112 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/bin/env python
 | |
| __author__ = 'dongyun.zdy'
 | |
| 
 | |
| import math
 | |
| import numpy as np
 | |
| from scipy.optimize import leastsq
 | |
| from scipy.optimize import curve_fit
 | |
| import sys
 | |
| from lmfit import Model
 | |
| import getopt
 | |
| import os
 | |
| 
 | |
| 
 | |
| def material_model_form(args,
 | |
|                         # Tstartup,
 | |
|                         Trow_once,
 | |
|                         Trow_col):
 | |
|     (
 | |
|         Nrow,
 | |
|         Ncol,
 | |
|     ) = args
 | |
| 
 | |
|     total_cost = 0  # Tstartup
 | |
|     total_cost += Nrow * (Trow_once + Ncol * Trow_col)
 | |
|     return total_cost
 | |
| 
 | |
| 
 | |
| def material_model_arr(arg_sets,
 | |
|                        # Tstartup,
 | |
|                        Trow_once,
 | |
|                        Trow_col):
 | |
|     res = []
 | |
|     for single_arg_set in arg_sets:
 | |
|         res.append(material_model_form(single_arg_set,
 | |
|                                        # Tstartup,
 | |
|                                        Trow_once,
 | |
|                                        Trow_col))
 | |
|     return np.array(res)
 | |
| 
 | |
| 
 | |
| material_model = Model(material_model_arr)
 | |
| # material_model.set_param_hint("Tstartup", min=0.0)
 | |
| material_model.set_param_hint("Trow_once", min=0.0)
 | |
| material_model.set_param_hint("Trow_col", min=0.0)
 | |
| 
 | |
| 
 | |
| def extract_info_from_line(line):
 | |
|     splited = line.split(",")
 | |
|     line_info = []
 | |
|     for item in splited:
 | |
|         line_info.append(float(item))
 | |
|     return line_info
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     # file_name = "scan_model.res.formal.prep"
 | |
|     file_name = "material_result_final"
 | |
|     # out_file_name = "scan_model.fit"
 | |
|     out_file_name = "material_model"
 | |
| 
 | |
|     if os.path.exists(out_file_name):
 | |
|         os.remove(out_file_name)
 | |
|     # sys.argv.extend("-i rowstore.prepare.bigint -o rowstore.model".split(" "))
 | |
| 
 | |
|     output_fit_res = True
 | |
|     wrong_arg = False
 | |
|     opts, args = getopt.getopt(sys.argv[1:], "i:o:")
 | |
|     for op, value in opts:
 | |
|         if "-i" == op:
 | |
|             file_name = value
 | |
|         elif "-o" == op:
 | |
|             output_fit_res = True
 | |
|             out_file_name = value
 | |
|         else:
 | |
|             wrong_arg = True
 | |
| 
 | |
|     if wrong_arg:
 | |
|         print "wrong arg"
 | |
|         sys.exit(1)
 | |
| 
 | |
|     file = open(file_name, "r")
 | |
|     arg_sets = []
 | |
|     times = []
 | |
|     case_params = []
 | |
|     for line in file:
 | |
|         if line.startswith('#'):
 | |
|             continue
 | |
|         case_param = extract_info_from_line(line)
 | |
|         case_params.append(case_param)
 | |
|         arg_sets.append((case_param[0], case_param[1]))
 | |
|         times.append(case_param[3])
 | |
|     file.close()
 | |
|     arg_sets_np = np.array(arg_sets)
 | |
|     times_np = np.array(times)
 | |
|     # 10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | |
|     result = material_model.fit(times_np, arg_sets=arg_sets_np,
 | |
|                                 # Tstartup=10.0,
 | |
|                                 Trow_once=10.0,
 | |
|                                 Trow_col=1.0
 | |
|                                 )
 | |
| 
 | |
|     # res_line = str(result.best_values["Tstartup"]) + ","
 | |
|     res_line = str(result.best_values["Trow_once"]) + ","
 | |
|     res_line += str(result.best_values["Trow_col"])
 | |
| 
 | |
|     print result.fit_report()
 | |
| 
 | |
|     if output_fit_res:
 | |
|         out_file = open(out_file_name, "w")
 | |
|         out_file.write(res_line)
 | |
|         out_file.close()
 | 
