165 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/bin/env python
 | |
| __author__ = 'dongyun.zdy'
 | |
| 
 | |
| 
 | |
| import math
 | |
| import numpy as np
 | |
| from scipy.optimize import leastsq
 | |
| from scipy.optimize import curve_fit
 | |
| import sys
 | |
| from lmfit import Model
 | |
| import getopt
 | |
| 
 | |
| 
 | |
| 
 | |
| def mg_model_form(args,
 | |
|                   #Tstartup,
 | |
|                   Trow_once,
 | |
|                   Tres_once,
 | |
|                   Taggr_prepare_result,
 | |
|                   Taggr_process,
 | |
|                   Tgroup_cmp_col,
 | |
|                   Tcopy_col
 | |
|                   ):
 | |
|     (
 | |
|         Nrow_input,
 | |
|         Nrow_res,
 | |
|         Ncol_input,
 | |
|         Ncol_aggr,
 | |
|         Ncol_group
 | |
|     ) = args
 | |
| 
 | |
|     total_cost = Nrow_res * Tres_once + Nrow_input * Trow_once
 | |
|     #cost for judge group
 | |
|     total_cost += Nrow_res * Tgroup_cmp_col
 | |
|     total_cost += (Nrow_input - Nrow_res) * Ncol_group * Tgroup_cmp_col
 | |
| 
 | |
|     #cost for group related operation
 | |
|     total_cost += Nrow_res * (Ncol_input * Tcopy_col)
 | |
|     total_cost += Nrow_res * (Ncol_aggr * Taggr_prepare_result)
 | |
| 
 | |
|     #cost for input row process
 | |
|     total_cost += Nrow_input * (Ncol_aggr * Taggr_process)
 | |
| 
 | |
|     return total_cost
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| eval_count = 0
 | |
| 
 | |
| 
 | |
| def mg_model_arr(arg_sets,
 | |
|                  #Tstartup,
 | |
|                  Trow_once,
 | |
|                  Tres_once,
 | |
|                  Taggr_prepare_result,
 | |
|                  Taggr_process,
 | |
|                  Tgroup_cmp_col,
 | |
|                  Tcopy_col
 | |
|                  ) :
 | |
| 
 | |
|     res = [mg_model_form(single_arg_set,
 | |
|                          #Tstartup,
 | |
|                          Trow_once,
 | |
|                          Tres_once,
 | |
|                          Taggr_prepare_result,
 | |
|                          Taggr_process,
 | |
|                          Tgroup_cmp_col,
 | |
|                          Tcopy_col
 | |
|                         ) for single_arg_set in arg_sets]
 | |
|     global eval_count
 | |
|     eval_count += 1
 | |
|     print "eval "+ str(eval_count)
 | |
|     return np.array(res)
 | |
| 
 | |
| mg_model = Model(mg_model_arr)
 | |
| #mg_model.set_param_hint("Tstartup", min=0.0)
 | |
| mg_model.set_param_hint("Trow_once", min=0.0)
 | |
| mg_model.set_param_hint("Tres_once", min=0.0)
 | |
| mg_model.set_param_hint("Taggr_prepare_result", min=0.0)
 | |
| mg_model.set_param_hint("Taggr_process", min=0.0)
 | |
| mg_model.set_param_hint("Tgroup_cmp_col", min=0.0)
 | |
| mg_model.set_param_hint("Tcopy_col", min=0.0)
 | |
| def extract_info_from_line(line):
 | |
|     splited = line.split(",")
 | |
|     line_info = []
 | |
|     for item in splited:
 | |
|         line_info.append(float(item))
 | |
|     return line_info
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     #file_name = "scan_model.res.formal.prep"
 | |
|     #out_file_name = "scan_model.fit"
 | |
| 
 | |
|     file_name = "mergegroupby_result_final"
 | |
|     out_file_name = "mergegroupby_model"
 | |
| 
 | |
|     output_fit_res = True
 | |
|     wrong_arg = False
 | |
|     opts,args = getopt.getopt(sys.argv[1:],"i:o:")
 | |
|     for op, value in opts:
 | |
|         if "-i" == op:
 | |
|             file_name = value
 | |
|         elif "-o" == op:
 | |
|             output_fit_res = True
 | |
|             out_file_name = value
 | |
|         else:
 | |
|             wrong_arg = True
 | |
| 
 | |
|     if wrong_arg:
 | |
|         print "wrong arg"
 | |
|         sys.exit(1)
 | |
| 
 | |
|     file = open(file_name, "r")
 | |
|     arg_sets = []
 | |
|     times = []
 | |
|     case_params = []
 | |
|     for line in file:
 | |
|         case_param = extract_info_from_line(line)
 | |
|         case_params.append(case_param)
 | |
| 
 | |
|         # Nrow_input,
 | |
|         # Nrow_res,
 | |
|         # Ncol_input,
 | |
|         # Ncol_aggr,
 | |
|         # Ncol_group
 | |
| 
 | |
| 
 | |
|         arg_sets.append((case_param[0],
 | |
|                          case_param[5],
 | |
|                          case_param[4],
 | |
|                          case_param[2],
 | |
|                          case_param[3]
 | |
|                          ))
 | |
|         times.append(case_param[6])
 | |
|     file.close()
 | |
|     arg_sets_np = np.array(arg_sets)
 | |
|     times_np = np.array(times)
 | |
|     #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | |
|     result = mg_model.fit(times_np, arg_sets=arg_sets_np,
 | |
|                          #Tstartup = 0.1,
 | |
|                          Trow_once = 0.1,
 | |
|                          Tres_once = 0.1,
 | |
|                          Taggr_prepare_result = 0.1,
 | |
|                          Taggr_process = 0.1,
 | |
|                          Tgroup_cmp_col = 0.1,
 | |
|                          Tcopy_col = 0.1
 | |
|                          )
 | |
| 
 | |
|     res_line = str(result.best_values["Trow_once"]) + ","
 | |
|     res_line += str(result.best_values["Tres_once"]) + "," 
 | |
|     res_line += str(result.best_values["Taggr_prepare_result"]) + ","
 | |
|     res_line += str(result.best_values["Taggr_process"]) + ","
 | |
|     res_line += str(result.best_values["Tgroup_cmp_col"]) + ","
 | |
|     res_line += str(result.best_values["Tcopy_col"]) 
 | |
| 
 | |
| 
 | |
|     print result.fit_report()
 | |
| 
 | |
|     if output_fit_res:
 | |
|         out_file = open(out_file_name, "w")
 | |
|         out_file.write(res_line)
 | |
|         out_file.close()
 | 
