* leaf inode inode leaf
*
* [*] inode is not leaf
*
* complicate mode:
*
* root --------+-----+
* | | | |
* leaf0 leaf1 inode leaf2
*
*
* after transformation:
*
* root --------+-----+
* | | | |
* inode leaf0 leaf1 leaf2
*/
// (1) build dependence
T* inode = root.child_dfos_.at(non_leaf_pos);
inode->set_depend_sibling(root.child_dfos_.at(0));
// (2) transform
for (int64_t i = non_leaf_pos; i > 0; --i) {
root.child_dfos_.at(i) = root.child_dfos_.at(i - 1);
}
root.child_dfos_.at(0) = inode;
}
if (OB_SUCC(ret)) {
ARRAY_FOREACH_X(root.child_dfos_, idx, cnt, OB_SUCC(ret))
{
if (OB_ISNULL(root.child_dfos_.at(idx))) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("NULL ptr", K(idx), K(cnt), K(ret));
} else if (OB_FAIL(normalize(*root.child_dfos_.at(idx)))) {
LOG_WARN("fail normalize dfo", K(idx), K(cnt), K(ret));
}
}
}
return ret;
}
class SchedOrderGenerator {
public:
SchedOrderGenerator() = default;
~SchedOrderGenerator() = default;
int generate(DfoInfo& root, ObIArray<DfoInfo*>& edges);
};
} // namespace sql
} // namespace oceanbase
// post order iterate dfo tree, the result is the sched order
// use edges to represent the order
int SchedOrderGenerator::generate(DfoInfo& root, ObIArray<DfoInfo*>& edges)
{
int ret = OB_SUCCESS;
for (int64_t i = 0; OB_SUCC(ret) && i < root.get_child_count(); ++i) {
DfoInfo* child = NULL;
if (OB_FAIL(root.get_child(i, child))) {
LOG_WARN("fail get child dfo", K(i), K(root), K(ret));
} else if (OB_ISNULL(child)) {
ret = OB_ERR_UNEXPECTED;
} else if (OB_FAIL(generate(*child, edges))) {
LOG_WARN("fail do generate edge", K(*child), K(ret));
}
}
if (OB_SUCC(ret)) {
if (OB_FAIL(edges.push_back(&root))) {
LOG_WARN("fail add edge to array", K(ret));
}
}
return ret;
}
// ===================================================================================
// ===================================================================================
// ===================================================================================
// ===================================================================================
int DfoInfo::add_child(DfoInfo* child)
{
int ret = OB_SUCCESS;
if (OB_ISNULL(child)) {
ret = OB_ERR_UNEXPECTED;
} else if (OB_FAIL(child_dfos_.push_back(child))) {
LOG_WARN("fail push back child to array", K(ret));
}
return ret;
}
int DfoInfo::get_child(int64_t idx, DfoInfo*& child)
{
int ret = OB_SUCCESS;
if (idx < 0 || idx >= child_dfos_.count()) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("child idx unexpected", K(idx), "cnt", child_dfos_.count(), K(ret));
} else if (OB_FAIL(child_dfos_.at(idx, child))) {
LOG_WARN("fail get element", K(idx), "cnt", child_dfos_.count(), K(ret));
}
return ret;
}
// ===================================================================================
// ===================================================================================
// ===================================================================================
// ===================================================================================
ObPxResourceAnalyzer::ObPxResourceAnalyzer() : dfo_allocator_(CURRENT_CONTEXT.get_malloc_allocator())
{
dfo_allocator_.set_label("PxResourceAnaly");
}
// entry function
int ObPxResourceAnalyzer::analyze(ObLogicalOperator& root_op, int64_t& max_parallel_thread_group_count)
{
int ret = OB_SUCCESS;
// calc thread reservation
//
// consider scenarios:
// 1. multiple px
// 2. subplan filter rescan (rescanable exchange are QCs)
// 3. bushy tree scheduling
ObArray<PxInfo> px_trees;
if (OB_FAIL(convert_log_plan_to_nested_px_tree(px_trees, root_op))) {
LOG_WARN("fail convert log plan to nested px tree", K(ret));
} else if (OB_FAIL(walk_through_px_trees(px_trees, max_parallel_thread_group_count))) {
LOG_WARN("fail calc max parallel thread group count for resource reservation", K(ret));
}
return ret;
}
int ObPxResourceAnalyzer::convert_log_plan_to_nested_px_tree(ObIArray<PxInfo>& px_trees, ObLogicalOperator& root_op)
{
int ret = OB_SUCCESS;
bool is_stack_overflow = false;
if (OB_FAIL(check_stack_overflow(is_stack_overflow))) {
LOG_WARN("failed to check stack overflow", K(ret));
} else if (is_stack_overflow) {
ret = OB_SIZE_OVERFLOW;
LOG_WARN("stack overflow, maybe too deep recursive", K(ret));
} else if (log_op_def::LOG_EXCHANGE == root_op.get_type() &&
static_cast<const ObLogExchange*>(&root_op)->is_px_consumer()) {
if (OB_FAIL(create_dfo_tree(px_trees, static_cast<ObLogExchange&>(root_op)))) {
LOG_WARN("fail create dfo tree", K(ret));
}
} else {
int64_t num = root_op.get_num_of_child();
for (int64_t child_idx = 0; OB_SUCC(ret) && child_idx < num; ++child_idx) {
DfoInfo* root_dfo = nullptr;
if (nullptr == root_op.get_child(child_idx)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("unexpected null ptr", K(child_idx), K(num), K(ret));
} else if (OB_FAIL(SMART_CALL(convert_log_plan_to_nested_px_tree(px_trees, *root_op.get_child(child_idx))))) {
LOG_WARN("fail split px tree", K(child_idx), K(num), K(ret));
}
}
}
return ret;
}
int ObPxResourceAnalyzer::create_dfo_tree(ObIArray<PxInfo>& px_trees, ObLogExchange& root_op)
{
int ret = OB_SUCCESS;
PxInfo px_info;
DfoInfo* root_dfo = nullptr;
px_info.root_op_ = &root_op;
ObLogicalOperator* child = root_op.get_child(ObLogicalOperator::first_child);
if (OB_ISNULL(child)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("exchange out op should always has a child", "type", root_op.get_type(), KP(child), K(ret));
} else if (log_op_def::LOG_EXCHANGE != child->get_type() ||
static_cast<const ObLogExchange*>(child)->is_px_consumer()) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("expect a px producer below qc op", "type", root_op.get_type(), K(ret));
} else if (OB_FAIL(do_split(px_trees, px_info, *child, root_dfo))) {
LOG_WARN("fail split dfo for current dfo tree", K(ret));
} else if (OB_FAIL(px_trees.push_back(px_info))) {
LOG_WARN("fail push back root dfo to dfo tree collector", K(ret));
}
return ret;
}
int ObPxResourceAnalyzer::do_split(
ObIArray<PxInfo>& px_trees, PxInfo& px_info, ObLogicalOperator& root_op, DfoInfo* parent_dfo)
{
int ret = OB_SUCCESS;
bool is_stack_overflow = false;
if (OB_FAIL(check_stack_overflow(is_stack_overflow))) {
LOG_WARN("failed to check stack overflow", K(ret));
} else if (is_stack_overflow) {
ret = OB_SIZE_OVERFLOW;
LOG_WARN("stack overflow, maybe too deep recursive", K(ret));
} else if (log_op_def::LOG_EXCHANGE == root_op.get_type() &&
static_cast<const ObLogExchange&>(root_op).is_px_consumer() &&
static_cast<const ObLogExchange&>(root_op).is_rescanable()) {
if (OB_FAIL(convert_log_plan_to_nested_px_tree(px_trees, root_op))) {
LOG_WARN("fail create qc for rescan op", K(ret));
}
} else {
if (log_op_def::LOG_EXCHANGE == root_op.get_type() && static_cast<const ObLogExchange&>(root_op).is_px_producer()) {
DfoInfo* dfo = nullptr;
if (OB_FAIL(create_dfo(dfo, static_cast<const ObLogExchange&>(root_op).get_px_dop()))) {
LOG_WARN("fail create dfo", K(ret));
} else {
if (nullptr == parent_dfo) {
px_info.root_dfo_ = dfo;
} else {
parent_dfo->add_child(dfo);
}
dfo->set_parent(parent_dfo);
parent_dfo = dfo;
}
}
if (OB_SUCC(ret)) {
int64_t num = root_op.get_num_of_child();
for (int64_t child_idx = 0; OB_SUCC(ret) && child_idx < num; ++child_idx) {
DfoInfo* root_dfo = nullptr;
if (OB_ISNULL(root_op.get_child(child_idx))) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("unexpected null ptr", K(child_idx), K(num), K(ret));
} else if (OB_FAIL(SMART_CALL(do_split(px_trees, px_info, *root_op.get_child(child_idx), parent_dfo)))) {
LOG_WARN("fail split px tree", K(child_idx), K(num), K(ret));
}
}
}
}
return ret;
}
int ObPxResourceAnalyzer::create_dfo(DfoInfo*& dfo, int64_t dop)
{
int ret = OB_SUCCESS;
void* mem_ptr = dfo_allocator_.alloc(sizeof(DfoInfo));
if (OB_ISNULL(mem_ptr)) {
ret = OB_ALLOCATE_MEMORY_FAILED;
LOG_WARN("fail allocate memory", K(ret));
} else if (nullptr == (dfo = new (mem_ptr) DfoInfo())) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("Null ptr unexpected", KP(mem_ptr), K(ret));
} else {
dfo->set_dop(dop);
}
return ret;
}
int ObPxResourceAnalyzer::walk_through_px_trees(ObIArray<PxInfo>& px_trees, int64_t& max_parallel_thread_group_count)
{
int ret = OB_SUCCESS;
max_parallel_thread_group_count = 0;
for (int64_t i = 0; OB_SUCC(ret) && i < px_trees.count(); ++i) {
int64_t count = 0;
PxInfo& px_info = px_trees.at(i);
if (OB_FAIL(walk_through_dfo_tree(px_info, count))) {
LOG_WARN("fail calc px thread group count", K(i), "total", px_trees.count(), K(ret));
} else if (OB_ISNULL(px_info.root_op_)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("QC op not set in px_info struct", K(ret));
} else {
px_info.threads_ = count;
px_info.root_op_->set_expected_worker_count(count);
}
max_parallel_thread_group_count += count;
}
return ret;
}
int ObPxResourceAnalyzer::walk_through_dfo_tree(PxInfo& px_root, int64_t& max_parallel_thread_group_count)
{
int ret = OB_SUCCESS;
// simulate sched
ObArray<DfoInfo*> edges;
SchedOrderGenerator sched_order_gen;
if (OB_ISNULL(px_root.root_dfo_)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("NULL ptr", K(ret));
} else if (OB_FAIL(DfoTreeNormalizer<DfoInfo>::normalize(*px_root.root_dfo_))) {
LOG_WARN("fail normalize px tree", K(ret));
} else if (OB_FAIL(sched_order_gen.generate(*px_root.root_dfo_, edges))) {
LOG_WARN("fail generate sched order", K(ret));
}
#ifndef NDEBUG
for (int x = 0; x < edges.count(); ++x) {
LOG_DEBUG("dump dfo", K(x), K(*edges.at(x)));
}
#endif
int64_t threads = 0;
int64_t max_threads = 0;
for (int64_t i = 0; OB_SUCC(ret) && i < edges.count(); ++i) {
DfoInfo& child = *edges.at(i);
threads += child.set_sched();
threads += child.set_parent_sched();
if (child.has_sibling() && child.depend_sibling_->is_leaf_node()) {
threads += child.depend_sibling_->set_sched();
}
if (threads > max_threads) {
max_threads = threads;
}
#ifndef NDEBUG
for (int x = 0; x < edges.count(); ++x) {
LOG_DEBUG("dump dfo step.sched", K(i), K(x), K(*edges.at(x)), K(threads), K(max_threads));
}
#endif
if (child.is_leaf_node()) {
threads -= child.set_finish();
} else if (child.is_all_child_finish()) {
threads -= child.set_finish();
}
if (child.has_sibling() && child.depend_sibling_->is_leaf_node()) {
threads -= child.depend_sibling_->set_finish();
}
#ifndef NDEBUG
for (int x = 0; x < edges.count(); ++x) {
LOG_DEBUG("dump dfo step.finish", K(i), K(x), K(*edges.at(x)), K(threads), K(max_threads));
}
#endif
}
max_parallel_thread_group_count = max_threads;
return ret;
}