oceanbase/deps/oblib/unittest/lib/utility/test_ob_unify_serialize.cpp

797 lines
16 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#define USING_LOG_PREFIX LIB
#include <stdint.h>
#include <gtest/gtest.h>
#include <iostream>
#include <cstdlib>
#include "lib/utility/ob_print_utils.h" // TO_STRING_KV
#include "lib/utility/ob_unify_serialize.h"
#include "lib/random/ob_random.h"
using namespace std;
using namespace oceanbase::lib;
using namespace oceanbase::common;
using namespace oceanbase::common::serialization;
ObRandom Random;
class TestObUnifySerialize
: public ::testing::Test
{
public:
virtual void SetUp()
{
}
virtual void TearDown()
{
}
protected:
template <class T>
int64_t do_test(const T &t)
{
int64_t pos = 0;
t.serialize(buf_, LEN, pos);
T t2;
int64_t len = pos;
pos = 0;
t2.deserialize(buf_, len, pos);
ASSERT_EQ(t, t2), len;
return len;
}
protected:
const static int64_t LEN = 1024;
char buf_[LEN];
};
struct CPureTest {
OB_UNIS_VERSION_PV();
};
struct CPureTestChild {
OB_UNIS_VERSION_V(1);
};
OB_SERIALIZE_MEMBER(CPureTestChild);
struct CVirtualTest {
OB_UNIS_VERSION_V(1);
};
struct CEmptyTest {
TO_STRING_KV(KP(this));
OB_UNIS_VERSION(1);
};
OB_SERIALIZE_MEMBER(CEmptyTest);
struct CIntTest
: public CPureTest
{
OB_UNIS_VERSION(1);
public:
CIntTest()
{
b_ = false;
vi8_ = 0;
vu8_ = 0;
vi16_ = 0;
vu16_ = 0;
vi32_ = 0;
vu32_ = 0;
vi64_ = 0;
vu64_ = 0;
}
bool operator==(const CIntTest &other) const
{
return b_ == other.b_
&& vi8_ == other.vi8_
&& vu8_ == other.vu8_
&& vi16_ == other.vi16_
&& vu16_ == other.vu16_
&& vi32_ == other.vi32_
&& vu32_ == other.vu32_
&& vi64_ == other.vi64_
&& vu64_ == other.vu64_;
}
static const CIntTest MMAX()
{
CIntTest t1;
t1.b_ = true;
t1.vi8_ = INT8_MAX;
t1.vu8_ = UINT8_MAX;
t1.vi16_ = INT16_MAX;
t1.vu16_ = UINT16_MAX;
t1.vi32_ = INT32_MAX;
t1.vu32_ = UINT32_MAX;
t1.vi64_ = INT64_MAX;
t1.vu64_ = UINT64_MAX;
return t1;
}
static const CIntTest MMIN()
{
CIntTest t1;
t1.b_ = false;
t1.vi8_ = INT8_MIN;
t1.vu8_ = 0;
t1.vi16_ = INT16_MIN;
t1.vu16_ = 0;
t1.vi32_ = INT32_MIN;
t1.vu32_ = 0;
t1.vi64_ = INT64_MIN;
t1.vu64_ = 0;
return t1;
}
static const CIntTest RAND()
{
CIntTest t1;
t1.b_ = Random.get(0, 1) == 0;
t1.vi8_ = (int8_t) Random.get(0, 127);
t1.vu8_ = (uint8_t) Random.get(0, 127);
t1.vi16_ = (int16_t) Random.get(0, 127);
t1.vu16_ = (uint16_t) Random.get(0, 127);
t1.vi32_ = (int32_t) Random.get(0, 127);
t1.vu32_ = (uint32_t) Random.get(0, 127);
t1.vi64_ = Random.get(0, 127);
t1.vu64_ = Random.get(0, 127);
return t1;
}
public:
bool b_;
int8_t vi8_;
uint8_t vu8_;
int16_t vi16_;
uint16_t vu16_;
int32_t vi32_;
uint32_t vu32_;
int64_t vi64_;
uint64_t vu64_;
TO_STRING_KV(K_(b), K_(vi8), K_(vu8), K_(vi16), K_(vu16), K_(vi32), K_(vu32), K_(vi64), K_(vu64));
}; // end of class TestObUnifySerialize
OB_SERIALIZE_MEMBER(CIntTest, b_, vi8_, vu8_, vi16_, vu16_, vi32_, vu32_, vi64_, vu64_);
struct CDerived
: public CIntTest
{
OB_UNIS_VERSION(1);
public:
CDerived()
{
i64_ = 0;
}
static const CDerived RAND()
{
CDerived n;
n.CIntTest::RAND();
n.i64_ = ObRandom::rand(0, 127);
return n;
}
private:
int64_t i64_;
};
OB_SERIALIZE_MEMBER((CDerived, CIntTest), i64_);
struct CCharTest
: public CPureTest
{
OB_UNIS_VERSION(1);
public:
CCharTest()
{
memset(buf_, 0, 8);
}
bool operator==(const CCharTest &other) const
{
return 0 == strcmp(buf_, other.buf_);
}
static const CCharTest RAND()
{
CCharTest n;
int64_t rlen = Random.get(0, (int64_t)sizeof (buf_) - 1);
for (int64_t i = 0; i < rlen; i++) {
n.buf_[i] = static_cast<char>('a' + Random.get(0, 25));
}
n.buf_[rlen] = 0;
return n;
}
TO_STRING_KV(K_(buf));
private:
char buf_[32];
};
OB_SERIALIZE_MEMBER(CCharTest, buf_);
struct CArrayTest
: public CPureTest
{
OB_UNIS_VERSION(1);
public:
CArrayTest()
{
memset(ia_, 0, sizeof (int32_t) * SIZE);
memset(uia_, 0, sizeof (uint32_t) * SIZE);
memset(i64a_, 0, sizeof (int64_t) * SIZE);
memset(ui64a_, 0, sizeof (uint64_t) * SIZE);
}
bool operator==(const CArrayTest &other) const
{
bool right = true;
for (int i = 0; i < SIZE; i++) {
if (other.ia_[i] != ia_[i]) {
right = false;
break;
}
if (other.uia_[i] != uia_[i]) {
right = false;
break;
}
if (other.i64a_[i] != i64a_[i]) {
right = false;
break;
}
if (other.ui64a_[i] != ui64a_[i]) {
right = false;
break;
}
if (!(other.ita_[i] == ita_[i])) {
right = false;
break;
}
}
return right;
}
TO_STRING_KV(K_(ia), K_(uia), K_(i64a), K_(ui64a), K_(ita));
static const CArrayTest RAND()
{
CArrayTest n;
int rlen = SIZE;
for (int i = 0; i < rlen; i++) {
n.ia_[i] = (int32_t) Random.get(0, 127);
n.uia_[i] = (uint32_t) Random.get(0, 127);
n.i64a_[i] = (int64_t) Random.get(0, 127);
n.ui64a_[i] = (uint64_t) Random.get(0, 127);
n.ita_[i] = CIntTest::RAND();
}
return n;
}
private:
static const int SIZE = 32;
private:
int32_t ia_[SIZE];
uint32_t uia_[SIZE];
int64_t i64a_[SIZE];
uint64_t ui64a_[SIZE];
CIntTest ita_[SIZE];
};
OB_SERIALIZE_MEMBER(CArrayTest, ia_, uia_, i64a_, ui64a_, ita_);
struct CEnumTest
: public CPureTest
{
OB_UNIS_VERSION(1);
public:
CEnumTest()
{
eval = E0;
}
bool operator==(const CEnumTest &other) const {
return eval == other.eval;
}
static const CEnumTest RAND()
{
CEnumTest et;
int rnd = (int) Random.get(0, EMAX-1);
et.eval = (Eval)rnd;
return et;
}
TO_STRING_KV(K(eval));
private:
enum Eval { E0, E1, E2, E3, EMAX } eval;
};
OB_SERIALIZE_MEMBER(CEnumTest, eval);
struct CNested
{
OB_UNIS_VERSION(1);
public:
bool operator==(const CNested &other) const
{
return t1_ == other.t1_
&& t2_ == other.t2_
&& ct_ == other.ct_
&& at_ == other.at_
&& et_ == other.et_
&& t3_ == other.t3_;
}
static const CNested RAND()
{
CNested n;
n.t1_ = n.t1_.RAND();
n.t2_ = n.t2_.RAND();
n.ct_ = n.ct_.RAND();
n.at_ = n.at_.RAND();
n.et_ = n.et_.RAND();
n.t3_ = n.t3_.RAND();
return n;
}
public:
CIntTest t1_;
CIntTest t2_;
CCharTest ct_;
CArrayTest at_;
CEnumTest et_;
CIntTest t3_;
};
OB_SERIALIZE_MEMBER(CNested, t1_, t2_, ct_, at_, et_, t3_);
struct CNestedAddOne
{
OB_UNIS_VERSION(1);
public:
bool operator==(const CNestedAddOne &other) const
{
return t1_ == other.t1_
&& t2_ == other.t2_
&& ct_ == other.ct_
&& at_ == other.at_
&& et_ == other.et_
&& t3_ == other.t3_
&& t4_ == other.t4_;
}
static const CNestedAddOne RAND()
{
CNestedAddOne n;
n.t1_ = n.t1_.RAND();
n.t2_ = n.t2_.RAND();
n.ct_ = n.ct_.RAND();
n.at_ = n.at_.RAND();
n.et_ = n.et_.RAND();
n.t3_ = n.t3_.RAND();
n.t4_ = n.t4_.RAND();
return n;
}
public:
CIntTest t1_;
CIntTest t2_;
CCharTest ct_;
CArrayTest at_;
CEnumTest et_;
CIntTest t3_;
CIntTest t4_;
};
OB_SERIALIZE_MEMBER(CNestedAddOne, t1_, t2_, ct_, at_, et_, t3_, t4_);
struct CNestedStub
{
OB_UNIS_VERSION(1);
public:
bool operator==(const CNestedStub &) const
{
return true;
}
static const CNestedStub RAND()
{
return CNestedStub();
}
public:
CEmptyTest t1_;
CEmptyTest t2_;
CCharTest ct_;
CArrayTest at_;
CEnumTest et_;
CEmptyTest t3_;
CEmptyTest t4_;
};
OB_SERIALIZE_MEMBER(CNestedStub, t1_, t2_, ct_, at_, et_, t3_, t4_);
TEST_F(TestObUnifySerialize, CIntTest)
{
int cnt = 100000;
while (cnt--) {
CIntTest t1 = CIntTest::RAND();
do_test(t1);
}
CIntTest t1 = CIntTest::MMAX();
do_test(t1);
t1 = CIntTest::MMIN();
do_test(t1);
t1 = CIntTest::RAND();
t1.vi64_ = -1;
do_test(t1);
}
TEST_F(TestObUnifySerialize, CDerived)
{
int cnt = 100000;
while (cnt--) {
CDerived t1 = CDerived::RAND();
do_test(t1);
}
}
TEST_F(TestObUnifySerialize, CCharTest)
{
int cnt = 100000;
while (cnt--) {
CCharTest n = CCharTest::RAND();
do_test(n);
}
}
TEST_F(TestObUnifySerialize, CArrayTest)
{
int cnt = 10000;
while (cnt--) {
CArrayTest n = CArrayTest::RAND();
do_test(n);
}
}
TEST_F(TestObUnifySerialize, CEnumTest)
{
int cnt = 100000;
while (cnt--) {
CEnumTest n = CEnumTest::RAND();
do_test(n);
}
}
TEST_F(TestObUnifySerialize, CNested)
{
int cnt = 10000;
while (cnt--) {
CNested n = CNested::RAND();
do_test(n);
}
}
TEST_F(TestObUnifySerialize, CNested2)
{
int64_t pos = 0;
CNested n = CNested::RAND();
EXPECT_EQ(OB_SUCCESS, n.serialize(buf_, LEN, pos));
EXPECT_EQ(pos, n.get_serialize_size());
}
/*
TEST_F(TestObUnifySerialize, CNestedCompatibility)
{
// encode a CNested object
CNested n = CNested::RAND();
{
int64_t pos = 0;
EXPECT_EQ(OB_SUCCESS, encode(buf_, LEN, pos, n));
pos = 0;
EXPECT_EQ(OB_SUCCESS, decode(buf_, LEN, pos, n));
}
// decode as a CNestedAddOne
{
int64_t pos = 0;
CNestedAddOne nn;
CIntTest t4 = CIntTest::RAND();
nn.t4_ = t4;
EXPECT_EQ(OB_SUCCESS, decode(buf_, LEN, pos, nn));
EXPECT_EQ(t4, nn.t4_);
}
// if packet not enough
{
int64_t pos = 0;
CNestedAddOne nn;
EXPECT_EQ(OB_DESERIALIZE_ERROR, decode(buf_, 0, pos, nn));
pos = 0;
EXPECT_EQ(OB_DESERIALIZE_ERROR, decode(buf_, 1, pos, nn));
pos = 0;
EXPECT_EQ(OB_DESERIALIZE_ERROR, decode(buf_, 2, pos, nn));
pos = 0;
EXPECT_EQ(OB_DESERIALIZE_ERROR, decode(buf_, 3, pos, nn));
pos = 0;
EXPECT_EQ(OB_DESERIALIZE_ERROR, decode(buf_, 4, pos, nn));
}
// if some members are logical deleted
{
CNestedStub ns;
int64_t pos = 0;
EXPECT_EQ(OB_SUCCESS, decode(buf_, LEN, pos, ns));
EXPECT_EQ(n.ct_, ns.ct_);
EXPECT_EQ(n.at_, ns.at_);
EXPECT_EQ(n.et_, ns.et_);
}
// the opposite of previous condition
{
CNestedStub ns;
int64_t pos = 0;
EXPECT_EQ(OB_SUCCESS, encode(buf_, LEN, pos, ns));
pos = 0;
CNestedAddOne nn = CNestedAddOne::RAND();
EXPECT_EQ(OB_SUCCESS, decode(buf_, LEN, pos, nn));
EXPECT_EQ(nn.ct_, ns.ct_);
EXPECT_EQ(nn.at_, ns.at_);
EXPECT_EQ(nn.et_, ns.et_);
}
}
*/
TEST_F(TestObUnifySerialize, Dummy)
{
UNFDummy<1> dummy;
// encode with CNested and decode using dummy.
CNested n = CNested::RAND();
int64_t pos = 0;
int ret = n.serialize(buf_, LEN, pos);
ASSERT_EQ(OB_SUCCESS, ret);
const int64_t len = pos;
pos = 0;
ret = dummy.deserialize(buf_, len, pos);
// calculate encoded_length
ASSERT_EQ(OB_SUCCESS, ret);
const int64_t elen = encoded_length(dummy);
ASSERT_EQ(1 + OB_SERIALIZE_SIZE_NEED_BYTES, elen); // 1 for version, OB_SERIALIZE_SIZE_NEED_BYTES for data_length
}
struct COptInt
{
OB_UNIS_VERSION(1);
public:
COptInt()
: valid_(true), value_(0)
{}
bool operator==(const COptInt &rhs) const {
return valid_ == rhs.valid_
&& value_ == rhs.value_;
}
public:
bool valid_;
int value_;
};
// if (valid_) then serialize list else nothing.
OB_SERIALIZE_MEMBER_IF(COptInt, (valid_ == true), value_);
TEST_F(TestObUnifySerialize, OptionallySerialize)
{
// serialize valid_ and value_;
{
COptInt st1;
st1.value_ = 324;
int64_t pos = 0;
int ret = st1.serialize(buf_, LEN, pos);
ASSERT_EQ(OB_SUCCESS, ret);
COptInt st2;
const int64_t len = pos;
pos = 0;
ret = st2.deserialize(buf_, len, pos);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(len, pos);
ASSERT_EQ(st1, st2);
}
// serialize nothing.
{
COptInt st1;
st1.valid_ = false;
st1.value_ = 324;
int64_t pos = 0;
int ret = st1.serialize(buf_, LEN, pos);
ASSERT_EQ(OB_SUCCESS, ret);
COptInt st2;
const int64_t len = pos;
pos = 0;
ret = st2.deserialize(buf_, len, pos);
cout << st2.valid_ << endl;
cout << st2.value_ << endl;
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(len, pos);
ASSERT_EQ(COptInt(), st2);
}
}
// unis compatibility support for refactor
class CCompat {
OB_UNIS_VERSION(1);
//OB_UNIS_COMPAT(VER(2, 2, 3));
public:
bool operator==(const CCompat &rhs) const {
return i1_ == rhs.i1_ && i2_ == rhs.i2_;
}
public:
int i1_;
int i2_;
};
//OB_SERIALIZE_MEMBER(CCompat, i1_, i2_);
//OB_SERIALIZE_MEMBER_COMPAT(VER(2, 2, 3), CCompat, i2_, i1_);
/*
class CCompat2 : public CCompat {
OB_UNIS_VERSION(1);
OB_UNIS_COMPAT(VER(2, 2, 3));
public:
CCompat2() {
at_ = CArrayTest::RAND();
}
bool operator==(const CCompat2 &rhs) const {
return l1_ == rhs.l1_ && l2_ == rhs.l2_ && i1_ == rhs.i1_ && i2_ == rhs.i2_;
}
bool operator!=(const CCompat2 &rhs) const {
return !operator==(rhs);
}
public:
CArrayTest at_;
long l1_;
long l2_;
};
OB_SERIALIZE_MEMBER((CCompat2, CCompat), at_, l1_, l2_);
OB_SERIALIZE_MEMBER_COMPAT(VER(2, 2, 3), CCompat2, i1_, i2_, at_, l1_, l2_);
class CNoCompat : public CCompat {
OB_UNIS_VERSION(1);
public:
CNoCompat() {
v_ = (int)Random.get(0, 127);
}
bool operator==(const CNoCompat &rhs) const {
return v_ == rhs.v_ && static_cast<const CCompat&>(*this) == static_cast<const CCompat&>(rhs);
}
private:
int v_;
};
OB_SERIALIZE_MEMBER((CNoCompat, CCompat), v_);
TEST_F(TestObUnifySerialize, Compat)
{
using namespace serialization;
CCompat c1;
c1.i1_ = 1;
c1.i2_ = 2;
{
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 3));
do_test(c1);
}
do_test(c1);
// use 2.2.3 to encode, and 2.2.4 to decode.
// Result: c1.i1_ == c2.i2_ && c1.i2_ == c2.i1_
{
int64_t len = 0;
{
int64_t pos = 0;
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 3));
encode(buf_, LEN, pos, c1);
len = pos;
}
CCompat c2;
{
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 4));
int64_t pos = 0;
decode(buf_, len, pos, c2);
}
EXPECT_EQ(2, c2.i1_);
EXPECT_EQ(1, c2.i2_);
}
{
// encode and decode with same/different version for refactored class
// Compat2.
CCompat2 c;
c.i1_ = 123;
c.i2_ = 456;
c.l1_ = 653;
c.l2_ = 321;
{
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 3));
int64_t encoded_len = do_test(c);
{
// encode with 2.2.3, but decode with 2.2.4
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 4));
int64_t pos = 0;
CCompat2 cc2;
int ret = decode(buf_, encoded_len, pos, cc2);
EXPECT_NE(OB_SUCCESS, ret);
EXPECT_NE(c, cc2);
}
}
{
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 4));
int64_t encoded_len = do_test(c);
{
// encode with 2.2.4, but decode with 2.2.3
UNIS_VERSION_GUARD(UNIS_VER(2, 2, 3));
int64_t pos = 0;
CCompat2 cc2;
int ret = decode(buf_, encoded_len, pos, cc2);
EXPECT_NE(OB_SUCCESS, ret);
EXPECT_NE(c, cc2);
}
}
}
{
CNoCompat cnc;
do_test(cnc);
}
}
*/
int main(int argc, char *argv[])
{
srand((uint32_t)time(NULL));
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}