oceanbase/mittest/mtlenv/tablelock/test_obj_lock.cpp

867 lines
30 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#define USING_LOG_PREFIX TABLELOCK
#include <gtest/gtest.h>
#define protected public
#define private public
#define UNITTEST
#include "mtlenv/mock_tenant_module_env.h"
#include "storage/tablelock/ob_obj_lock.h"
#include "storage/tablelock/ob_lock_memtable.h"
#include "table_lock_common_env.h"
#include "table_lock_tx_common_env.h"
namespace oceanbase
{
namespace transaction
{
namespace tablelock
{
int ObOBJLock::register_into_deadlock_detector_(const ObStoreCtx &ctx,
const ObTableLockOp &lock_op)
{
UNUSEDx(ctx, lock_op);
return OB_SUCCESS;
}
int ObOBJLock::unregister_from_deadlock_detector_(const ObTableLockOp &lock_op)
{
UNUSED(lock_op);
return OB_SUCCESS;
}
class TestObjLock : public MockTxEnv,
public ::testing::Test
{
public:
TestObjLock()
: MockTxEnv(MTL_ID(), ObLSID(1)),
fake_t3m_(common::OB_SERVER_TENANT_ID),
obj_lock_(ObLockID())
{}
~TestObjLock() {}
static void SetUpTestCase();
static void TearDownTestCase();
virtual void SetUp() override
{
// mock sequence no
ObClockGenerator::init();
create_memtable();
LOG_INFO("set up success");
}
virtual void TearDown() override
{
ObClockGenerator::destroy();
LOG_INFO("tear down success");
}
public:
void create_memtable()
{
ObITable::TableKey table_key;
table_key.table_type_ = ObITable::LOCK_MEMTABLE;
table_key.tablet_id_ = LS_LOCK_TABLET;
table_key.scn_range_.start_scn_.convert_for_gts(1); // fake
table_key.scn_range_.end_scn_.convert_for_gts(2); // fake
ASSERT_EQ(OB_SUCCESS, memtable_.init(table_key, ls_id_, &freezer_));
ASSERT_EQ(OB_SUCCESS, handle_.set_table(&memtable_, &fake_t3m_, ObITable::LOCK_MEMTABLE));
}
void start_tx(const ObTransID &tx_id, MyTxCtx &my_ctx)
{
MockTxEnv::start_tx(tx_id, handle_, my_ctx);
}
void get_store_ctx(MyTxCtx &my_ctx, ObStoreCtx &store_ctx)
{
MockTxEnv::get_store_ctx(my_ctx, &tx_table_, store_ctx);
}
private:
ObLockMemtable memtable_;
ObTableHandleV2 handle_;
storage::ObTenantMetaMemMgr fake_t3m_;
ObFreezer freezer_;
ObTxTable tx_table_;
private:
ObOBJLock obj_lock_;
ObMalloc allocator_;
};
void TestObjLock::SetUpTestCase()
{
EXPECT_EQ(OB_SUCCESS, MockTenantModuleEnv::get_instance().init());
init_default_lock_test_value();
}
void TestObjLock::TearDownTestCase()
{
MockTenantModuleEnv::get_instance().destroy();
}
TEST_F(TestObjLock, in_trans_lock)
{
LOG_INFO("TestObjLock::in_trans_lock");
// TEST SET
// 1. IN TRANS LOCK LOCK
// 2. IN TRANS LOCK COMMIT/ABORT
int ret = OB_SUCCESS;
ObLockParam param;
bool is_try_lock = true;
int64_t expired_time = 0;
ObTxIDSet conflict_tx_set;
unsigned char lock_mode_in_same_trans = 0x0;
// int64_t expired_time = ObClockGenerator::getClock() + 1000;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
// 1.1 try lock
LOG_INFO("TestObjLock::in_trans_lock 1.1");
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_IN_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(obj_lock_.row_exclusive_, 1);
// 1.2 lock and wait
LOG_INFO("TestObjLock::in_trans_lock 1.2");
is_try_lock = false;
expired_time = 0;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_IN_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(obj_lock_.row_exclusive_, 2);
is_try_lock = false;
expired_time = ObClockGenerator::getClock() + 1000;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_IN_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(obj_lock_.row_exclusive_, 3);
// 2.1 remove lock
LOG_INFO("TestObjLock::in_trans_lock 2.1");
for(int i = 3; i >0; i--) {
obj_lock_.remove_lock_op(DEFAULT_IN_TRANS_LOCK_OP,
allocator_);
ASSERT_EQ(obj_lock_.row_exclusive_, i - 1);
}
}
TEST_F(TestObjLock, out_trans_lock)
{
LOG_INFO("TestObjLock::out_trans_lock");
// 1. OUT TRANS LOCK LOCK
// 2. OUT TRANS LOCK COMMIT
// 3. OUT TRANS LOCK UNLOCK
// 4. OUT TRANS LOCK ABORT
// 5. OUT TRANS LOCK RECOVER
int ret = OB_SUCCESS;
bool is_try_lock = true;
int64_t expired_time = 0;
share::SCN min_commited_scn;
share::SCN flushed_scn;
ObTxIDSet conflict_tx_set;
unsigned char lock_mode_in_same_trans = 0x0;
ObLockParam param;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
min_commited_scn.set_min();
flushed_scn.set_min();
// 1.1 try lock
LOG_INFO("TestObjLock::out_trans_lock 1.1");
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_OUT_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 2.1 update lock status
LOG_INFO("TestObjLock::out_trans_lock 2.1");
share::SCN commit_version;
share::SCN commit_scn;
commit_version.set_base();
commit_scn.set_base();
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 3.1 unlock
LOG_INFO("TestObjLock::out_trans_lock 3.1");
ret = obj_lock_.unlock(DEFAULT_OUT_TRANS_UNLOCK_OP,
is_try_lock,
expired_time,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 3.2 unlock commit
LOG_INFO("TestObjLock::out_trans_lock 3.2");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_UNLOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 4.1 lock
LOG_INFO("TestObjLock::out_trans_lock 4.1");
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_OUT_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
// 4.2 abort
LOG_INFO("TestObjLock::out_trans_lock 4.2");
obj_lock_.remove_lock_op(DEFAULT_OUT_TRANS_LOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
// 4.3 check exist
LOG_INFO("TestObjLock::out_trans_lock 4.3");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_OBJ_LOCK_NOT_EXIST, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 5.1 recover
LOG_INFO("TestObjLock::out_trans_lock 5.1");
ret = obj_lock_.recover_lock(DEFAULT_OUT_TRANS_LOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
// 5.2 check
LOG_INFO("TestObjLock::out_trans_lock 5.2");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 5.3 remove
LOG_INFO("TestObjLock::out_trans_lock 5.3");
obj_lock_.remove_lock_op(DEFAULT_OUT_TRANS_LOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
}
TEST_F(TestObjLock, out_trans_unlock_twice)
{
LOG_INFO("TestObjLock::out_trans_lock");
// TEST SET
// 1. UNLOCK AFTER A COMMITTED UNLOCK
// 2. UNLOCK AFTER A REPLAY AND COMMITTED UNLOCK
// 3. UNLCOK AFTER A REPLAY AND UNCOMMITTED UNLOCK
int ret = OB_SUCCESS;
bool is_try_lock = true;
int64_t expired_time = 0;
share::SCN min_commited_scn;
share::SCN flushed_scn;
share::SCN commit_version;
share::SCN commit_scn;
ObTxIDSet conflict_tx_set;
unsigned char lock_mode_in_same_trans = 0x0;
ObLockParam param;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
min_commited_scn.set_min();
flushed_scn.set_min();
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
// 1. UNLOCK AFTER A COMMON UNLOCK
// The complete progress is:
// lock -> lock commit -> unlock -> unlock commit -> unlock
// The second unlock will throw an error due to there's no
// paired lock.
// 1.1 lock
LOG_INFO("TestObjLock::out_trans_unlock_twice 1.1");
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_OUT_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 1.2 lock commit
LOG_INFO("TestObjLock::out_trans_unlock_twice 1.2");
commit_version.set_base();
commit_scn.set_base();
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 1.3 unlock
LOG_INFO("TestObjLock::out_trans_unlock_twice 1.3");
ret = obj_lock_.unlock(DEFAULT_OUT_TRANS_UNLOCK_OP,
is_try_lock,
expired_time,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 1.4 unlock commit
LOG_INFO("TestObjLock::out_trans_unlock_twice 1.4");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_UNLOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 1.5 try to unlock again
LOG_INFO("TestObjLock::out_trans_unlock_twice 1.5");
ret = obj_lock_.unlock(DEFAULT_OUT_TRANS_UNLOCK_OP,
is_try_lock,
expired_time,
allocator_);
ASSERT_EQ(OB_OBJ_LOCK_NOT_EXIST, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 2. UNLOCK AFTER A REPLAY AND COMMITTED UNLOCK
// The complete progress is:
// replay unlock -> unlock commit -> replay lock -> lock commit -> unlock
// The replay logic of unlocking doesn't check whether there's a paired lock,
// so the first unlcok will be executed successfully. And the second unlock
// will see the same unlock op which is before it, so it should return error.
// 2.1 replay unlock
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.1");
ret = obj_lock_.recover_lock(DEFAULT_OUT_TRANS_UNLOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
// 2.2 unlock commit
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.2");
commit_version.set_base();
commit_scn.set_base();
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_UNLOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 2.3 replay lock
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.3");
ret = obj_lock_.recover_lock(DEFAULT_OUT_TRANS_LOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
// 2.4 lock commit
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.4");
commit_version.set_base();
commit_scn.set_base();
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 2.5 unlock
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.5");
ret = obj_lock_.unlock(DEFAULT_OUT_TRANS_UNLOCK_OP,
is_try_lock,
expired_time,
allocator_);
ASSERT_EQ(OB_OBJ_LOCK_NOT_EXIST, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 2.6 unlock commit to compat
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.6");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_UNLOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 2.7 check
LOG_INFO("TestObjLock::out_trans_unlock_twice 2.7");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_UNLOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_OBJ_LOCK_NOT_EXIST, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 3. UNLOCK AFTER A REPLAY AND UNCOMMITTED UNLOCK
// The complete progress is:
// replay unlock -> replay lock -> lock commit -> unlock -> unlcok commit
// The second unlock will be failed due to there's another unlock op
// in progress, but the latest unlock commit will executed successfully,
// because it can see and commit the first unlock.
// 3.1 replay unlock
LOG_INFO("TestObjLock::out_trans_unlock_twice 3.1");
ret = obj_lock_.recover_lock(DEFAULT_OUT_TRANS_UNLOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
// 3.2 replay lock
LOG_INFO("TestObjLock::out_trans_unlock_twice 3.2");
ret = obj_lock_.recover_lock(DEFAULT_OUT_TRANS_LOCK_OP,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
// 3.3 lock commit
LOG_INFO("TestObjLock::out_trans_unlock_twice 3.3");
commit_version.set_base();
commit_scn.set_base();
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 3.4 unlock
LOG_INFO("TestObjLock::out_trans_unlock_twice 3.4");
ret = obj_lock_.unlock(DEFAULT_OUT_TRANS_UNLOCK_OP,
is_try_lock,
expired_time,
allocator_);
ASSERT_EQ(OB_OBJ_UNLOCK_CONFLICT, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, commit_scn);
// 3.5 unlock commit
LOG_INFO("TestObjLock::out_trans_unlock_twice 3.5");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_UNLOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_SUCCESS, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
// 3.6 check lock exist
LOG_INFO("TestObjLock::out_trans_lock 3.6");
ret = obj_lock_.update_lock_status(DEFAULT_OUT_TRANS_LOCK_OP,
commit_version,
commit_scn,
COMMIT_LOCK_OP_STATUS,
allocator_);
ASSERT_EQ(OB_OBJ_LOCK_NOT_EXIST, ret);
min_commited_scn = obj_lock_.get_min_ddl_lock_committed_scn(flushed_scn);
ASSERT_EQ(min_commited_scn, share::SCN::max_scn());
}
TEST_F(TestObjLock, lock_conflict_in_in)
{
// 1. IN TRANS VS IN TRANS
// 2. IN TRNAS VS OUT TRANS
// 3. OUT TRANS VS IN TRANS
// 4. OUT TRANS VS OUT TRANS
int ret = OB_SUCCESS;
bool is_try_lock = true;
int64_t expired_time = 0;
ObTxIDSet conflict_tx_set;
int64_t conflict_modes;
unsigned char lock_mode_in_same_trans = 0x0;
ObLockParam param;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
MyTxCtx ctx2;
ObStoreCtx store_ctx2;
// prepare store ctx
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
start_tx(TRANS_ID2, ctx2);
get_store_ctx(ctx2, store_ctx2);
// 1.1 try lock
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_IN_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_CONFLICT_OUT_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_TRY_LOCK_ROW_CONFLICT, ret);
// 1.2 lock timeout
is_try_lock = false;
expired_time = ObClockGenerator::getClock() + 1000;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
ret = obj_lock_.lock(param,
store_ctx,
DEFAULT_CONFLICT_OUT_TRANS_LOCK_OP,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
if (DEFAULT_CONFLICT_OUT_TRANS_LOCK_OP.is_dml_lock_op()) {
ASSERT_EQ(OB_TRY_LOCK_ROW_CONFLICT, ret);
} else {
// deadlock detect will kill the trans
// ASSERT_EQ(OB_ERR_EXCLUSIVE_LOCK_CONFLICT, ret);
// ASSERT_EQ(OB_TRANS_KILLED, ret);
ASSERT_EQ((ret == OB_TRANS_KILLED || ret == OB_ERR_EXCLUSIVE_LOCK_CONFLICT), true);
}
// 1.3 clean.
obj_lock_.remove_lock_op(DEFAULT_IN_TRANS_LOCK_OP,
allocator_);
// 1.4 in trans conflict
ObTableLockOp lock_first = DEFAULT_IN_TRANS_LOCK_OP;
ObTableLockOp lock_second = DEFAULT_IN_TRANS_LOCK_OP;
bool is_conflict = false;
is_try_lock = true;
expired_time = 0;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
lock_second.create_trans_id_ = TRANS_ID2;
for (int first = 0; first < TABLE_LOCK_MODE_COUNT; first++) {
// lock the first lock
printf("first lock index:%d\n", first);
lock_first.lock_mode_ = LOCK_MODE_ARRAY[first];
ret = obj_lock_.lock(param,
store_ctx,
lock_first,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
// lock the second lock and check conflict
for (int second = 0; second < TABLE_LOCK_MODE_COUNT; second++) {
printf("second lock index:%d\n", second);
lock_second.lock_mode_ = LOCK_MODE_ARRAY[second];
is_conflict = !request_lock(lock_first.lock_mode_,
lock_second.lock_mode_,
conflict_modes);
ret = obj_lock_.lock(param,
store_ctx2,
lock_second,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
if (is_conflict) {
ASSERT_EQ(OB_TRY_LOCK_ROW_CONFLICT, ret);
} else {
ASSERT_EQ(OB_SUCCESS, ret);
obj_lock_.remove_lock_op(lock_second,
allocator_);
}
}
// release the first lock
obj_lock_.remove_lock_op(lock_first,
allocator_);
}
}
TEST_F(TestObjLock, lock_conflict_in_out)
{
// 1. IN TRANS VS IN TRANS
// 2. IN TRNAS VS OUT TRANS
// 3. OUT TRANS VS IN TRANS
// 4. OUT TRANS VS OUT TRANS
int ret = OB_SUCCESS;
bool is_try_lock = true;
int64_t expired_time = 0;
ObTxIDSet conflict_tx_set;
int64_t conflict_modes = 0;
unsigned char lock_mode_in_same_trans = 0x0;
ObLockParam param;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
MyTxCtx ctx2;
ObStoreCtx store_ctx2;
// prepare store ctx
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
start_tx(TRANS_ID2, ctx2);
get_store_ctx(ctx2, store_ctx2);
// 2.1 in trans conflict with out trans
ObTableLockOp lock_first = DEFAULT_IN_TRANS_LOCK_OP;
ObTableLockOp lock_second = DEFAULT_OUT_TRANS_LOCK_OP;
bool is_conflict = false;
is_try_lock = true;
expired_time = 0;
lock_second.lock_id_ = DEFAULT_TABLET_LOCK_ID;
lock_second.create_trans_id_ = TRANS_ID2;
lock_second.owner_id_ = OWNER_ID2;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
for (int first = 0; first < TABLE_LOCK_MODE_COUNT; first++) {
// lock the first lock
printf("first lock index:%d\n", first);
lock_first.lock_mode_ = LOCK_MODE_ARRAY[first];
ret = obj_lock_.lock(param,
store_ctx,
lock_first,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
// lock the second lock and check conflict
for (int second = 0; second < TABLE_LOCK_MODE_COUNT; second++) {
printf("second lock index:%d\n", second);
lock_second.lock_mode_ = LOCK_MODE_ARRAY[second];
is_conflict = !request_lock(lock_first.lock_mode_,
lock_second.lock_mode_,
conflict_modes);
ret = obj_lock_.lock(param,
store_ctx2,
lock_second,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
if (is_conflict) {
ASSERT_EQ(OB_TRY_LOCK_ROW_CONFLICT, ret);
} else {
ASSERT_EQ(OB_SUCCESS, ret);
obj_lock_.remove_lock_op(lock_second,
allocator_);
}
}
// release the first lock
obj_lock_.remove_lock_op(lock_first,
allocator_);
}
}
TEST_F(TestObjLock, lock_conflict_out_in)
{
// 1. IN TRANS VS IN TRANS
// 2. IN TRNAS VS OUT TRANS
// 3. OUT TRANS VS IN TRANS
// 4. OUT TRANS VS OUT TRANS
int ret = OB_SUCCESS;
bool is_try_lock = true;
int64_t expired_time = 0;
ObTxIDSet conflict_tx_set;
int64_t conflict_modes = 0;
unsigned char lock_mode_in_same_trans = 0x0;
ObLockParam param;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
MyTxCtx ctx2;
ObStoreCtx store_ctx2;
// prepare store ctx
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
start_tx(TRANS_ID2, ctx2);
get_store_ctx(ctx2, store_ctx2);
// 3.1 in trans conflict with out trans
ObTableLockOp lock_first = DEFAULT_OUT_TRANS_LOCK_OP;
ObTableLockOp lock_second = DEFAULT_IN_TRANS_LOCK_OP;
bool is_conflict = false;
lock_first.lock_id_ = DEFAULT_TABLET_LOCK_ID;
lock_first.create_trans_id_ = TRANS_ID2;
lock_first.owner_id_ = OWNER_ID2;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
for (int first = 0; first < TABLE_LOCK_MODE_COUNT; first++) {
// lock the first lock
printf("first lock index:%d\n", first);
lock_first.lock_mode_ = LOCK_MODE_ARRAY[first];
ret = obj_lock_.lock(param,
store_ctx,
lock_first,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
// lock the second lock and check conflict
for (int second = 0; second < TABLE_LOCK_MODE_COUNT; second++) {
printf("second lock index:%d\n", second);
lock_second.lock_mode_ = LOCK_MODE_ARRAY[second];
is_conflict = !request_lock(lock_first.lock_mode_,
lock_second.lock_mode_,
conflict_modes);
ret = obj_lock_.lock(param,
store_ctx2,
lock_second,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
if (is_conflict) {
ASSERT_EQ(OB_TRY_LOCK_ROW_CONFLICT, ret);
} else {
ASSERT_EQ(OB_SUCCESS, ret);
obj_lock_.remove_lock_op(lock_second,
allocator_);
}
}
// release the first lock
obj_lock_.remove_lock_op(lock_first,
allocator_);
}
}
TEST_F(TestObjLock, lock_conflict_out_out)
{
// 1. IN TRANS VS IN TRANS
// 2. IN TRNAS VS OUT TRANS
// 3. OUT TRANS VS IN TRANS
// 4. OUT TRANS VS OUT TRANS
int ret = OB_SUCCESS;
bool is_try_lock = true;
int64_t expired_time = 0;
ObTxIDSet conflict_tx_set;
int64_t conflict_modes = 0;
unsigned char lock_mode_in_same_trans = 0x0;
ObLockParam param;
MyTxCtx default_ctx;
ObStoreCtx store_ctx;
MyTxCtx ctx2;
ObStoreCtx store_ctx2;
// prepare store ctx
start_tx(DEFAULT_TRANS_ID, default_ctx);
get_store_ctx(default_ctx, store_ctx);
start_tx(TRANS_ID2, ctx2);
get_store_ctx(ctx2, store_ctx2);
// 4.1 out trans conflict with out trans
ObTableLockOp lock_first = DEFAULT_OUT_TRANS_LOCK_OP;
ObTableLockOp lock_second = DEFAULT_OUT_TRANS_LOCK_OP;
bool is_conflict = false;
lock_second.create_trans_id_ = TRANS_ID2;
lock_first.owner_id_ = OWNER_ID2;
lock_second.owner_id_ = OWNER_ID3;
param.is_try_lock_ = is_try_lock;
param.expired_time_ = expired_time;
for (int first = 0; first < TABLE_LOCK_MODE_COUNT; first++) {
// lock the first lock
printf("first lock index:%d\n", first);
lock_first.lock_mode_ = LOCK_MODE_ARRAY[first];
ret = obj_lock_.lock(param,
store_ctx,
lock_first,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
ASSERT_EQ(OB_SUCCESS, ret);
// lock the second lock and check conflict
for (int second = 0; second < TABLE_LOCK_MODE_COUNT; second++) {
printf("second lock index:%d\n", second);
lock_second.lock_mode_ = LOCK_MODE_ARRAY[second];
is_conflict = !request_lock(lock_first.lock_mode_,
lock_second.lock_mode_,
conflict_modes);
ret = obj_lock_.lock(param,
store_ctx2,
lock_second,
lock_mode_in_same_trans,
allocator_,
conflict_tx_set);
if (is_conflict) {
ASSERT_EQ(OB_TRY_LOCK_ROW_CONFLICT, ret);
} else {
ASSERT_EQ(OB_SUCCESS, ret);
obj_lock_.remove_lock_op(lock_second,
allocator_);
}
}
// release the first lock
obj_lock_.remove_lock_op(lock_first,
allocator_);
}
}
} // tablelock
} // transaction
} // oceanbase
int main(int argc, char **argv)
{
system("rm -f test_obj_lock.log*");
oceanbase::common::ObLogger::get_logger().set_file_name("test_obj_lock.log", true);
oceanbase::common::ObLogger::get_logger().set_log_level("INFO");
oceanbase::common::ObLogger::get_logger().set_enable_async_log(false);
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}