141 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/bin/env python
 | |
| __author__ = 'dongyun.zdy'
 | |
| 
 | |
| 
 | |
| import math
 | |
| import numpy as np
 | |
| from scipy.optimize import leastsq
 | |
| from scipy.optimize import curve_fit
 | |
| import sys
 | |
| from lmfit import Model
 | |
| import getopt
 | |
| 
 | |
| 
 | |
| def get_row_size(col):
 | |
|     size = 16
 | |
|     size += col * (3 + 8 + 4 + 8 + 16 + 32 + 64 + 128)
 | |
|     size += col
 | |
|     return size
 | |
| 
 | |
| def round_wasted_spave(rsize, psize):
 | |
|     nr = math.floor(float(psize / rsize))
 | |
|     waste = psize - nr * rsize
 | |
|     return rsize + waste / nr
 | |
| 
 | |
| 
 | |
| 
 | |
| def get_miss_prob(Nrow, Ncol, Turn):
 | |
|     total_size = Nrow * get_row_size(Ncol)
 | |
|     TLBcovered = Turn
 | |
|     if TLBcovered >= 0.9 * total_size:
 | |
|         hit = 0.9
 | |
|     else:
 | |
|         hit = TLBcovered / total_size
 | |
|     return 1 - hit
 | |
| 
 | |
| def sort_model_form(args,
 | |
|                     Tmiss,
 | |
|                     Turn
 | |
|                     ):
 | |
|     (
 | |
|         Nrow,
 | |
|         Ncol,
 | |
|     ) = args
 | |
| 
 | |
|     total_cost = 0
 | |
| 
 | |
|     total_cost += Nrow * Tmiss * Ncol * get_miss_prob(Nrow, Ncol, Turn)
 | |
| 
 | |
|     return total_cost
 | |
| 
 | |
| def sort_model_arr(arg_sets,
 | |
|                    Tmiss,
 | |
|                    Turn,
 | |
|                    ):
 | |
|     res = []
 | |
|     for single_arg_set in arg_sets:
 | |
|         res.append(sort_model_form(single_arg_set,
 | |
|                                    Tmiss,
 | |
|                                    Turn,
 | |
|                                    ))
 | |
|     return np.array(res)
 | |
| 
 | |
| sort_model = Model(sort_model_arr)
 | |
| sort_model.set_param_hint("Tmiss", min=0.0)
 | |
| sort_model.set_param_hint("Turn", min=2097152.0, max=2097153.0)
 | |
| 
 | |
| # sort_model.set_param_hint("Tmiss_K2", min=0.0)
 | |
| 
 | |
| def extract_info_from_line(line):
 | |
|     splited = line.split(",")
 | |
|     line_info = []
 | |
|     for item in splited:
 | |
|         line_info.append(float(item))
 | |
|     return line_info
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     file_name = "miss.prep.1"
 | |
|     out_file_name = "miss.model"
 | |
| 
 | |
|     # sys.argv.extend("-i sort.prep.bigint -o sort.model".split(" "))
 | |
| 
 | |
|     output_fit_res = False
 | |
|     wrong_arg = False
 | |
|     opts,args = getopt.getopt(sys.argv[1:],"i:o:R:C:")
 | |
|     for op, value in opts:
 | |
|         if "-i" == op:
 | |
|             file_name = value
 | |
|         elif "-o" == op:
 | |
|             output_fit_res = True
 | |
|             out_file_name = value
 | |
|         elif "-R" == op:
 | |
|             MATERIAL_ROW_ONCE = float(value)
 | |
|         elif "-C" == op:
 | |
|             MATERIAL_ROW_COL = float(value)
 | |
|         else:
 | |
|             wrong_arg = True
 | |
| 
 | |
|     if wrong_arg:
 | |
|         print "wrong arg"
 | |
|         sys.exit(1)
 | |
| 
 | |
|     file = open(file_name, "r")
 | |
|     arg_sets = []
 | |
|     times = []
 | |
|     case_params = []
 | |
|     for line in file:
 | |
|         if line.startswith('#'):
 | |
|             continue
 | |
|         case_param = extract_info_from_line(line)
 | |
|         case_params.append(case_param)
 | |
|         arg_sets.append((case_param[0], case_param[1]))
 | |
|         times.append(case_param[3])
 | |
|     file.close()
 | |
|     arg_sets_np = np.array(arg_sets)
 | |
|     times_np = np.array(times)
 | |
|     #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | |
|     result = sort_model.fit(times_np, arg_sets=arg_sets_np,
 | |
|                             Tmiss=1.0,
 | |
|                             Turn=2097152,
 | |
|                             )
 | |
| 
 | |
|     Tmiss = result.best_values["Tmiss"]
 | |
|     Turn = result.best_values["Turn"]
 | |
|     res_line = str(Tmiss) + ","
 | |
|     res_line += str(Turn)
 | |
|     # res_line += str(result.best_values["Tmiss_K2"])
 | |
| 
 | |
| 
 | |
|     print result.fit_report()
 | |
| 
 | |
|     if output_fit_res:
 | |
|         out_file = open(out_file_name, "w")
 | |
|         out_file.write(res_line)
 | |
|         out_file.close()
 | |
| 
 | |
|     for i, args in enumerate(arg_sets):
 | |
|         cost = sort_model_form(args, Tmiss, Turn)
 | |
|         time = times[i]
 | |
|         print "\t".join([str(args), str(time), str(cost)])
 | 
