oceanbase/unittest/sql/engine/basic/test_chunk_datum_store.cpp
zzg19950727 3cada22bdc [FEAT MERGE]4_2_sql_feature
Co-authored-by: yinyj17 <yinyijun92@gmail.com>
Co-authored-by: xianyu-w <707512433@qq.com>
Co-authored-by: jingtaoye35 <1255153887@qq.com>
2023-04-28 11:12:11 +00:00

1028 lines
32 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#define USING_LOG_PREFIX SQL
#include <gtest/gtest.h>
#include "lib/alloc/ob_malloc_allocator.h"
#include "lib/allocator/ob_malloc.h"
#include "storage/blocksstable/ob_data_file_prepare.h"
#include "storage/blocksstable/ob_tmp_file.h"
#include "sql/engine/basic/ob_chunk_datum_store.h"
#include "sql/engine/basic/ob_ra_row_store.h"
#include "common/row/ob_row_store.h"
#include "share/config/ob_server_config.h"
#include "sql/ob_sql_init.h"
#include "share/datum/ob_datum.h"
#include "sql/engine/expr/ob_expr.h"
#include "share/ob_simple_mem_limit_getter.h"
namespace oceanbase
{
namespace sql
{
using namespace common;
static ObSimpleMemLimitGetter getter;
class TestEnv : public ::testing::Environment
{
public:
virtual void SetUp() override
{
GCONF.enable_sql_operator_dump.set_value("True");
int ret = OB_SUCCESS;
lib::ObMallocAllocator *malloc_allocator = lib::ObMallocAllocator::get_instance();
//ret = malloc_allocator->create_tenant_ctx_allocator(OB_SYS_TENANT_ID);
//ASSERT_EQ(OB_SUCCESS, ret);
ret = malloc_allocator->create_and_add_tenant_allocator(
OB_SYS_TENANT_ID);
ASSERT_EQ(OB_SUCCESS, ret);
int s = (int)time(NULL);
LOG_INFO("initial setup random seed", K(s));
srandom(s);
}
virtual void TearDown() override
{
}
};
#define CALL(func, ...) func(__VA_ARGS__); ASSERT_FALSE(HasFatalFailure());
struct MyAllocator : public DefaultPageAllocator
{
void *alloc(const int64_t sz, const ObMemAttr &attr) override
{
int64_t size = sz + 8;
uint64_t *mem = (uint64_t *)DefaultPageAllocator::alloc(size, attr);
if (NULL != mem) {
*mem = sz;
total_ += sz;
return mem + 1;
}
return NULL;
}
void free(void *p)
{
if (NULL != p) {
uint64_t *mem = ((uint64_t *)p - 1);
total_ -= *mem;
memset(p, 0xAA, *mem);
DefaultPageAllocator::free(mem);
}
}
int64_t total_ = 0;
};
class TestChunkDatumStore : public blocksstable::TestDataFilePrepare
{
public:
TestChunkDatumStore() : blocksstable::TestDataFilePrepare(&getter,
"TestDisk_chunk_datum_store", 2<<20, 5000),
plan_ctx_(alloc_),
exec_ctx_(alloc_),
eval_ctx_(exec_ctx_)
{
}
struct BatchGuard
{
BatchGuard(TestChunkDatumStore &t) : t_(t)
{
FOREACH_CNT(e, t_.cells_) {
(*e)->batch_result_ = true;
}
FOREACH_CNT(e, t_.ver_cells_) {
(*e)->batch_result_ = true;
}
}
~BatchGuard()
{
FOREACH_CNT(e, t_.cells_) {
(*e)->batch_result_ = false;
}
FOREACH_CNT(e, t_.ver_cells_) {
(*e)->batch_result_ = false;
}
}
TestChunkDatumStore &t_;
};
void init_exprs()
{
int64_t pos = 0;
eval_ctx_.frames_ = static_cast<char**>(alloc_.alloc(sizeof(void*) * 2));
ASSERT_EQ(true, nullptr != eval_ctx_.frames_);
int64_t frame_size = (sizeof(ObDatum) + 16) * COLS * batch_size_ * 2;
eval_ctx_.frames_[0] = (char *)alloc_.alloc(frame_size);
memset(eval_ctx_.frames_[0], 0, frame_size);
ASSERT_EQ(true, nullptr != eval_ctx_.frames_[0]);
for (int64_t i = 0; i < COLS; ++i) {
ObExpr *expr = new (alloc_.alloc(sizeof(ObExpr))) ObExpr();
ASSERT_EQ(OB_SUCCESS, cells_.push_back(expr));
expr->frame_idx_ = 0;
expr->datum_off_ = pos;
pos += sizeof(ObDatum) * batch_size_;
expr->eval_info_off_ = pos;
pos += sizeof(ObEvalInfo);
ObDatum *datums = expr->locate_batch_datums(eval_ctx_);
for (int64_t j = 0; j < batch_size_; j++) {
datums[j].ptr_ = eval_ctx_.frames_[0] + pos;
pos += 8;
}
}
for (int64_t i = 0; i < COLS; ++i) {
ObExpr *expr = new (alloc_.alloc(sizeof(ObExpr))) ObExpr();
ASSERT_EQ(OB_SUCCESS, ver_cells_.push_back(expr));
expr->frame_idx_ = 0;
expr->datum_off_ = pos;
pos += sizeof(ObDatum) * batch_size_;
expr->eval_info_off_ = pos;
pos += sizeof(ObEvalInfo);
ObDatum *datums = expr->locate_batch_datums(eval_ctx_);
for (int64_t j = 0; j < batch_size_; j++) {
datums[j].ptr_ = eval_ctx_.frames_[0] + pos;
pos += 8;
}
}
}
virtual void SetUp() override
{
int ret = OB_SUCCESS;
ASSERT_EQ(OB_SUCCESS, init_tenant_mgr());
blocksstable::TestDataFilePrepare::SetUp();
ret = blocksstable::ObTmpFileManager::get_instance().init();
ASSERT_EQ(OB_SUCCESS, ret);
static ObTenantBase tenant_ctx(tenant_id_);
ObTenantEnv::set_tenant(&tenant_ctx);
ObTenantIOManager *io_service = nullptr;
EXPECT_EQ(OB_SUCCESS, ObTenantIOManager::mtl_init(io_service));
cell_cnt_ = COLS;
init_exprs();
plan_.set_batch_size(batch_size_);
plan_ctx_.set_phy_plan(&plan_);
eval_ctx_.set_max_batch_size(batch_size_);
exec_ctx_.set_physical_plan_ctx(&plan_ctx_);
skip_ = (ObBitVector *)alloc_.alloc(ObBitVector::memory_size(batch_size_));
//mem limit 1M
rs_.set_allocator(rs_alloc_);
ret = rs_.init(1L << 20, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(OB_SUCCESS, rs_.alloc_dir_id());
memset(str_buf_, 'a', BUF_SIZE);
for (int64_t i = 0; i < BUF_SIZE; i++) {
str_buf_[i] += i % 26;
}
LOG_INFO("setup finished");
}
int init_tenant_mgr();
virtual void TearDown() override
{
it_.reset();
rs_.reset();
rs_.~ObChunkDatumStore();
blocksstable::ObTmpFileManager::get_instance().destroy();
blocksstable::TestDataFilePrepare::TearDown();
LOG_INFO("TearDown finished", K_(rs));
}
void gen_row(int64_t row_id, int64_t idx = 0)
{
ObDatum *expr_datum_0 = &cells_.at(0)->locate_batch_datums(eval_ctx_)[idx];
expr_datum_0->set_int(row_id);
cells_.at(0)->get_eval_info(eval_ctx_).evaluated_ = true;
cells_.at(0)->get_eval_info(eval_ctx_).projected_ = true;
int64_t max_size = 512;
if (enable_big_row_ && row_id > 0 && random() % 100000 < 5) {
max_size = 1 << 20;
}
ObDatum *expr_datum_1 = &cells_.at(1)->locate_batch_datums(eval_ctx_)[idx];
expr_datum_1->set_null();
cells_.at(1)->get_eval_info(eval_ctx_).evaluated_ = true;
cells_.at(1)->get_eval_info(eval_ctx_).projected_ = true;
int64_t size = 10 + random() % max_size;
ObDatum *expr_datum_2 = &cells_.at(2)->locate_batch_datums(eval_ctx_)[idx];
expr_datum_2->set_string(str_buf_, (int)size);
cells_.at(2)->get_eval_info(eval_ctx_).evaluated_ = true;
cells_.at(2)->get_eval_info(eval_ctx_).projected_ = true;
}
//varify next row
//template <typename T>
void verify_row(ObChunkDatumStore::Iterator& it, int64_t n, bool verify_all = false)
{
int ret = it.get_next_row(ver_cells_, eval_ctx_);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(verify_row_data, n, verify_all);
}
void verify_row_data(int64_t n, bool verify_all = false, int64_t idx = 0)
{
ObDatum *expr_datum_0 = &ver_cells_.at(0)->locate_batch_datums(eval_ctx_)[idx];
ObDatum *expr_datum_1 = &ver_cells_.at(1)->locate_batch_datums(eval_ctx_)[idx];
ObDatum *expr_datum_2 = &ver_cells_.at(2)->locate_batch_datums(eval_ctx_)[idx];
int64_t v = expr_datum_0->get_int();
if (verify_all) {
expr_datum_1->is_null();
if (0 != strncmp(str_buf_, expr_datum_2->ptr_, expr_datum_2->len_)) {
LOG_WARN_RET(OB_ERROR, "verify failed", K(v), K(n));
}
ASSERT_EQ(0, strncmp(str_buf_, expr_datum_2->ptr_, expr_datum_2->len_));
}
if (n >= 0) {
if (n != v) {
LOG_WARN_RET(OB_ERROR, "verify failed", K(n), K(v));
}
ASSERT_EQ(n, v);
}
}
void verify_next_row(int64_t id = -1, bool verify_all = false)
{
if (!it_.is_valid()) {
ASSERT_EQ(rs_.begin(it_), 0);
}
return verify_row(it_, id, verify_all);
}
void verify_n_rows(ObChunkDatumStore &rs, ObChunkDatumStore::Iterator& it,
int64_t n, bool verify_all = false, int64_t chunk_size = 0, int64_t start = 0)
{
if (!it.is_valid()) {
ASSERT_EQ(rs.begin(it), 0);
}
for (int64_t i = start; i < n; i++) {
CALL(verify_row, it, i, verify_all);
}
}
void verify_n_rows(int64_t n, bool verify_all = false)
{
return verify_n_rows(rs_, it_, n, verify_all);
}
void append_rows(ObChunkDatumStore &rs, int64_t cnt)
{
int64_t ret = OB_SUCCESS;
int64_t base = rs.get_row_cnt();
for (int64_t i = 0; i < cnt; i++) {
gen_row(base + i);
ret = rs.add_row(cells_, &eval_ctx_);
ASSERT_EQ(OB_SUCCESS, ret);
}
ASSERT_EQ(base + cnt, rs.get_row_cnt());
}
void append_rows(int64_t cnt)
{
return append_rows(rs_, cnt);
}
void batch_append_rows(int64_t cnt)
{
int64_t ret = 0;
int64_t base = rs_.get_row_cnt();
skip_->reset(batch_size_);
for (int64_t i = 0; i < cnt;) {
int64_t bcnt = std::min(cnt - i, batch_size_);
for (int64_t j = 0; j < bcnt; j++, i++) {
gen_row(base + i, j);
}
int64_t stored_row_cnt = 0;
ret = rs_.add_batch(cells_, eval_ctx_, *skip_, bcnt, stored_row_cnt);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(stored_row_cnt, bcnt);
}
ASSERT_EQ(base + cnt, rs_.get_row_cnt());
}
void batch_verify_all(int64_t chunk_size)
{
it_.reset();
ASSERT_EQ(OB_SUCCESS, rs_.begin(it_));
int64_t read_cnt = 0;
int ret = OB_SUCCESS;
while (OB_SUCC(ret)) {
int64_t cnt = 0;
ret = it_.get_next_batch(ver_cells_, eval_ctx_, batch_size_, cnt);
if (OB_SUCC(ret)) {
ASSERT_GT(cnt, 0);
for (int64_t i = 0; i < cnt; i++) {
CALL(verify_row_data, read_cnt + i, true, i);
}
read_cnt += cnt;
}
}
ASSERT_EQ(OB_ITER_END, ret);
ASSERT_EQ(read_cnt, rs_.get_row_cnt());
}
void test_time(int64_t block_size, int64_t rows)
{
ObArenaAllocator alloc(ObModIds::OB_MODULE_PAGE_ALLOCATOR, 2 << 20);
ObChunkDatumStore rs(&alloc);
int64_t v = 0;
int64_t i;
int64_t begin = ObTimeUtil::current_time();
int ret = OB_SUCCESS;
ret = rs.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
rs.set_block_size(block_size);
begin = ObTimeUtil::current_time();
for (i = 0; i < rows; i++) {
gen_row(i);
ret = rs.add_row(cells_, &eval_ctx_);
ASSERT_EQ(OB_SUCCESS, ret);
}
LOG_INFO("rs write time:", K(block_size), K(rows),
K(rs.get_block_cnt()), K(rs.get_block_list_cnt()),
K(ObTimeUtil::current_time() - begin));
begin = ObTimeUtil::current_time();
ObChunkDatumStore::Iterator it;
ASSERT_EQ(rs.begin(it), 0);
i = 0;
while (OB_SUCC(it.get_next_row(ver_cells_, eval_ctx_))) {
ObDatum *expr_datum_0 = &ver_cells_.at(0)->locate_expr_datum(eval_ctx_);
v = *expr_datum_0->int_;
ASSERT_EQ(i, v);
i++;
}
LOG_INFO("rc scan time:", K(block_size), K(rows), K(ObTimeUtil::current_time() - begin));
}
void with_or_without_chunk(bool is_with);
protected:
const static int64_t COLS = 3;
bool enable_big_row_ = false;
int64_t cell_cnt_;
ObSEArray<ObExpr*, COLS> cells_;
ObSEArray<ObExpr*, COLS> ver_cells_;
MyAllocator rs_alloc_;
ObChunkDatumStore rs_;
ObChunkDatumStore::Iterator it_;
// 256 is average row length, contain 5 blocks per batch.
int64_t batch_size_ = (64L << 10) * 5 / 256;
ObBitVector *skip_;
int64_t tenant_id_ = OB_SYS_TENANT_ID;
int64_t ctx_id_ = ObCtxIds::WORK_AREA;
const char *label_ = ObModIds::OB_SQL_ROW_STORE;
const static int64_t BUF_SIZE = 2 << 20;
char str_buf_[BUF_SIZE];
ObArenaAllocator alloc_;
ObPhysicalPlan plan_;
ObPhysicalPlanCtx plan_ctx_;
ObExecContext exec_ctx_;
ObArenaAllocator eval_res_;
ObArenaAllocator eval_tmp_;
ObEvalCtx eval_ctx_;
};
int TestChunkDatumStore::init_tenant_mgr()
{
int ret = OB_SUCCESS;
ObAddr self;
oceanbase::rpc::frame::ObReqTransport req_transport(NULL, NULL);
oceanbase::obrpc::ObSrvRpcProxy rpc_proxy;
oceanbase::obrpc::ObCommonRpcProxy rs_rpc_proxy;
oceanbase::share::ObRsMgr rs_mgr;
int64_t tenant_id = OB_SYS_TENANT_ID;
self.set_ip_addr("127.0.0.1", 8086);
ret = getter.add_tenant(tenant_id,
2L * 1024L * 1024L * 1024L, 4L * 1024L * 1024L * 1024L);
EXPECT_EQ(OB_SUCCESS, ret);
const int64_t ulmt = 128LL << 30;
const int64_t llmt = 128LL << 30;
ret = getter.add_tenant(OB_SERVER_TENANT_ID,
ulmt,
llmt);
EXPECT_EQ(OB_SUCCESS, ret);
oceanbase::lib::set_memory_limit(128LL << 32);
return ret;
}
// Test start
TEST_F(TestChunkDatumStore, basic)
{
int ret = OB_SUCCESS;
LOG_WARN("starting basic test: append 3000 rows");
CALL(append_rows, 3000); // approximate 1MB, no need to dump
CALL(verify_n_rows, rs_.get_row_cnt(), true);
LOG_WARN("basic test: varified rows", K(rs_.get_row_cnt()));
it_.reset();
LOG_WARN("starting basic test: append 10000 rows");
CALL(append_rows, 10000); //need to dump
rs_.finish_add_row();
LOG_WARN("mem", K(rs_.get_mem_hold()), K(rs_.get_mem_used()));
ASSERT_EQ(13000, rs_.get_row_cnt());
LOG_WARN("starting basic test: verify rows");
CALL(verify_n_rows, rs_.get_row_cnt() - 1, true);
ret = it_.get_next_row(ver_cells_, eval_ctx_);
ASSERT_EQ(OB_SUCCESS, ret);
ret = it_.get_next_row(ver_cells_, eval_ctx_);
ASSERT_EQ(OB_ITER_END, ret);
it_.reset();
ret = it_.get_next_row(ver_cells_, eval_ctx_);
ASSERT_EQ(OB_SUCCESS, ret);
LOG_WARN("first row");
it_.reset();
rs_.reset();
LOG_WARN("starting basic test: big row 20000 rows");
enable_big_row_ = true;
ret = rs_.init(1L << 20, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, 20000);
LOG_WARN("mem before finish add", K(rs_.get_mem_hold()), K(rs_.get_mem_used()));
ASSERT_EQ(20000, rs_.get_row_cnt());
rs_.finish_add_row();
LOG_WARN("mem after finish add", K(rs_.get_mem_hold()), K(rs_.get_mem_used()));
CALL(verify_n_rows, rs_.get_row_cnt(), true);
LOG_WARN("big row finished");
it_.reset();
rs_.reset();
}
TEST_F(TestChunkDatumStore, has_next_bug)
{
rs_.reset();
int ret = rs_.init(1024, tenant_id_, ctx_id_, label_);
rs_.set_allocator(rs_alloc_);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, 10000);
ASSERT_EQ(OB_SUCCESS, rs_.finish_add_row(true));
int64_t mem_before_iterate = rs_alloc_.total_;
ObChunkDatumStore::Iterator it;
ASSERT_EQ(OB_SUCCESS, rs_.begin(it));
for (int64_t i = 0; i < 10000; i++) {
ASSERT_TRUE(it.has_next());
CALL(verify_row, it, i, true);
}
ASSERT_FALSE(it.has_next());
ASSERT_EQ(OB_ITER_END, it.get_next_row(ver_cells_, eval_ctx_));
int64_t mem_used = rs_alloc_.total_ - mem_before_iterate;
ASSERT_LT(mem_used, 500L * 1024L)
<< " mem_before_iterate: " << mem_before_iterate
<< " cur_mem: " << rs_alloc_.total_;
}
TEST_F(TestChunkDatumStore, iteration_age)
{
rs_.reset();
int ret = rs_.init(1024, tenant_id_, ctx_id_, label_);
rs_.set_allocator(rs_alloc_);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, 20000);
ASSERT_EQ(OB_SUCCESS, rs_.finish_add_row(true));
int64_t mem_before_iterate = rs_alloc_.total_;
ObChunkDatumStore::Iterator it;
ObChunkDatumStore::IterationAge age;
ASSERT_EQ(OB_SUCCESS, rs_.begin(it));
// hold the iterated blocks
it.set_iteration_age(&age);
age.inc();
for (int64_t i = 0; i < 10000; i++) {
ASSERT_TRUE(it.has_next());
CALL(verify_row, it, i, true);
}
int64_t mem_used = rs_alloc_.total_ - mem_before_iterate;
ASSERT_GT(mem_used, 1024L * 1024L)
<< " mem_before_iterate: " << mem_before_iterate
<< " cur_mem: " << rs_alloc_.total_;
mem_before_iterate = rs_alloc_.total_;
// release the iterated blocks.
for (int64_t i = 10000; i < 20000; i++) {
age.inc();
ASSERT_TRUE(it.has_next());
CALL(verify_row, it, i, true);
}
mem_used = rs_alloc_.total_ - mem_before_iterate;
ASSERT_LT(mem_used, 500L * 1024L)
<< " mem_before_iterate: " << mem_before_iterate
<< " cur_mem: " << rs_alloc_.total_;
}
TEST_F(TestChunkDatumStore, batch_basic)
{
BatchGuard g(*this);
CALL(batch_append_rows, 3000); // approximate 1MB, no need to dump
CALL(verify_n_rows, rs_.get_row_cnt(), true);
it_.reset();
CALL(batch_verify_all, 0);
it_.reset();
rs_.reset();
ASSERT_EQ(0, rs_alloc_.total_);
CALL(batch_append_rows, 30000); // need dump
rs_.finish_add_row();
ASSERT_EQ(30000, rs_.get_row_cnt());
ASSERT_GT(rs_.get_file_size(), 1000000);
CALL(batch_verify_all, 0);
CALL(batch_verify_all, 512L << 10);
it_.reset();
rs_.reset();
ASSERT_EQ(0, rs_alloc_.total_);
enable_big_row_ = true;
int ret = rs_.init(1L << 20, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(OB_SUCCESS, rs_.alloc_dir_id());
CALL(batch_append_rows, 20000);
ASSERT_EQ(OB_SUCCESS, rs_.finish_add_row());
ASSERT_EQ(20000, rs_.get_row_cnt());
CALL(batch_verify_all, 0);
it_.reset();
rs_.reset();
ASSERT_EQ(0, rs_alloc_.total_);
}
TEST_F(TestChunkDatumStore, multi_iter)
{
int ret = OB_SUCCESS;
int total = 100;
int64_t i = 0;
int64_t j = 0;
ObChunkDatumStore rs;
ret = rs.init(1 << 20, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
LOG_WARN("starting basic test: append 3000 rows");
CALL(append_rows, rs, total); // approximate 1MB, no need to dump
rs.finish_add_row();
LOG_WARN("Multi_iter", K_(rs.mem_hold), K_(rs.mem_used));
ObChunkDatumStore::Iterator it1;
ASSERT_EQ(OB_SUCCESS, rs.begin(it1));
for (i = 0; i < 10; i++) {
CALL(verify_row, it1, i, true);
if (i % 1000 == 0) {
LOG_WARN("verified rows:", K(i));
}
}
ObChunkDatumStore::Iterator it2;
ASSERT_EQ(OB_SUCCESS, rs.begin(it2));
for (j = 0; j < 50; j++) {
CALL(verify_row, it2, j, true);
}
for (; i < total; i++) {
CALL(verify_row, it1, i, true);
}
for (; j < total; j++) {
CALL(verify_row, it2, j, true);
}
it1.reset();
it2.reset();
LOG_INFO("Multi_iter", K_(rs.mem_hold), K_(rs.mem_used));
rs.reset();
}
TEST_F(TestChunkDatumStore, basic2)
{
int ret = OB_SUCCESS;
ObChunkDatumStore rs;
ObChunkDatumStore::Iterator it;
//mem limit 5M
ret = rs.init(5L << 20, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(OB_SUCCESS, rs.alloc_dir_id());
CALL(append_rows, rs, 100000);
ASSERT_GT(rs.get_mem_hold(), 0);
ASSERT_GT(rs.get_file_size(), 0);
LOG_WARN("mem and disk", K(rs.get_mem_hold()), K(rs.get_file_size()));
rs.finish_add_row();
LOG_WARN("mem and disk after finish add", K(rs.get_mem_hold()), K(rs.get_file_size()));
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true);
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, test_copy_row)
{
int ret = OB_SUCCESS;
int64_t rows = 1000;
ObChunkDatumStore rs;
ObChunkDatumStore::Iterator it;
const ObChunkDatumStore::StoredRow *sr;
LOG_WARN("starting mem_perf test: append rows", K(rows));
int64_t begin = ObTimeUtil::current_time();
ret = rs.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, rs, rows);
ASSERT_EQ(OB_SUCCESS, rs.begin(it));
ASSERT_EQ(OB_SUCCESS, it.get_next_row(sr));
}
TEST_F(TestChunkDatumStore, mem_perf)
{
int ret = OB_SUCCESS;
int64_t rows = 2000000;
ObChunkDatumStore rs;
ObChunkDatumStore::Iterator it;
LOG_WARN("starting mem_perf test: append rows", K(rows));
int64_t begin = ObTimeUtil::current_time();
ret = rs.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, rs, rows);
LOG_WARN("write time:", K(rows), K(ObTimeUtil::current_time() - begin));
CALL(verify_n_rows, rs, it, 10000, true);
LOG_WARN("mem", K(rs.get_mem_hold()), K(rs.get_mem_used()));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rows, true);
LOG_WARN("scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, disk)
{
int64_t begin = 0;
int64_t write_time = 0;
int64_t round = 500;
int64_t rows = round * 10000;
LOG_INFO("starting write disk test: append rows", K(rows));
ObChunkDatumStore rs;
ObChunkDatumStore::Iterator it;
ASSERT_EQ(OB_SUCCESS, rs.init(0, tenant_id_, ctx_id_, label_));
ASSERT_EQ(OB_SUCCESS, rs.alloc_dir_id());
rs.set_mem_limit(100L << 20);
for (int64_t i = 0; i < round; i++) {
if (i == round / 2) {
enable_big_row_ = true;
}
begin = common::ObTimeUtil::current_time();
CALL(append_rows, rs, 10000);
write_time += common::ObTimeUtil::current_time() - begin;
}
LOG_INFO("mem and disk", K(rows), K(rs.get_mem_hold()),
K(rs.get_mem_used()), K(rs.get_file_size()));
LOG_INFO("disk write:", K(rows), K(write_time));
ASSERT_EQ(OB_SUCCESS, rs.finish_add_row());
LOG_INFO("mem and disk after finish", K(rows), K(rs.get_mem_hold()),
K(rs.get_mem_used()), K(rs.get_file_size()));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true);
LOG_INFO("disk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, disk_with_chunk)
{
int64_t begin = 0;
int64_t write_time = 0;
int64_t round = 2;
int64_t cnt = 10000;
int64_t rows = round * cnt;
LOG_INFO("starting write disk test: append rows", K(rows));
ObChunkDatumStore rs;
ObChunkDatumStore::Iterator it;
ASSERT_EQ(OB_SUCCESS, rs.init(0, tenant_id_, ctx_id_, label_));
ASSERT_EQ(OB_SUCCESS, rs.alloc_dir_id());
rs.set_mem_limit(1L << 20);
for (int64_t i = 0; i < round; i++) {
begin = common::ObTimeUtil::current_time();
CALL(append_rows, rs, cnt);
write_time += common::ObTimeUtil::current_time() - begin;
}
LOG_INFO("mem and disk", K(rows), K(rs.get_mem_hold()),
K(rs.get_mem_used()), K(rs.get_file_size()));
LOG_INFO("disk write:", K(rows), K(write_time));
ASSERT_EQ(OB_SUCCESS, rs.finish_add_row());
LOG_INFO("mem and disk after finish", K(rows), K(rs.get_mem_hold()),
K(rs.get_mem_used()), K(rs.get_file_size()), K(rs.max_blk_size_),
K(rs.min_blk_size_), K(rs.n_block_in_file_));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true);
LOG_INFO("disk without chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true);
LOG_INFO("disk without chunk scan time2:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 1L << 20);
LOG_INFO("disk with chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 2L << 20);
LOG_INFO("disk with chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 8L << 20);
LOG_INFO("disk with chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 10L << 20);
LOG_INFO("disk with chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 16L << 20);
LOG_INFO("disk with chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
begin = ObTimeUtil::current_time();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 20L << 20);
LOG_INFO("disk with chunk scan time:", K(rows), K(ObTimeUtil::current_time() - begin));
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, test_add_block)
{
int ret = OB_SUCCESS;
//send
ObChunkDatumStore rs;
ObChunkDatumStore::Block *block;
ObArenaAllocator alloc(ObModIds::OB_MODULE_PAGE_ALLOCATOR, 2 << 20);
gen_row(1);
int64_t row_size = 0;
ASSERT_EQ(OB_SUCCESS, ObChunkDatumStore::Block::row_store_size(cells_, eval_ctx_, row_size));
ret = rs.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
int64_t min_size = rs.min_blk_size(row_size);
void *mem = alloc.alloc(min_size);
ret = rs.init_block_buffer(mem, min_size, block);
ASSERT_EQ(OB_SUCCESS, ret);
ret = rs.add_block(block, false);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, rs, 100);
rs.finish_add_row();
ret = block->unswizzling();
ASSERT_EQ(OB_SUCCESS, ret);
rs.remove_added_blocks();
rs.reset();
LOG_INFO("Molly size", K(block->get_buffer()->data_size()), K(block->get_buffer()->capacity()));
ObArenaAllocator alloc2(ObModIds::OB_MODULE_PAGE_ALLOCATOR, 2 << 20);
void *mem2 = alloc2.alloc(block->get_buffer()->data_size());
memcpy(mem2, mem, block->get_buffer()->data_size());
//recv
ObChunkDatumStore rs2;
ObChunkDatumStore::Block *block2 = reinterpret_cast<ObChunkDatumStore::Block *>(mem2);
ret = rs2.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
ret = rs2.add_block(block2, true);
ASSERT_EQ(OB_SUCCESS, ret);
ObChunkDatumStore::Iterator it2;
ASSERT_EQ(OB_SUCCESS, rs2.begin(it2));
CALL(verify_n_rows, rs2, it2, 99, true);
ASSERT_EQ(true, it2.has_next());
CALL(verify_n_rows, rs2, it2, 100, true, 0, 99);
ASSERT_FALSE(it2.has_next());
ASSERT_EQ(OB_ITER_END, it2.get_next_row(ver_cells_, eval_ctx_));
rs2.remove_added_blocks();
it2.reset();
rs2.reset();
}
TEST_F(TestChunkDatumStore, row_with_extend_size)
{
int64_t begin = 0;
int64_t write_time = 0;
int64_t round = 500;
int64_t rows = round * 10000;
LOG_INFO("starting write disk test: append rows", K(rows));
ObChunkDatumStore rs;
ObChunkDatumStore::Iterator it;
ASSERT_EQ(OB_SUCCESS, rs.init(0, tenant_id_, ctx_id_, label_, true, 8));
LOG_INFO("starting basic test: append 3000 rows");
int64_t ret = OB_SUCCESS;
int64_t base = rs.get_row_cnt();
ObChunkDatumStore::StoredRow* sr = NULL;
const ObChunkDatumStore::StoredRow* v_sr = NULL;
for (int64_t i = 0; i < 100; i++) {
gen_row(i);
ret = rs.add_row(cells_, &eval_ctx_, &sr);
ASSERT_EQ(OB_SUCCESS, ret);
*static_cast<int64_t*>(sr->get_extra_payload()) = i;
}
ASSERT_EQ(OB_SUCCESS, rs.begin(it));
sr = NULL;
int64_t v;
int64_t extend_v;
for (int64_t i = 0; i < 100; i++) {
int ret = it.get_next_row(v_sr);
ASSERT_EQ(OB_SUCCESS, ret);
ret = it.convert_to_row(v_sr, ver_cells_, eval_ctx_);
ASSERT_EQ(OB_SUCCESS, ret);
ObDatum *expr_datum_0 = &ver_cells_.at(0)->locate_expr_datum(eval_ctx_);
ObDatum *expr_datum_1 = &ver_cells_.at(1)->locate_expr_datum(eval_ctx_);
ObDatum *expr_datum_2 = &ver_cells_.at(2)->locate_expr_datum(eval_ctx_);
v = expr_datum_0->get_int();
expr_datum_1->is_null();
if (0 != strncmp(str_buf_, expr_datum_2->ptr_, expr_datum_2->len_)) {
LOG_WARN("verify failed");
}
ASSERT_EQ(0, strncmp(str_buf_, expr_datum_2->ptr_, expr_datum_2->len_));
extend_v = *(static_cast<int64_t*>(v_sr->get_extra_payload()));
if (i != v || i != extend_v) {
LOG_WARN("verify failed", K(i), K(v), K(extend_v));
}
ASSERT_EQ(i, v);
}
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, test_only_disk_data)
{
int64_t round = 2;
int64_t cnt = 10000;
int64_t rows = round * cnt;
LOG_INFO("starting write disk test: append rows", K(rows));
ObChunkDatumStore rs;
ASSERT_EQ(OB_SUCCESS, rs.alloc_dir_id());
ObChunkDatumStore::Iterator it;
ASSERT_EQ(OB_SUCCESS, rs.init(0, tenant_id_, ctx_id_, label_));
rs.set_mem_limit(1L << 30);
// disk data
CALL(append_rows, rs, cnt);
ASSERT_EQ(OB_SUCCESS, rs.dump(false, true));
rs.finish_add_row();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 16L << 20);
it.reset();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, ObChunkDatumStore::BLOCK_SIZE);
it.reset();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, 2 * ObChunkDatumStore::BLOCK_SIZE);
LOG_INFO("row store data count", K(rs.get_row_cnt_on_disk()), K(rs.get_row_cnt_in_memory()));
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, test_only_disk_data1)
{
int64_t round = 2;
int64_t cnt = 10000;
int64_t rows = round * cnt;
LOG_INFO("starting write disk test: append rows", K(rows));
ObChunkDatumStore rs;
ASSERT_EQ(OB_SUCCESS, rs.alloc_dir_id());
ObChunkDatumStore::Iterator it;
ASSERT_EQ(OB_SUCCESS, rs.init(0, tenant_id_, ctx_id_, label_));
rs.set_mem_limit(1L << 30);
// disk data
CALL(append_rows, rs, cnt);
ASSERT_EQ(OB_SUCCESS, rs.dump(false, true));
rs.finish_add_row();
CALL(verify_n_rows, rs, it, rs.get_row_cnt(), true, ObChunkDatumStore::BLOCK_SIZE);
it.reset();
ObChunkDatumStore::Iterator it2;
CALL(verify_n_rows, rs, it2, rs.get_row_cnt(), true, 0);
it2.reset();
CALL(verify_n_rows, rs, it2, rs.get_row_cnt(), true, 0);
it2.reset();
CALL(verify_n_rows, rs, it2, rs.get_row_cnt(), true, 0);
it2.reset();
LOG_INFO("row store data count", K(rs.get_row_cnt_on_disk()), K(rs.get_row_cnt_in_memory()));
it.reset();
rs.reset();
}
TEST_F(TestChunkDatumStore, test_append_block)
{
int ret = OB_SUCCESS;
//send
ObChunkDatumStore rs;
ObChunkDatumStore::Block *block;
ObArenaAllocator alloc(ObModIds::OB_MODULE_PAGE_ALLOCATOR, 2 << 20);
gen_row(1);
int64_t row_size = 0;
ASSERT_EQ(OB_SUCCESS, ObChunkDatumStore::Block::row_store_size(cells_, eval_ctx_, row_size));
ret = rs.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
int64_t min_size = rs.min_blk_size(row_size);
void *mem = alloc.alloc(min_size);
ret = rs.init_block_buffer(mem, min_size, block);
ASSERT_EQ(OB_SUCCESS, ret);
ret = rs.add_block(block, false);
ASSERT_EQ(OB_SUCCESS, ret);
CALL(append_rows, rs, 100);
rs.finish_add_row();
ret = block->unswizzling();
ASSERT_EQ(OB_SUCCESS, ret);
rs.remove_added_blocks();
rs.reset();
LOG_INFO("Molly size", K(block->get_buffer()->data_size()), K(block->get_buffer()->capacity()));
ObArenaAllocator alloc2(ObModIds::OB_MODULE_PAGE_ALLOCATOR, 2 << 20);
void *mem2 = alloc2.alloc(block->get_buffer()->data_size());
memcpy(mem2, mem, block->get_buffer()->data_size());
//recv
ObChunkDatumStore rs2;
rs2.alloc_dir_id();
ObChunkDatumStore::Block *block2 = reinterpret_cast<ObChunkDatumStore::Block *>(mem2);
ret = rs2.init(0, tenant_id_, ctx_id_, label_);
ASSERT_EQ(OB_SUCCESS, ret);
for (int64_t i = 0; OB_SUCC(ret) && i < 100; ++i) {
ret = rs2.append_block(block->get_buffer()->data(), block->get_buffer()->data_size(), true);
}
ASSERT_EQ(OB_SUCCESS, ret);
ret = rs2.dump(false, true);
rs2.finish_add_row();
ASSERT_EQ(OB_SUCCESS, ret);
ObChunkDatumStore::Iterator it2;
ASSERT_EQ(OB_SUCCESS, rs2.begin(it2));
for (int64_t i = 0; OB_SUCC(ret) && i < 100; ++i) {
CALL(verify_n_rows, rs2, it2, 99, true);
ASSERT_EQ(true, it2.has_next());
CALL(verify_n_rows, rs2, it2, 100, true, 0, 99);
}
ASSERT_FALSE(it2.has_next());
ASSERT_EQ(OB_ITER_END, it2.get_next_row(ver_cells_, eval_ctx_));
rs2.remove_added_blocks();
it2.reset();
rs2.reset();
}
} // end namespace sql
} // end namespace oceanbase
void ignore_sig(int sig)
{
UNUSED(sig);
}
int main(int argc, char **argv)
{
signal(49, ignore_sig);
oceanbase::sql::init_sql_factories();
oceanbase::common::ObLogger::get_logger().set_file_name("test_chunk_datum_store.log", true);
oceanbase::common::ObLogger::get_logger().set_log_level("INFO");
testing::InitGoogleTest(&argc, argv);
auto *env = new (oceanbase::sql::TestEnv);
testing::AddGlobalTestEnvironment(env);
int ret = RUN_ALL_TESTS();
OB_LOGGER.disable();
return ret;
}