Files
oceanbase/deps/oblib/unittest/lib/hash/test_hashmap.cpp
shenyunlong.syl b60e4f8d97 [FEAT MERGE] [OBKV] support TTL
Co-authored-by: IHEII <602280108@qq.com>
2023-09-04 01:10:37 +00:00

434 lines
13 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include "lib/hash/ob_hashmap.h"
#include "lib/hash/ob_hashutils.h"
#include "lib/allocator/ob_malloc.h"
#include "gtest/gtest.h"
using namespace oceanbase;
using namespace common;
using namespace hash;
uint32_t gHashItemNum = 128;
typedef uint64_t HashKey;
typedef uint64_t HashValue;
class CallBack
{
public:
void operator () (HashMapPair<HashKey, HashValue> &v)
{
v.second = v_;
};
void set_v(HashValue v)
{
v_ = v;
};
private:
HashValue v_;
};
class Predicate
{
public:
bool operator () (HashMapPair<HashKey, HashValue> &v)
{
return v.second >= min_value_;
};
void set_min_value(HashValue v)
{
min_value_ = v;
};
private:
HashValue min_value_;
};
TEST(TestObHashMap, create)
{
ObHashMap<HashKey, HashValue> hm;
// invalid parameters
EXPECT_EQ(OB_INVALID_ARGUMENT, hm.create(0, ObModIds::OB_HASH_BUCKET));
// normal create
EXPECT_EQ(0, hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET));
// duplicated create
EXPECT_EQ(OB_INIT_TWICE, hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET));
}
TEST(TestObHashMap, set)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key[4] = {1, 2, 1, 1 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 300, 301};
// no create
EXPECT_EQ(OB_NOT_INIT, hm.set_refactored(key[0], value[0], 0));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
// normal insert
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[0], value[0], 0));
// insert different bucket keys
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[1], value[1], 0));
// insert common bucket keys
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[3], value[3], 0));
// key exists but doesnt cover
EXPECT_EQ(OB_HASH_EXIST, hm.set_refactored(key[2], value[2], 0));
EXPECT_EQ(3, hm.size());
// key exists and covers
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[2], value[2], 1));
EXPECT_EQ(3, hm.size());
}
TEST(TestObHashMap, get)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key[4] = {1, 2, 1, 1 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 300, 301};
HashValue value_tmp;
// no create
EXPECT_EQ(OB_NOT_INIT, hm.get_refactored(key[0], value_tmp));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
// query existing data
hm.set_refactored(key[0], value[0], 0);
hm.set_refactored(key[1], value[1], 0);
hm.set_refactored(key[3], value[3], 0);
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key[0], value_tmp));
EXPECT_EQ(value[0], value_tmp);
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key[1], value_tmp));
EXPECT_EQ(value[1], value_tmp);
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key[3], value_tmp));
EXPECT_EQ(value[3], value_tmp);
// query updated data
hm.set_refactored(key[0], value[2], 1);
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key[0], value_tmp));
EXPECT_EQ(value[2], value_tmp);
// query not existing data
EXPECT_EQ(OB_HASH_NOT_EXIST, hm.get_refactored(-1, value_tmp));
}
TEST(TestObHashMap, erase)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key[4] = {1, 2, 1, 1 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 300, 301};
// no create
EXPECT_EQ(OB_NOT_INIT, hm.erase_refactored(key[0]));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
// delete existing data
hm.set_refactored(key[0], value[0], 0);
hm.set_refactored(key[1], value[1], 0);
hm.set_refactored(key[3], value[3], 0);
EXPECT_EQ(OB_SUCCESS, hm.erase_refactored(key[0]));
EXPECT_EQ(OB_SUCCESS, hm.erase_refactored(key[1]));
uint64_t value_ret = 0;
EXPECT_EQ(OB_SUCCESS, hm.erase_refactored(key[3], &value_ret));
EXPECT_EQ(value[3], value_ret);
EXPECT_EQ(0, hm.size());
// delete not existing data
EXPECT_EQ(OB_HASH_NOT_EXIST, hm.erase_refactored(-1));
}
TEST(TestObHashMap, clear)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key[4] = {1, 2, 1, 1 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 300, 301};
// no create
EXPECT_EQ(OB_NOT_INIT, hm.clear());
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
EXPECT_EQ(0, hm.clear());
hm.set_refactored(key[0], value[0], 0);
hm.set_refactored(key[1], value[1], 0);
hm.set_refactored(key[3], value[3], 0);
EXPECT_EQ(3, hm.size());
EXPECT_EQ(0, hm.clear());
EXPECT_EQ(0, hm.size());
}
TEST(TestObHashMap, destroy)
{
ObHashMap<HashKey, HashValue> hm;
// no create
EXPECT_EQ(0, hm.destroy());
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
EXPECT_EQ(0, hm.destroy());
EXPECT_EQ(0, hm.create(gHashItemNum, ObModIds::OB_HASH_BUCKET));
}
TEST(TestObHashMap, iterator)
{
ObHashMap<HashKey, HashValue> hm;
const ObHashMap<HashKey, HashValue>& chm = hm;
ObHashMap<HashKey, HashValue>::iterator iter;
ObHashMap<HashKey, HashValue>::const_iterator citer;
// no create
EXPECT_EQ(true, hm.begin() == hm.end());
iter = hm.begin();
citer = chm.begin();
EXPECT_EQ(true, iter == hm.end());
EXPECT_EQ(true, citer == chm.end());
EXPECT_EQ(true, (++iter) == hm.end());
EXPECT_EQ(true, (++citer) == chm.end());
// no data
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
EXPECT_EQ(true, hm.begin() == hm.end());
iter = hm.begin();
citer = hm.begin();
EXPECT_EQ(true, iter == hm.end());
EXPECT_EQ(true, citer == hm.end());
EXPECT_EQ(true, (++iter) == hm.end());
EXPECT_EQ(true, (++citer) == hm.end());
uint64_t key[4] = {1, 2, 5, 5 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 500, 501};
for (int32_t i = 3; i >= 0; i--)
{
hm.set_refactored(key[i], value[i], 0);
}
iter = hm.begin();
citer = chm.begin();
for (uint32_t i = 0; iter != hm.end(); iter++, i++)
{
EXPECT_EQ(value[i], iter->second);
}
for (uint32_t i = 0; citer != chm.end(); citer++, i++)
{
EXPECT_EQ(value[i], citer->second);
}
}
TEST(TestObHashMap, serialization)
{
ObHashMap<HashKey, HashValue> hm;
SimpleArchive arw, arr;
arw.init("./hash.data", SimpleArchive::FILE_OPEN_WFLAG);
arr.init("./hash.data", SimpleArchive::FILE_OPEN_RFLAG);
SimpleArchive arw_nil, arr_nil;
// no create
EXPECT_EQ(OB_NOT_INIT, hm.serialization(arw));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
// no data
EXPECT_EQ(0, hm.serialization(arw));
EXPECT_EQ(0, hm.deserialization(arr));
uint64_t key[4] = {1, 2, 1, 1 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 300, 301};
for (uint32_t i = 0; i < 4; i++)
{
hm.set_refactored(key[i], value[i], 0);
}
EXPECT_NE(OB_SUCCESS, hm.serialization(arw_nil));
arw.destroy();
arr.destroy();
arw.init("./hash.data", SimpleArchive::FILE_OPEN_WFLAG);
arr.init("./hash.data", SimpleArchive::FILE_OPEN_RFLAG);
EXPECT_EQ(0, hm.serialization(arw));
hm.destroy();
EXPECT_EQ(0, hm.deserialization(arr));
EXPECT_NE(OB_SUCCESS, hm.deserialization(arr));
EXPECT_EQ(3, hm.size());
arr_nil.init("./hash.data.nil", SimpleArchive::FILE_OPEN_RFLAG);
EXPECT_NE(OB_SUCCESS, hm.deserialization(arr_nil));
remove("./hash.data");
remove("./hash.data.nil");
}
TEST(TestObHashMap, atomic)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key = 1;
uint64_t value = 100;
uint64_t value_update = 3000;
CallBack callback;
callback.set_v(value_update);
HashValue value_tmp;
//no create
EXPECT_EQ(OB_NOT_INIT, hm.atomic_refactored(key, callback));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
hm.set_refactored(key, value, 0);
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key, value_tmp));
EXPECT_EQ(value, value_tmp);
EXPECT_EQ(OB_SUCCESS, hm.atomic_refactored(key, callback));
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key, value_tmp));
EXPECT_EQ(value_update, value_tmp);
EXPECT_EQ(OB_HASH_NOT_EXIST, hm.atomic_refactored(key + 1, callback));
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key, value_tmp));
EXPECT_EQ(value_update, value_tmp);
}
TEST(TestObHashMap, set_or_update)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key = 1;
uint64_t value = 100;
CallBack callback;
HashValue value_tmp;
// 没有create
EXPECT_EQ(OB_NOT_INIT, hm.set_or_update(key, value, callback));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
callback.set_v(value);
EXPECT_EQ(OB_HASH_NOT_EXIST, hm.get_refactored(key, value_tmp));
EXPECT_EQ(OB_SUCCESS, hm.set_or_update(key, value, callback));
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key, value_tmp));
EXPECT_EQ(value, value_tmp);
uint64_t value_update = 3000;
callback.set_v(value_update);
EXPECT_EQ(OB_SUCCESS, hm.set_or_update(key, value, callback));
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key, value_tmp));
EXPECT_EQ(value_update, value_tmp);
}
TEST(TestObHashMap, erase_if)
{
ObHashMap<HashKey, HashValue> hm;
uint64_t key = 1;
uint64_t value = 100;
Predicate pred;
HashValue value_tmp;
bool is_erased = true;
// 没有create
EXPECT_EQ(OB_NOT_INIT, hm.erase_if(key, pred, is_erased));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
pred.set_min_value(value + 1);
EXPECT_EQ(OB_HASH_NOT_EXIST, hm.get_refactored(key, value_tmp));
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key, value));
EXPECT_EQ(OB_SUCCESS, hm.erase_if(key, pred, is_erased, &value_tmp));
EXPECT_EQ(false, is_erased);
EXPECT_EQ(OB_SUCCESS, hm.get_refactored(key, value_tmp));
EXPECT_EQ(value, value_tmp);
pred.set_min_value(value);
value_tmp = 0;
EXPECT_EQ(OB_SUCCESS, hm.erase_if(key, pred, is_erased, &value_tmp));
EXPECT_EQ(true, is_erased);
EXPECT_EQ(value, value_tmp);
EXPECT_EQ(OB_HASH_NOT_EXIST, hm.get_refactored(key, value_tmp));
}
struct GAllocator
{
void *alloc(const int64_t sz)
{
fprintf(stdout, "::malloc\n");
return ::malloc(sz);
}
void free(void *p)
{
fprintf(stdout, "::free\n");
::free(p);
}
void clear() {};
void set_attr(const ObMemAttr &attr) {UNUSED(attr);};
void set_label(const lib::ObLabel &label) {UNUSED(label);};
};
template <class T>
class GAllocBigArray : public BigArrayTemp<T, GAllocator>
{
};
TEST(TestObHashMap, use_gallocator)
{
ObHashMap<HashKey,
HashValue,
ReadWriteDefendMode,
hash_func<HashKey>,
equal_to<HashKey>,
SimpleAllocer<HashMapTypes<HashKey, HashValue>::AllocType, 1024, SpinMutexDefendMode, GAllocator>,
GAllocBigArray> hm;
uint64_t key[4] = {1, 2, 1, 1 + static_cast<uint64_t> (cal_next_prime(gHashItemNum))};
uint64_t value[4] = {100, 200, 300, 301};
// no create
EXPECT_EQ(OB_NOT_INIT, hm.set_refactored(key[0], value[0], 0));
hm.create(cal_next_prime(gHashItemNum), ObModIds::OB_HASH_BUCKET);
// normal insert
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[0], value[0], 0));
// insert different bucket keys
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[1], value[1], 0));
// insert common bucket keys
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[3], value[3], 0));
// key exists but does not cover
EXPECT_EQ(OB_HASH_EXIST, hm.set_refactored(key[2], value[2], 0));
// key exists and covers
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(key[2], value[2], 1));
}
TEST(TestObHashMap, buckect_iterator)
{
ObHashMap<HashKey, HashValue> hm;
ObHashMap<HashKey, HashValue> hm2;
hm.create(64, ObModIds::OB_HASH_BUCKET);
hm2.create(64, ObModIds::OB_HASH_BUCKET);
int i = 1024;
while (i--) {
EXPECT_EQ(OB_SUCCESS, hm.set_refactored(i, i, 0));
EXPECT_EQ(OB_SUCCESS, hm2.set_refactored(i, i, 0));
}
EXPECT_EQ(hm.size(), hm2.size());
EXPECT_NE(0, hm2.size());
using hashtable = std::remove_reference<decltype(hm)>::type::hashtable;
auto bucket_it = hm.bucket_begin();
while (bucket_it != hm.bucket_end()) {
hashtable::bucket_lock_cond blc(*bucket_it);
hashtable::readlocker locker(blc.lock());
hashtable::hashbucket::const_iterator node_it = bucket_it->node_begin();
while (node_it != bucket_it->node_end()) {
HashValue value_tmp;
EXPECT_EQ(OB_SUCCESS, hm2.erase_refactored(node_it->first, &value_tmp));
EXPECT_EQ(value_tmp, node_it->second);
node_it++;
}
bucket_it++;
}
EXPECT_EQ(0, hm2.size());
}
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc,argv);
return RUN_ALL_TESTS();
}