wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

138 lines
3.8 KiB
Python
Executable File

#!/bin/env python
__author__ = 'dongyun.zdy'
import math
import numpy as np
from scipy.optimize import leastsq
from scipy.optimize import curve_fit
import sys
from lmfit import Model
import getopt
STARTUP = 0.0
def get_model_form(args,
# Tstartup,
Tper_row,
Tper_col,
Tcorrection1,
Tcorrection2,
# Tlog3
):
(
Nrow,
Ncol,
) = args
global STARTUP
total_cost = STARTUP#Tstartup
total_cost += Nrow * (Tper_row + Ncol * Tper_col)
total_cost += Tcorrection1 * math.log(Tcorrection2 * Nrow , 2)
return total_cost
def get_model_arr(arg_sets,
# Tstartup,
Tper_row,
Tper_col,
Tcorrection1,
Tcorrection2,
# Tlog3
):
res = []
for single_arg_set in arg_sets:
res.append(get_model_form(single_arg_set,
# Tstartup,
Tper_row,
Tper_col,
Tcorrection1,
Tcorrection2,
# Tlog3
))
return np.array(res)
get_model = Model(get_model_arr)
# get_model.set_param_hint("Tstartup", min=0.0)
get_model.set_param_hint("Tper_row", min=0.0)
get_model.set_param_hint("Tper_col", min=0.0)
get_model.set_param_hint("Tcorrection1", min=0.0)
get_model.set_param_hint("Tcorrection2", min=0.0)
# get_model.set_param_hint("Tlog3", min=0.0)
def extract_info_from_line(line):
splited = line.split(",")
line_info = []
for item in splited:
line_info.append(float(item))
return line_info
if __name__ == '__main__':
file_name = "scan_model.res.formal.prep"
out_file_name = "scan_model.fit"
# sys.argv.extend("-i get.IO.prep -o get.IO.model".split(" "))
output_fit_res = False
wrong_arg = False
opts,args = getopt.getopt(sys.argv[1:],"i:o:")
for op, value in opts:
if "-i" == op:
file_name = value
elif "-o" == op:
output_fit_res = True
out_file_name = value
else:
wrong_arg = True
if wrong_arg:
print "wrong arg"
sys.exit(1)
if file_name.find('rc') != -1:
STARTUP = 170.0
elif file_name.find('bc') != -1:
STARTUP = 210.0
else:
STARTUP = 520.0
file = open(file_name, "r")
arg_sets = []
times = []
case_params = []
for line in file:
if line.startswith('#'):
continue
case_param = extract_info_from_line(line)
case_params.append(case_param)
arg_sets.append((case_param[0], case_param[1]))
times.append(case_param[4])
file.close()
arg_sets_np = np.array(arg_sets)
times_np = np.array(times)
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
result = get_model.fit(times_np, arg_sets=arg_sets_np,
# Tstartup=10.0,
Tper_row=10.0,
Tper_col=1.0,
Tcorrection1=1.0,
Tcorrection2=1.0,
# Tlog3=1.0,
)
# res_line = str(result.best_values["Tstartup"]) + ","
res_line = str(result.best_values["Tper_row"]) + ","
res_line += str(result.best_values["Tper_col"]) + ","
res_line += str(result.best_values["Tcorrection1"]) + ","
res_line += str(result.best_values["Tcorrection2"]) #+ ","
# res_line += str(result.best_values["Tlog3"])
print result.fit_report()
if output_fit_res:
out_file = open(out_file_name, "w")
out_file.write(res_line)
out_file.close()