Files
oceanbase/deps/oblib/src/lib/alloc/ob_malloc_allocator.cpp

824 lines
26 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#define USING_LOG_PREFIX LIB
#include "lib/alloc/ob_malloc_allocator.h"
#include "lib/alloc/alloc_struct.h"
#include "lib/alloc/object_set.h"
#include "lib/alloc/memory_sanity.h"
#include "lib/alloc/memory_dump.h"
#include "lib/utility/ob_tracepoint.h"
#include "lib/allocator/ob_mem_leak_checker.h"
#include "lib/allocator/ob_page_manager.h"
#include "lib/rc/ob_rc.h"
#include "lib/rc/context.h"
using namespace oceanbase::lib;
using namespace oceanbase::common;
bool ObMallocAllocator::is_inited_ = false;
namespace oceanbase
{
namespace lib
{
__thread ObTenantCtxAllocator *tl_ta = NULL;
ObTLTaGuard::ObTLTaGuard()
: restore_(false)
{}
ObTLTaGuard::ObTLTaGuard(const int64_t tenant_id)
: restore_(false)
{
switch_to(tenant_id);
}
ObTLTaGuard::~ObTLTaGuard()
{
revert();
}
void ObTLTaGuard::switch_to(const int64_t tenant_id)
{
revert();
if (tl_ta != NULL && tl_ta->get_tenant_id() == tenant_id) {
// do-nothing
} else {
ta_bak_ = tl_ta;
ta_ = lib::ObMallocAllocator::get_instance()->get_tenant_ctx_allocator_without_tlcache(
tenant_id, ObCtxIds::DEFAULT_CTX_ID);
tl_ta = ta_.ref_allocator();
restore_ = true;
}
}
void ObTLTaGuard::revert()
{
if (restore_) {
tl_ta = ta_bak_;
ta_.revert();
restore_ = false;
}
}
ObMallocAllocator::ObMallocAllocator()
: locks_(), allocators_(), unrecycled_lock_(), unrecycled_allocators_(),
reserved_(0), urgent_(0), max_used_tenant_id_(0), create_on_demand_(false)
{
set_root_allocator();
is_inited_ = true;
}
ObMallocAllocator::~ObMallocAllocator()
{
is_inited_ = false;
}
void *ObMallocAllocator::alloc(const int64_t size)
{
ObMemAttr attr;
return alloc(size, attr);
}
void *ObMallocAllocator::alloc(const int64_t size, const oceanbase::lib::ObMemAttr &_attr)
{
#ifdef OB_USE_ASAN
UNUSED(_attr);
return ::malloc(size);
#else
SANITY_DISABLE_CHECK_RANGE(); // prevent sanity_check_range
ObDisableDiagnoseGuard disable_diagnose_guard;
int ret = OB_E(EventTable::EN_4) OB_SUCCESS;
void *ptr = NULL;
ObTenantCtxAllocatorGuard allocator = NULL;
lib::ObMemAttr attr = _attr;
if (OB_INVALID_TENANT_ID == attr.tenant_id_) {
LOG_ERROR("invalid tenant id", K(attr.tenant_id_));
attr.tenant_id_ = OB_SERVER_TENANT_ID;
}
if (OB_SERVER_TENANT_ID == attr.tenant_id_ &&
attr.use_500() && !attr.expect_500()) {
attr.ctx_id_ = ObCtxIds::UNEXPECTED_IN_500;
}
lib::ObMemAttr inner_attr = attr;
bool do_not_use_me = false;
if (FORCE_EXPLICT_500_MALLOC()) {
do_not_use_me = OB_SERVER_TENANT_ID == attr.tenant_id_ && !attr.use_500() &&
ob_thread_tenant_id() != OB_SERVER_TENANT_ID;
if (do_not_use_me) {
inner_attr.tenant_id_ = ob_thread_tenant_id();
inner_attr.ctx_id_ = ObCtxIds::DO_NOT_USE_ME;
}
}
if (OB_SUCCESS != ret) {
} else if (OB_UNLIKELY(0 == inner_attr.tenant_id_)
|| OB_UNLIKELY(INT64_MAX == inner_attr.tenant_id_)) {
ret = OB_INVALID_ARGUMENT;
LOG_ERROR("invalid argument", K(inner_attr.tenant_id_), K(ret));
} else if (OB_NOT_NULL(allocator = get_tenant_ctx_allocator(inner_attr.tenant_id_, inner_attr.ctx_id_))) {
// do nothing
} else if (inner_attr.tenant_id_ <= OB_USER_TENANT_ID || OB_UNLIKELY(create_on_demand_)) {
if (OB_FAIL(create_and_add_tenant_allocator(inner_attr.tenant_id_))) {
LOG_ERROR("create and add tenant allocator failed", K(ret), K(inner_attr.tenant_id_));
} else {
allocator = get_tenant_ctx_allocator(inner_attr.tenant_id_, inner_attr.ctx_id_);
}
}
if (OB_ISNULL(allocator)) {
ret = OB_ENTRY_NOT_EXIST;
LOG_ERROR("tenant allocator not exist", K(inner_attr.tenant_id_), K(inner_attr.ctx_id_),
K(ret));
}
if (OB_SUCC(ret)) {
if (do_not_use_me) {
ptr = allocator->alloc(size, inner_attr);
}
if (!ptr) {
inner_attr = attr;
allocator = get_tenant_ctx_allocator(inner_attr.tenant_id_, inner_attr.ctx_id_);
if (OB_ISNULL(allocator)) {
} else {
ptr = allocator->alloc(size, inner_attr);
}
}
}
return ptr;
#endif
}
void *ObMallocAllocator::realloc(
const void *ptr, const int64_t size, const oceanbase::lib::ObMemAttr &attr)
{
#ifdef OB_USE_ASAN
UNUSED(attr);
return ::realloc(const_cast<void *>(ptr), size);
#else
SANITY_DISABLE_CHECK_RANGE(); // prevent sanity_check_range
ObDisableDiagnoseGuard disable_diagnose_guard;
// Won't create tenant allocator!!
void *nptr = NULL;
int ret = OB_E(EventTable::EN_4) OB_SUCCESS;
if (NULL != ptr) {
AObject *obj = reinterpret_cast<AObject*>((char*)ptr - AOBJECT_HEADER_SIZE);
abort_unless(NULL != obj);
abort_unless(obj->MAGIC_CODE_ == AOBJECT_MAGIC_CODE
|| obj->MAGIC_CODE_ == BIG_AOBJECT_MAGIC_CODE);
abort_unless(obj->in_use_);
get_mem_leak_checker().on_free(*obj);
}
oceanbase::lib::ObMemAttr inner_attr = attr;
ObTenantCtxAllocatorGuard allocator = NULL;
if (OB_FAIL(ret) && NULL == ptr) {
// do nothing
} else if (OB_ISNULL(allocator = get_tenant_ctx_allocator(inner_attr.tenant_id_, inner_attr.ctx_id_))) {
// do nothing
} else if (OB_ISNULL(nptr = allocator->realloc(ptr, size, inner_attr))) {
// do nothing
}
return nptr;
#endif
}
void ObMallocAllocator::free(void *ptr)
{
#ifdef OB_USE_ASAN
::free(ptr);
#else
SANITY_DISABLE_CHECK_RANGE(); // prevent sanity_check_range
// directly free object instead of using tenant allocator.
ObTenantCtxAllocator::common_free(ptr);
#endif // OB_USE_ASAN
}
ObTenantCtxAllocatorGuard ObMallocAllocator::get_tenant_ctx_allocator_without_tlcache(
uint64_t tenant_id, uint64_t ctx_id) const
{
STATIC_ASSERT(OB_USER_TENANT_ID < PRESERVED_TENANT_COUNT, "preserved count is too small");
if (tenant_id <= OB_USER_TENANT_ID) {
const bool lock = false;
if (OB_NOT_NULL(allocators_[tenant_id])) {
return ObTenantCtxAllocatorGuard(&allocators_[tenant_id][ctx_id], lock);
} else {
return ObTenantCtxAllocatorGuard();
}
}
const int64_t slot = tenant_id % PRESERVED_TENANT_COUNT;
ObDisableDiagnoseGuard disable_diagnose_guard;
BucketRLockGuard guard(const_cast<BucketLock&>(locks_[slot]),
GETTID() % BucketLock::BUCKET_COUNT);
if (OB_LIKELY(tenant_id < PRESERVED_TENANT_COUNT)) {
if (OB_LIKELY(allocators_[slot] != NULL && allocators_[slot]->get_tenant_id() == tenant_id)) {
return ObTenantCtxAllocatorGuard(&allocators_[slot][ctx_id]);
} else {
return ObTenantCtxAllocatorGuard();
}
}
ObTenantCtxAllocator *allocator = nullptr;
ObTenantCtxAllocator * const *cur = &allocators_[slot];
while (NULL != *cur && (*cur)->get_tenant_id() < tenant_id) {
cur = &(*cur)->get_next();
}
if (NULL != *cur && (*cur)->get_tenant_id() == tenant_id) {
allocator = *cur;
}
if (OB_NOT_NULL(allocator)) {
return ObTenantCtxAllocatorGuard(&allocator[ctx_id]);
} else {
return ObTenantCtxAllocatorGuard();
}
}
ObTenantCtxAllocatorGuard ObMallocAllocator::get_tenant_ctx_allocator(uint64_t tenant_id,
uint64_t ctx_id) const
{
if (OB_LIKELY(tl_ta != NULL && tl_ta->get_tenant_id() == tenant_id)) {
const bool lock = false;
return ObTenantCtxAllocatorGuard(&tl_ta[ctx_id], lock);
}
return get_tenant_ctx_allocator_without_tlcache(tenant_id, ctx_id);
}
int ObMallocAllocator::create_and_add_tenant_allocator(uint64_t tenant_id)
{
int ret = OB_SUCCESS;
ObTenantCtxAllocator *allocator = NULL;
if (OB_FAIL(create_tenant_allocator(tenant_id, allocator))) {
LOG_ERROR("create tenant allocator failed", K(ret), K(tenant_id));
} else if (OB_FAIL(add_tenant_allocator(allocator))) {
if (OB_ENTRY_EXIST == ret && tenant_id <= OB_USER_TENANT_ID) {
LOG_INFO("tenant allocator already exists", K(ret), K(tenant_id));
ret = OB_SUCCESS;
} else {
LOG_ERROR("add tenant allocator failed", K(ret), K(tenant_id));
}
}
return ret;
}
int ObMallocAllocator::create_tenant_allocator(uint64_t tenant_id, ObTenantCtxAllocator *&allocator)
{
int ret = OB_SUCCESS;
allocator = NULL;
ObTenantCtxAllocator *unrecycled_allocator = take_off_tenant_allocator_unrecycled(tenant_id);
if (unrecycled_allocator != NULL) {
allocator = unrecycled_allocator;
} else {
auto allocer = get_tenant_ctx_allocator(OB_SERVER_TENANT_ID, ObCtxIds::DEFAULT_CTX_ID);
void *buf = NULL;
if (OB_ISNULL(allocer)) {
ret = OB_ENTRY_NOT_EXIST;
LOG_ERROR("get root tenant allocator failed", K(ret));
} else if (OB_ISNULL(buf = allocer->alloc(sizeof(ObTenantCtxAllocator) * ObCtxIds::MAX_CTX_ID,
ObMemAttr(OB_SERVER_TENANT_ID, ObModIds::OB_TENANT_CTX_ALLOCATOR)))) {
ret = OB_ALLOCATE_MEMORY_FAILED;
LOG_ERROR("alloc tenant allocator failed", K(ret));
} else if (OB_FAIL(create_tenant_allocator(tenant_id, buf, allocator))) {
LOG_ERROR("create tenant allocator failed", K(ret), K(tenant_id));
}
if (OB_FAIL(ret) && buf != NULL) {
allocer->free(buf);
buf = NULL;
}
}
return ret;
}
void ObMallocAllocator::destroy_tenant_allocator(ObTenantCtxAllocator *allocator)
{
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
allocator[ctx_id].~ObTenantCtxAllocator();
}
auto allocer = get_tenant_ctx_allocator(OB_SERVER_TENANT_ID, ObCtxIds::DEFAULT_CTX_ID);
if (allocer != NULL) {
allocer->free(allocator);
}
}
int ObMallocAllocator::create_tenant_allocator(uint64_t tenant_id, void *buf,
ObTenantCtxAllocator *&allocator)
{
int ret = OB_SUCCESS;
allocator = NULL;
if (tenant_id > max_used_tenant_id_) {
UNUSED(ATOMIC_BCAS(&max_used_tenant_id_, max_used_tenant_id_, tenant_id));
}
for (int ctx_id = 0; OB_SUCC(ret) && ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
auto *ctx_allocator = new ((char*)buf + ctx_id * sizeof(ObTenantCtxAllocator))
ObTenantCtxAllocator(tenant_id, ctx_id);
if (OB_FAIL(ctx_allocator->set_tenant_memory_mgr())) {
LOG_ERROR("set_tenant_memory_mgr failed", K(ret));
} else if (ObCtxIds::DO_NOT_USE_ME == ctx_id) {
ctx_allocator->set_limit(256L<<20);
}
}
if (OB_SUCC(ret)) {
allocator = (ObTenantCtxAllocator*)buf;
}
return ret;
}
int ObMallocAllocator::add_tenant_allocator(ObTenantCtxAllocator *allocator)
{
int ret = OB_SUCCESS;
uint64_t tenant_id = allocator->get_tenant_id();
const int64_t slot = tenant_id % PRESERVED_TENANT_COUNT;
// critical area is extremely small, just wait without trylock
ObDisableDiagnoseGuard disable_diagnose_guard;
BucketWLockGuard guard(locks_[slot]);
ObTenantCtxAllocator **cur = &allocators_[slot];
while ((NULL != *cur) && (*cur)->get_tenant_id() < tenant_id) {
cur = &((*cur)->get_next());
}
if (OB_ISNULL(*cur) || (*cur)->get_tenant_id() > tenant_id) {
ObTenantCtxAllocator *next_allocator = *cur;
*cur = allocator;
((*cur)->get_next()) = next_allocator;
} else {
ret = OB_ENTRY_EXIST;
}
return ret;
}
ObTenantCtxAllocator *ObMallocAllocator::take_off_tenant_allocator(uint64_t tenant_id)
{
ObTenantCtxAllocator *ta = NULL;
const int64_t slot = tenant_id % PRESERVED_TENANT_COUNT;
ObDisableDiagnoseGuard disable_diagnose_guard;
BucketWLockGuard guard(locks_[slot]);
ObTenantCtxAllocator **cur = &allocators_[slot];
while (*cur && (*cur)->get_tenant_id() < tenant_id) {
cur = &(*cur)->get_next();
}
if (*cur != NULL && (*cur)->get_tenant_id() == tenant_id) {
ta = *cur;
*cur = (*cur)->get_next();
}
return ta;
}
void ObMallocAllocator::set_root_allocator()
{
int ret = OB_SUCCESS;
static char buf[sizeof(ObTenantCtxAllocator) * ObCtxIds::MAX_CTX_ID] __attribute__((__aligned__(16)));
ObTenantCtxAllocator *allocator = NULL;
abort_unless(OB_SUCCESS == create_tenant_allocator(OB_SERVER_TENANT_ID, buf, allocator));
abort_unless(OB_SUCCESS == add_tenant_allocator(allocator));
}
ObMallocAllocator *ObMallocAllocator::get_instance()
{
static ObMallocAllocator instance;
return &instance;
}
int ObMallocAllocator::with_resource_handle_invoke(uint64_t tenant_id, InvokeFunc func)
{
int ret = OB_SUCCESS;
ObTenantResourceMgrHandle resource_handle;
if (OB_FAIL(ObResourceMgr::get_instance().get_tenant_resource_mgr(
tenant_id, resource_handle))) {
LIB_LOG(ERROR, "get_tenant_resource_mgr failed", K(ret), K(tenant_id));
} else if (!resource_handle.is_valid()) {
ret = OB_ERR_UNEXPECTED;
LIB_LOG(ERROR, "resource_handle is invalid", K(tenant_id));
} else {
ret = func(resource_handle.get_memory_mgr());
}
return ret;
}
#ifdef ENABLE_500_MEMORY_LIMIT
int ObMallocAllocator::set_500_tenant_limit(const bool unlimited)
{
int ret = OB_SUCCESS;
for (int ctx_id = 0; OB_SUCC(ret) && ctx_id < ObCtxIds::MAX_CTX_ID; ++ctx_id) {
if (ObCtxIds::SCHEMA_SERVICE == ctx_id ||
ObCtxIds::PKT_NIO == ctx_id ||
ObCtxIds::CO_STACK == ctx_id ||
ObCtxIds::LIBEASY == ctx_id ||
ObCtxIds::GLIBC == ctx_id ||
ObCtxIds::LOGGER_CTX_ID== ctx_id ||
ObCtxIds::RPC_CTX_ID == ctx_id ||
ObCtxIds::UNEXPECTED_IN_500 == ctx_id) {
continue;
}
auto ta = get_tenant_ctx_allocator(OB_SERVER_TENANT_ID, ctx_id);
if (OB_NOT_NULL(ta)) {
int64_t ctx_limit = ObCtxIds::DEFAULT_CTX_ID == ctx_id ? (4LL<<30) : (50LL<<20);
if (unlimited) {
ctx_limit = INT64_MAX;
}
if (OB_FAIL(ta->set_limit(ctx_limit))) {
LIB_LOG(WARN, "set limit of 500 tenant failed", K(ret), K(ctx_limit),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id));
} else {
LIB_LOG(INFO, "set limit of 500 tenant succeed", K(ret), K(ctx_limit),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id));
}
} else {
ret = OB_INVALID_ARGUMENT;
LIB_LOG(WARN, "tenant ctx allocator is not exist", K(ret),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id));
}
}
return ret;
}
#endif
int ObMallocAllocator::set_tenant_limit(uint64_t tenant_id, int64_t bytes)
{
return with_resource_handle_invoke(tenant_id, [bytes](ObTenantMemoryMgr *mgr) {
mgr->set_limit(bytes);
return OB_SUCCESS;
});
}
int64_t ObMallocAllocator::get_tenant_limit(uint64_t tenant_id)
{
int64_t limit = 0;
with_resource_handle_invoke(tenant_id, [&limit](ObTenantMemoryMgr *mgr) {
limit = mgr->get_limit();
return OB_SUCCESS;
});
return limit;
}
int64_t ObMallocAllocator::get_tenant_hold(uint64_t tenant_id)
{
int64_t hold = 0;
with_resource_handle_invoke(tenant_id, [&hold](ObTenantMemoryMgr *mgr) {
hold = mgr->get_sum_hold();
return OB_SUCCESS;
});
return hold;
}
int64_t ObMallocAllocator::get_tenant_remain(uint64_t tenant_id)
{
int64_t remain = 0;
with_resource_handle_invoke(tenant_id, [&remain](ObTenantMemoryMgr *mgr) {
remain = mgr->get_limit() - mgr->get_sum_hold() + mgr->get_cache_hold();
return OB_SUCCESS;
});
return remain;
}
int64_t ObMallocAllocator::get_tenant_ctx_hold(const uint64_t tenant_id, const uint64_t ctx_id) const
{
int64_t hold = 0;
ObTenantCtxAllocatorGuard allocator = NULL;
if (OB_ISNULL(allocator = get_tenant_ctx_allocator(tenant_id, ctx_id))) {
// do nothing
} else {
hold = allocator->get_hold();
}
return hold;
}
void ObMallocAllocator::get_tenant_label_usage(
uint64_t tenant_id, ObLabel &label, ObLabelItem &item) const
{
ObTenantCtxAllocatorGuard allocator = NULL;
for (int64_t i = 0; i < ObCtxIds::MAX_CTX_ID; i++) {
if (OB_ISNULL(allocator = get_tenant_ctx_allocator(tenant_id, i))) {
// do nothing
} else {
item += allocator->get_label_usage(label);
}
}
}
void ObMallocAllocator::print_tenant_ctx_memory_usage(uint64_t tenant_id) const
{
ObTenantCtxAllocatorGuard allocator = NULL;
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
allocator = get_tenant_ctx_allocator(tenant_id, ctx_id);
if (OB_LIKELY(NULL != allocator)) {
allocator->print_memory_usage();
} else {
allocator = get_tenant_ctx_allocator_unrecycled(tenant_id, ctx_id);
if (OB_LIKELY(NULL != allocator)) {
allocator->print_memory_usage();
}
}
}
}
void ObMallocAllocator::print_tenant_memory_usage(uint64_t tenant_id) const
{
int ret = OB_SUCCESS;
with_resource_handle_invoke(tenant_id, [&](ObTenantMemoryMgr *mgr) {
CREATE_WITH_TEMP_CONTEXT(ContextParam().set_label(ObModIds::OB_TEMP_VARIABLES)) {
static const int64_t BUFLEN = 1 << 17;
char *buf = (char *)ctxalp(BUFLEN);
if (OB_ISNULL(buf)) {
ret = OB_ALLOCATE_MEMORY_FAILED;
LIB_LOG(WARN, "no memory", K(ret));
} else {
int64_t ctx_pos = 0;
const volatile int64_t *ctx_hold_bytes = mgr->get_ctx_hold_bytes();
for (uint64_t i = 0; i < ObCtxIds::MAX_CTX_ID; i++) {
if (ctx_hold_bytes[i] > 0) {
int64_t limit = 0;
IGNORE_RETURN mgr->get_ctx_limit(i, limit);
ret = databuff_printf(buf, BUFLEN, ctx_pos,
"[MEMORY] ctx_id=%25s hold_bytes=%'15ld limit=%'26ld\n",
get_global_ctx_info().get_ctx_name(i), ctx_hold_bytes[i], limit);
}
}
if (OB_SUCC(ret)) {
ObPageManagerCenter::get_instance().print_tenant_stat(tenant_id, buf, BUFLEN, ctx_pos);
}
buf[std::min(ctx_pos, BUFLEN - 1)] = '\0';
allow_next_syslog();
_LOG_INFO("[MEMORY] tenant: %lu, limit: %'lu hold: %'lu rpc_hold: %'lu cache_hold: %'lu "
"cache_used: %'lu cache_item_count: %'lu \n%s",
tenant_id,
mgr->get_limit(),
mgr->get_sum_hold(),
mgr->get_rpc_hold(),
mgr->get_cache_hold(),
mgr->get_cache_hold(),
mgr->get_cache_item_count(),
buf);
}
}
return ret;
});
UNUSED(ret);
}
void ObMallocAllocator::set_urgent(int64_t bytes)
{
CHUNK_MGR.set_urgent(bytes);
}
int64_t ObMallocAllocator::get_urgent() const
{
return CHUNK_MGR.get_urgent();
}
void ObMallocAllocator::set_reserved(int64_t bytes)
{
reserved_ = bytes;
}
int64_t ObMallocAllocator::get_reserved() const
{
return reserved_;
}
int ObMallocAllocator::set_tenant_ctx_idle(const uint64_t tenant_id,
const uint64_t ctx_id,
const int64_t size,
const bool reserve /*=false*/)
{
int ret = OB_SUCCESS;
auto allocator = get_tenant_ctx_allocator(tenant_id, ctx_id);
if (NULL == allocator) {
ret = OB_TENANT_NOT_EXIST;
LOG_WARN("tenant or ctx not exist", K(ret), K(tenant_id), K(ctx_id));
} else {
allocator->set_idle(size, reserve);
}
return ret;
}
int64_t ObMallocAllocator::sync_wash(uint64_t tenant_id, uint64_t from_ctx_id, int64_t wash_size)
{
int64_t washed_size = 0;
for (int64_t i = 0;
washed_size < wash_size && i < ObCtxIds::MAX_CTX_ID;
i++) {
int64_t ctx_id = (from_ctx_id + i) % ObCtxIds::MAX_CTX_ID;
auto allocator = get_tenant_ctx_allocator(tenant_id, ctx_id);
if (NULL == allocator) {
// do-nothing
} else {
washed_size += allocator->sync_wash(wash_size - washed_size);
}
}
return washed_size;
}
int64_t ObMallocAllocator::sync_wash()
{
int64_t washed_size = 0;
for (uint64_t tenant_id = 1; tenant_id <= max_used_tenant_id_; ++tenant_id) {
washed_size += sync_wash(tenant_id, 0, INT64_MAX);
}
return washed_size;
}
ObTenantCtxAllocatorGuard ObMallocAllocator::get_tenant_ctx_allocator_unrecycled(
uint64_t tenant_id, uint64_t ctx_id) const
{
ObTenantCtxAllocatorGuard ta;
ObDisableDiagnoseGuard disable_diagnose_guard;
ObLatchRGuard guard(const_cast<ObLatch&>(unrecycled_lock_), ObLatchIds::OB_ALLOCATOR_LOCK);
ObTenantCtxAllocator * const *cur = &unrecycled_allocators_;
while (*cur) {
if ((*cur)->get_tenant_id() == tenant_id) {
ta = ObTenantCtxAllocatorGuard(&(*cur)[ctx_id]);
break;
}
cur = &(*cur)->get_next();
}
return ta;
}
void ObMallocAllocator::add_tenant_allocator_unrecycled(ObTenantCtxAllocator *allocator)
{
#ifdef ENABLE_SANITY
if (enable_tenant_leak_memory_protection_) {
modify_tenant_memory_access_permission(allocator, false);
}
#endif
ObDisableDiagnoseGuard disable_diagnose_guard;
ObLatchWGuard guard(unrecycled_lock_, ObLatchIds::OB_ALLOCATOR_LOCK);
allocator->get_next() = unrecycled_allocators_;
unrecycled_allocators_ = allocator;
}
ObTenantCtxAllocator *ObMallocAllocator::take_off_tenant_allocator_unrecycled(uint64_t tenant_id)
{
ObTenantCtxAllocator *ta = NULL;
{
ObDisableDiagnoseGuard disable_diagnose_guard;
ObLatchWGuard guard(unrecycled_lock_, ObLatchIds::OB_ALLOCATOR_LOCK);
ObTenantCtxAllocator **cur = &unrecycled_allocators_;
while (*cur) {
if ((*cur)->get_tenant_id() == tenant_id) {
ta = *cur;
break;
}
cur = &(*cur)->get_next();
}
if (ta != NULL) {
*cur = (*cur)->get_next();
}
}
if (ta != NULL) {
#ifdef ENABLE_SANITY
modify_tenant_memory_access_permission(ta, true);
#endif
}
return ta;
}
int ObMallocAllocator::recycle_tenant_allocator(uint64_t tenant_id)
{
int ret = OB_SUCCESS;
ObTenantCtxAllocator *ta = NULL;
if (create_on_demand_) {
// do-nothing
} else if (tenant_id <= OB_USER_TENANT_ID) {
ret = OB_OP_NOT_ALLOW;
} else if (OB_ISNULL(ta = take_off_tenant_allocator(tenant_id)) &&
OB_ISNULL(ta = take_off_tenant_allocator_unrecycled(tenant_id))) {
ret = OB_ENTRY_NOT_EXIST;
LOG_WARN("tenant allocator not exist", K(ret), K(tenant_id));
} else {
// wash idle chunks
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
ta[ctx_id].set_idle(0);
}
ObTenantCtxAllocator *tas[ObCtxIds::MAX_CTX_ID] = {NULL};
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
tas[ctx_id] = &ta[ctx_id];
}
// check references
int wait_times = 3;
int waiting_cnt = ObCtxIds::MAX_CTX_ID;
while (wait_times--) {
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
if (NULL == tas[ctx_id]) continue;
int64_t ref_cnt = tas[ctx_id]->get_ref_cnt();
if (0 == ref_cnt) {
LOG_INFO("wait tenant ctx allocator success", K(tenant_id), K(ctx_id),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id));
tas[ctx_id] = NULL;
waiting_cnt--;
}
}
if (waiting_cnt <= 0) break;
usleep(1 * 1000 * 1000L); // 1s
}
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
ObTenantCtxAllocator *ctx_allocator = tas[ctx_id];
if (ctx_allocator != NULL) {
LOG_ERROR("tenant ctx allocator is still refered by upper-layer modules",
K(tenant_id), K(ctx_id),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id),
K(ctx_allocator->get_ref_cnt()));
}
}
// check unfree
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
ObTenantCtxAllocator *ctx_allocator = tas[ctx_id];
if (NULL == ctx_allocator) {
ctx_allocator = &ta[ctx_id];
char first_label[AOBJECT_LABEL_SIZE + 1] = {'\0'};
bool has_unfree = ctx_allocator->check_has_unfree(first_label);
if (has_unfree) {
if (ObCtxIds::GLIBC == ctx_id
&& 0 == strncmp("Pl", first_label, 2)
&& pl_leaked_times_++ < 10) {
LOG_WARN("tenant memory leak!!!", K(tenant_id), K(ctx_id),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id),
"label", first_label);
} else {
LOG_ERROR("tenant memory leak!!!", K(tenant_id), K(ctx_id),
"ctx_name", get_global_ctx_info().get_ctx_name(ctx_id),
"label", first_label);
}
tas[ctx_id] = ctx_allocator;
}
}
}
bool all_ready = true;
for (int64_t ctx_id = 0; ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
ObTenantCtxAllocator *ctx_allocator = tas[ctx_id];
if (ctx_allocator != NULL) {
all_ready = false;
}
}
if (!all_ready) {
ret = OB_ERROR;
LOG_WARN("failed to recycle tenant allocator immediately", K(ret), K(tenant_id));
add_tenant_allocator_unrecycled(ta);
} else {
destroy_tenant_allocator(ta);
ta = NULL;
LOG_INFO("recycle tenant allocator success", K(tenant_id));
}
}
return ret;
}
void ObMallocAllocator::get_unrecycled_tenant_ids(uint64_t *ids, int cap, int &cnt) const
{
cnt = 0;
ObDisableDiagnoseGuard disable_diagnose_guard;
ObLatchRGuard guard(const_cast<ObLatch&>(unrecycled_lock_), ObLatchIds::OB_ALLOCATOR_LOCK);
ObTenantCtxAllocator * const *cur = &unrecycled_allocators_;
while (*cur && cnt < cap) {
ids[cnt++] = (*cur)->get_tenant_id();
cur = &(*cur)->get_next();
}
}
#ifdef ENABLE_SANITY
int ObMallocAllocator::get_chunks(ObTenantCtxAllocator *ta, AChunk **chunks, int cap, int &cnt)
{
int ret = OB_SUCCESS;
for (int64_t ctx_id = 0; OB_SUCC(ret) && ctx_id < ObCtxIds::MAX_CTX_ID; ctx_id++) {
ObTenantCtxAllocator *ctx_allocator = &ta[ctx_id];
ctx_allocator->get_chunks(chunks, cap, cnt);
if (cnt >= cap) {
ret = OB_SIZE_OVERFLOW;
}
}
return ret;
}
void ObMallocAllocator::modify_tenant_memory_access_permission(ObTenantCtxAllocator *ta, bool accessible)
{
AChunk *chunks[1024] = {nullptr};
int chunk_cnt = 0;
get_chunks(ta, chunks, sizeof(chunks)/sizeof(chunks[0]), chunk_cnt);
for (int i = 0; i < chunk_cnt; i++) {
AChunk *chunk = chunks[i];
if (chunk != nullptr) {
if (accessible) {
SANITY_UNPOISON(chunk, chunk->aligned());
} else {
SANITY_POISON(chunk, chunk->aligned());
}
}
}
}
#endif
} // end of namespace lib
} // end of namespace oceanbase