138 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/bin/env python
 | 
						|
__author__ = 'dongyun.zdy'
 | 
						|
 | 
						|
 | 
						|
import math
 | 
						|
import numpy as np
 | 
						|
from scipy.optimize import leastsq
 | 
						|
from scipy.optimize import curve_fit
 | 
						|
import sys
 | 
						|
from lmfit import Model
 | 
						|
import getopt
 | 
						|
 | 
						|
STARTUP = 0.0
 | 
						|
 | 
						|
def get_model_form(args,
 | 
						|
                   # Tstartup,
 | 
						|
                   Tper_row,
 | 
						|
                   Tper_col,
 | 
						|
                   Tcorrection1,
 | 
						|
                   Tcorrection2,
 | 
						|
                   # Tlog3
 | 
						|
                   ):
 | 
						|
    (
 | 
						|
        Nrow,
 | 
						|
        Ncol,
 | 
						|
    ) = args
 | 
						|
 | 
						|
    global STARTUP
 | 
						|
    total_cost = STARTUP#Tstartup
 | 
						|
    total_cost += Nrow * (Tper_row + Ncol * Tper_col)
 | 
						|
    total_cost += Tcorrection1 * math.log(Tcorrection2 * Nrow , 2)
 | 
						|
    return total_cost
 | 
						|
 | 
						|
def get_model_arr(arg_sets,
 | 
						|
                  # Tstartup,
 | 
						|
                  Tper_row,
 | 
						|
                  Tper_col,
 | 
						|
                  Tcorrection1,
 | 
						|
                  Tcorrection2,
 | 
						|
                  # Tlog3
 | 
						|
                  ):
 | 
						|
    res = []
 | 
						|
    for single_arg_set in arg_sets:
 | 
						|
        res.append(get_model_form(single_arg_set,
 | 
						|
                                  # Tstartup,
 | 
						|
                                  Tper_row,
 | 
						|
                                  Tper_col,
 | 
						|
                                  Tcorrection1,
 | 
						|
                                  Tcorrection2,
 | 
						|
                                  # Tlog3
 | 
						|
                                  ))
 | 
						|
    return np.array(res)
 | 
						|
 | 
						|
get_model = Model(get_model_arr)
 | 
						|
# get_model.set_param_hint("Tstartup", min=0.0)
 | 
						|
get_model.set_param_hint("Tper_row", min=0.0)
 | 
						|
get_model.set_param_hint("Tper_col", min=0.0)
 | 
						|
get_model.set_param_hint("Tcorrection1", min=0.0)
 | 
						|
get_model.set_param_hint("Tcorrection2", min=0.0)
 | 
						|
# get_model.set_param_hint("Tlog3", min=0.0)
 | 
						|
 | 
						|
 | 
						|
def extract_info_from_line(line):
 | 
						|
    splited = line.split(",")
 | 
						|
    line_info = []
 | 
						|
    for item in splited:
 | 
						|
        line_info.append(float(item))
 | 
						|
    return line_info
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    file_name = "scan_model.res.formal.prep"
 | 
						|
    out_file_name = "scan_model.fit"
 | 
						|
 | 
						|
    # sys.argv.extend("-i get.IO.prep -o get.IO.model".split(" "))
 | 
						|
 | 
						|
    output_fit_res = False
 | 
						|
    wrong_arg = False
 | 
						|
    opts,args = getopt.getopt(sys.argv[1:],"i:o:")
 | 
						|
    for op, value in opts:
 | 
						|
        if "-i" == op:
 | 
						|
            file_name = value
 | 
						|
        elif "-o" == op:
 | 
						|
            output_fit_res = True
 | 
						|
            out_file_name = value
 | 
						|
        else:
 | 
						|
            wrong_arg = True
 | 
						|
 | 
						|
    if wrong_arg:
 | 
						|
        print "wrong arg"
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    if file_name.find('rc') != -1:
 | 
						|
        STARTUP = 170.0
 | 
						|
    elif file_name.find('bc') != -1:
 | 
						|
        STARTUP = 210.0
 | 
						|
    else:
 | 
						|
        STARTUP = 520.0
 | 
						|
 | 
						|
    file = open(file_name, "r")
 | 
						|
    arg_sets = []
 | 
						|
    times = []
 | 
						|
    case_params = []
 | 
						|
    for line in file:
 | 
						|
        if line.startswith('#'):
 | 
						|
            continue
 | 
						|
        case_param = extract_info_from_line(line)
 | 
						|
        case_params.append(case_param)
 | 
						|
        arg_sets.append((case_param[0], case_param[1]))
 | 
						|
        times.append(case_param[4])
 | 
						|
    file.close()
 | 
						|
    arg_sets_np = np.array(arg_sets)
 | 
						|
    times_np = np.array(times)
 | 
						|
    #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | 
						|
    result = get_model.fit(times_np, arg_sets=arg_sets_np,
 | 
						|
                           # Tstartup=10.0,
 | 
						|
                           Tper_row=10.0,
 | 
						|
                           Tper_col=1.0,
 | 
						|
                           Tcorrection1=1.0,
 | 
						|
                           Tcorrection2=1.0,
 | 
						|
                           # Tlog3=1.0,
 | 
						|
                           )
 | 
						|
 | 
						|
 | 
						|
    # res_line = str(result.best_values["Tstartup"]) + ","
 | 
						|
    res_line = str(result.best_values["Tper_row"]) + ","
 | 
						|
    res_line += str(result.best_values["Tper_col"]) + ","
 | 
						|
    res_line += str(result.best_values["Tcorrection1"]) + ","
 | 
						|
    res_line += str(result.best_values["Tcorrection2"]) #+ ","
 | 
						|
    # res_line += str(result.best_values["Tlog3"])
 | 
						|
 | 
						|
    print result.fit_report()
 | 
						|
 | 
						|
    if output_fit_res:
 | 
						|
        out_file = open(out_file_name, "w")
 | 
						|
        out_file.write(res_line)
 | 
						|
        out_file.close()
 |