oceanbase/deps/oblib/unittest/lib/codec/test_bitpacking_performance.cpp
chaser-ch 566e920620 Merge branch 'column_store'
Co-authored-by: wangt1xiuyi <13547954130@163.com>
Co-authored-by: yangqise7en <877793735@qq.com>
Co-authored-by: Zach41 <zach_41@163.com>
2023-10-31 15:39:22 +00:00

261 lines
8.2 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <vector>
#include <memory>
#include <limits>
#include <random>
#include <cmath>
#include <string>
#include "gtest/gtest.h"
#include "lib/codec/ob_composite_codec.h"
#include "lib/codec/ob_simd_fixed_pfor.h"
#include "lib/codec/ob_double_delta_zigzag_rle.h"
#include "lib/codec/ob_delta_zigzag_rle.h"
#include "lib/codec/ob_delta_zigzag_pfor.h"
#include "lib/codec/ob_double_delta_zigzag_pfor.h"
#include "lib/codec/ob_universal_compression.h"
#include "lib/codec/ob_xor_fixed_pfor.h"
#include "lib/codec/ob_tiered_codec.h"
#include "lib/codec/ob_generated_scalar_bp_func.h"
#include "lib/codec/ob_generated_unalign_simd_bp_func.h"
namespace oceanbase
{
namespace common
{
using ::testing::TestWithParam;
using ::testing::Values;
class ObBitPackingPerformanceTest : public ::testing::Test {
public:
virtual void SetUp() {}
protected:
std::unique_ptr<ObCodec> codec;
std::vector<uint8_t> in8;
std::vector<uint16_t> in16;
std::vector<uint32_t> in32;
std::vector<uint64_t> in64;
std::vector<uint8_t> out8;
std::vector<uint16_t> out16;
std::vector<uint32_t> out32;
std::vector<uint64_t> out64;
void reset()
{
in8.clear();
in16.clear();
in32.clear();
in64.clear();
out8.clear();
out16.clear();
out32.clear();
out64.clear();
}
template<class UIntT>
void _genDataRandom(std::vector<UIntT>& v, uint32_t values, uint32_t repeat_cnt, bool is_inc) {
v.clear();
std::mt19937_64 e2(123456);
std::uniform_int_distribution<UIntT> dist(
std::numeric_limits<UIntT>::min(),
std::numeric_limits<UIntT>::max());
uint64_t x = values/repeat_cnt;
uint64_t remain = values%repeat_cnt;
if (is_inc) {
UIntT tmp_v = dist(e2);
for (uint64_t i = 0; i < values; i++) {
v.push_back(tmp_v + i);
}
} else {
for (int i = 0; i < x; ++i) {
UIntT tmp_v = dist(e2);
for (uint64_t j = 0; j < repeat_cnt; j++) {
v.push_back(tmp_v);
}
}
UIntT tmp_v2 = dist(e2);
for (int i = 0; i < remain; ++i) {
v.push_back(tmp_v2);
}
}
}
template<class UIntT>
void _genDataWithFixBits(std::vector<UIntT>& v,
uint32_t bits,
uint32_t values) {
v.clear();
std::mt19937_64 e2(123456);
std::uniform_int_distribution<UIntT> dist(
0,
(bits == (sizeof(UIntT) * 8)) ? (UIntT)(~0ULL) : (UIntT)((1ULL << bits) - 1));
for (size_t i = 0; i < values; ++i) {
v.push_back(static_cast<UIntT>(dist(e2) | (UIntT)(1ULL << (bits - 1))));
}
}
};
template<class UIntT>
void do_bp_encode_t(int64_t l_count, const UIntT *in, UIntT *out)
{
const UIntT *orig_in = in;
UIntT *orig_out = out;
for (uint32_t m = 0; m <= sizeof(UIntT) * CHAR_BIT; m++) {
int64_t start_us = ObTimeUtility::current_time();
for (int64_t n = 0; n < 1000; n++) {
in = orig_in;
out = orig_out;
for (int64_t i = 0; i < l_count; i+=32) {
fastpack(in, (uint32_t *)out, m);
in += 32;
out += (32 * m)/CHAR_BIT/sizeof(UIntT);
}
}
int64_t start2_us = ObTimeUtility::current_time();
for (int64_t n = 0; n < 1000; n++) {
in = orig_in;
out = orig_out;
for (int64_t i = 0; i < l_count; i+=32) {
scalar_fastpackwithoutmask(in, (uint32_t *)out, m);
in += 32;
out += (32 * m)/CHAR_BIT/sizeof(UIntT);
}
}
int64_t start3_us = ObTimeUtility::current_time();
for (int64_t n = 0; n < 1000; n++) {
in = orig_in;
out = orig_out;
for (int64_t i = 0; i < l_count; i+=128) {
if (sizeof(UIntT) == 2) {
uSIMD_fastpackwithoutmask_128_16((uint16_t *)in, (__m128i *)out, m);
in += 128;
out += ((128 * m) / CHAR_BIT / sizeof(UIntT));
} else if (sizeof(UIntT) == 4) {
uSIMD_fastpackwithoutmask_128_32((uint32_t *)in, (__m128i *)out, m);
in += 128;
out += ((128 * m) / CHAR_BIT / sizeof(UIntT));
} else {
// not support
}
}
}
int64_t end_us = ObTimeUtility::current_time();
int64_t base_cost_us = start2_us - start_us;
int64_t raw_cost_us = start3_us - start2_us;
int64_t simd_cost_us = end_us - start3_us;
double raw_ratio = (base_cost_us - raw_cost_us) / (base_cost_us * 1.0);
double simd_ratio = (base_cost_us - simd_cost_us) / (base_cost_us * 1.0);
printf("encode uint%ld_recursion----%d bit, cost_us:%ld, raw:%.2f, simd:%.2f\n", sizeof(UIntT) * CHAR_BIT, m, base_cost_us, raw_ratio, simd_ratio);
}
}
template <class UIntT>
void do_bp_decode_t(int64_t l_count, const UIntT *in, UIntT *out)
{
const UIntT *orig_in = in;
UIntT *orig_out = out;
for (uint32_t m = 0; m <= sizeof(UIntT) * CHAR_BIT; m++) {
int64_t start_us = ObTimeUtility::current_time();
for (int64_t n = 0; n < 1000; n++) {
in = orig_in;
out = orig_out;
for (int64_t i = 0; i < l_count; i+=32) {
fastunpack((const uint32_t *)in, out, m);
in += (m * 32)/CHAR_BIT/sizeof(UIntT);
out += 32;
}
}
int64_t start2_us = ObTimeUtility::current_time();
for (int64_t n = 0; n < 1000; n++) {
in = orig_in;
out = orig_out;
for (int64_t i = 0; i < l_count; i+=32) {
scalar_fastunpack((const uint32_t *)in, out, m);
in += (m * 32)/CHAR_BIT/sizeof(UIntT);
out += 32;
}
}
int64_t start3_us = ObTimeUtility::current_time();
for (int64_t n = 0; n < 1000; n++) {
in = orig_in;
out = orig_out;
for (int64_t i = 0; i < l_count; i+=128) {
if (sizeof(UIntT) == 2) {
uSIMD_fastunpack_128_16((__m128i *)in, (uint16_t *)out, m);
in += (128 * m)/sizeof(UIntT)/CHAR_BIT;
out += 128;
} else if (sizeof(UIntT) == 4) {
uSIMD_fastunpack_128_32((__m128i *)in, (uint32_t *)out, m);
in += (128 * m)/sizeof(UIntT)/CHAR_BIT;
out += 128;
} else {
// not support
}
}
}
int64_t end_us = ObTimeUtility::current_time();
int64_t base_cost_us = start2_us - start_us;
int64_t raw_cost_us = start3_us - start2_us;
int64_t simd_cost_us = end_us - start3_us;
double raw_ratio = (base_cost_us - raw_cost_us) / (base_cost_us * 1.0);
double simd_ratio = (base_cost_us - simd_cost_us) / (base_cost_us * 1.0);
printf("decode uint%ld_recursion----%d bit, cost_us:%ld, raw:%.2f, simd:%.2f\n", sizeof(UIntT) * CHAR_BIT, m, base_cost_us, raw_ratio, simd_ratio);
}
}
TEST_F(ObBitPackingPerformanceTest, test) {
int64_t l_count = 128 * 1024;
int64_t buf_len = l_count * sizeof(uint32_t);
char *out = new char[buf_len];
memset(out, 0, buf_len);
_genDataRandom<uint32_t>(in32, l_count, 10, false);
do_bp_encode_t(l_count, (const uint32_t *)in32.data(), (uint32_t *)out);
do_bp_decode_t(l_count, (const uint32_t *)in32.data(), (uint32_t *)out);
_genDataRandom<uint16_t>(in16, l_count, 10, false);
do_bp_encode_t(l_count, (const uint16_t *)in32.data(), (uint16_t *)out);
do_bp_decode_t(l_count, (const uint16_t *)in32.data(), (uint16_t *)out);
_genDataRandom<uint8_t>(in8, l_count, 10, false);
do_bp_encode_t(l_count, (const uint8_t *)in32.data(), (uint8_t *)out);
do_bp_decode_t(l_count, (const uint8_t *)in32.data(), (uint8_t *)out);
}
} // namespace common
} // namespace oceanbase
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
system("rm -f test_bitpacking_performance.log*");
OB_LOGGER.set_file_name("test_bitpacking_performance.log", true, false);
oceanbase::common::ObLogger::get_logger().set_log_level("INFO");
::testing::InitGoogleTest(&argc,argv);
return RUN_ALL_TESTS();
}