oceanbase/unittest/storage/test_sstable_single_scan.cpp
gm 4a92b6d7df reformat source code
according to code styles, 'AccessModifierOffset' should be -2.
2021-06-17 10:40:36 +08:00

772 lines
25 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <gtest/gtest.h>
#include "ob_sstable_test.h"
namespace oceanbase {
using namespace blocksstable;
using namespace common;
using namespace storage;
using namespace share::schema;
namespace unittest {
class TestSSTableSingleScanner : public ObSSTableTest {
public:
TestSSTableSingleScanner();
void test_border(const bool is_reverse_scan, const int64_t limit);
void test_normal(const bool is_reverse_scan, const int64_t limit);
void test_multi_block_read_continue_io(const bool is_reverse_scan, const int64_t limit);
void test_multi_block_read_discrete_io(const bool is_reverse_scan, const int64_t limit);
void generate_range(const int64_t start, const int64_t end, ObStoreRange& range);
void test_one_case(const ObStoreRange& range, const int64_t start, const int64_t end, const bool is_reverse_scan,
const int64_t hit_mode);
void test_skip_range(const bool is_reverse_scan, const common::ObIArray<SkipInfo>& skip_infos);
virtual ~TestSSTableSingleScanner();
private:
ObStoreRow start_row_;
ObStoreRow end_row_;
ObObj start_cells_[TEST_COLUMN_CNT];
ObObj end_cells_[TEST_COLUMN_CNT];
};
TestSSTableSingleScanner::TestSSTableSingleScanner() : ObSSTableTest("single_scan_sstable")
{}
TestSSTableSingleScanner::~TestSSTableSingleScanner()
{}
void TestSSTableSingleScanner::generate_range(const int64_t start, const int64_t end, ObStoreRange& range)
{
int ret = OB_SUCCESS;
start_row_.row_val_.assign(start_cells_, TEST_COLUMN_CNT);
end_row_.row_val_.assign(end_cells_, TEST_COLUMN_CNT);
ret = row_generate_.get_next_row(start, start_row_);
ASSERT_EQ(OB_SUCCESS, ret);
ret = row_generate_.get_next_row(end, end_row_);
ASSERT_EQ(OB_SUCCESS, ret);
range.get_start_key().assign(start_cells_, TEST_ROWKEY_COLUMN_CNT);
range.get_end_key().assign(end_cells_, TEST_ROWKEY_COLUMN_CNT);
range.get_border_flag().set_inclusive_start();
range.get_border_flag().set_inclusive_end();
}
void TestSSTableSingleScanner::test_one_case(const ObStoreRange& range, const int64_t start, const int64_t end,
const bool is_reverse_scan, const int64_t hit_mode)
{
int ret = OB_SUCCESS;
ObStoreRowIterator* scanner = NULL;
ObStoreRow row;
ObObj cells[TEST_COLUMN_CNT];
row.row_val_.assign(cells, TEST_COLUMN_CNT);
const ObStoreRow* prow = NULL;
ObExtStoreRange ext_range;
if (HIT_PART == hit_mode) {
const int64_t part_start = start + (end - start) / 3;
const int64_t part_end = end - (end - start) / 3;
ObStoreRange part_range;
ObStoreRow start_row;
ObStoreRow end_row;
ObObj start_cells[TEST_COLUMN_CNT];
ObObj end_cells[TEST_COLUMN_CNT];
start_row.row_val_.assign(start_cells, TEST_COLUMN_CNT);
end_row.row_val_.assign(end_cells, TEST_COLUMN_CNT);
ret = row_generate_.get_next_row(part_start, start_row);
ASSERT_EQ(OB_SUCCESS, ret);
ret = row_generate_.get_next_row(part_end, end_row);
ASSERT_EQ(OB_SUCCESS, ret);
part_range.get_start_key().assign(start_cells, TEST_ROWKEY_COLUMN_CNT);
part_range.get_end_key().assign(end_cells, TEST_ROWKEY_COLUMN_CNT);
part_range.get_border_flag().set_inclusive_start();
part_range.get_border_flag().set_inclusive_end();
convert_range(part_range, ext_range, allocator_);
ret = sstable_.scan(param_, context_, ext_range, scanner);
ASSERT_EQ(OB_SUCCESS, ret);
for (int64_t i = part_start; i <= part_end; ++i) {
if (i < row_cnt_) {
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_SUCCESS, ret) << "i: " << i << " part_start: " << part_start << " part_end: " << part_end
<< " prow: " << prow;
}
}
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
}
if (nullptr != scanner) {
scanner->~ObStoreRowIterator();
scanner = nullptr;
}
convert_range(range, ext_range, allocator_);
ret = sstable_.scan(param_, context_, ext_range, scanner);
ASSERT_EQ(OB_SUCCESS, ret);
for (int64_t i = start; i <= end; ++i) {
int64_t index = 0;
if (is_reverse_scan) {
ret = row_generate_.get_next_row(end - i + start, row);
index = end - i + start;
} else {
ret = row_generate_.get_next_row(i, row);
index = i;
}
ASSERT_EQ(OB_SUCCESS, ret);
if (index < row_cnt_) {
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_SUCCESS, ret) << "index: " << index << " start: " << start << " end: " << end << " prow: " << prow;
ASSERT_TRUE(row.row_val_ == prow->row_val_);
}
}
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
if (nullptr != scanner) {
scanner->~ObStoreRowIterator();
scanner = nullptr;
}
if (HIT_ALL == hit_mode) {
int64_t index = 0;
ret = sstable_.scan(param_, context_, ext_range, scanner);
ASSERT_EQ(OB_SUCCESS, ret);
for (int64_t i = start; i <= end; ++i) {
if (is_reverse_scan) {
ret = row_generate_.get_next_row(end - i + start, row);
index = end - i + start;
} else {
ret = row_generate_.get_next_row(i, row);
index = i;
}
ASSERT_EQ(OB_SUCCESS, ret);
if (index < row_cnt_) {
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_TRUE(row.row_val_ == prow->row_val_);
}
}
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
}
if (nullptr != scanner) {
scanner->~ObStoreRowIterator();
scanner = nullptr;
}
}
void TestSSTableSingleScanner::test_skip_range(const bool is_reverse_scan, const common::ObIArray<SkipInfo>& skip_infos)
{
int ret = OB_SUCCESS;
ObStoreRowIterator* scanner = NULL;
ObStoreRange range;
ObStoreRow row;
ObStoreRow gap_row;
ObStoreRowkey gap_rowkey;
ObObj cells[TEST_COLUMN_CNT];
row.row_val_.assign(cells, TEST_COLUMN_CNT);
ObObj gap_key_cells[TEST_COLUMN_CNT];
gap_row.row_val_.assign(gap_key_cells, TEST_COLUMN_CNT);
ObExtStoreRange ext_range;
const ObStoreRow* prow = NULL;
int64_t step = is_reverse_scan ? -1 : 1;
int64_t start = is_reverse_scan ? row_cnt_ - 1 : 0;
int64_t end = is_reverse_scan ? 0 : row_cnt_ - 1;
// prepare query param
const int64_t limit = -1;
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
// test whole range
range.set_whole_range();
convert_range(range, ext_range, allocator_);
ret = sstable_.scan(param_, context_, ext_range, scanner);
ASSERT_EQ(OB_SUCCESS, ret);
STORAGE_LOG(INFO, "test_skip_range", K(is_reverse_scan), K(skip_infos));
for (int64_t i = start; compare(is_reverse_scan, i, end); i += step) {
ret = row_generate_.get_next_row(i, row);
ASSERT_EQ(OB_SUCCESS, ret);
OB_LOGGER.set_log_level("DEBUG");
ret = scanner->get_next_row(prow);
OB_LOGGER.set_log_level("INFO");
ASSERT_EQ(OB_SUCCESS, ret);
STORAGE_LOG(INFO, "get_next_row", K(row), K(*prow));
ASSERT_TRUE(row.row_val_ == prow->row_val_) << i << "\n";
int64_t j = 0;
for (j = 0; OB_SUCC(ret) && j < skip_infos.count(); ++j) {
if (skip_infos.at(j).start_key_ == i) {
i = skip_infos.at(j).gap_key_ - step;
break;
}
}
if (j != skip_infos.count()) {
ret = row_generate_.get_next_row(skip_infos.at(j).gap_key_, gap_row);
ASSERT_EQ(OB_SUCCESS, ret);
gap_rowkey.assign(gap_key_cells, TEST_ROWKEY_COLUMN_CNT);
OB_LOGGER.set_log_level("DEBUG");
ret = scanner->skip_range(0, &gap_rowkey, true);
OB_LOGGER.set_log_level("INFO");
ASSERT_EQ(OB_SUCCESS, ret);
STORAGE_LOG(INFO, "skip range to", K(gap_rowkey));
}
}
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
if (nullptr != scanner) {
scanner->~ObStoreRowIterator();
scanner = nullptr;
}
}
void TestSSTableSingleScanner::test_border(const bool is_reverse_scan, const int64_t limit)
{
int ret = OB_SUCCESS;
ObStoreRowIterator* scanner = NULL;
ObStoreRange range;
ObStoreRow row;
ObObj cells[TEST_COLUMN_CNT];
row.row_val_.assign(cells, TEST_COLUMN_CNT);
ObExtStoreRange ext_range;
// prepare query param
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
// full table scan
range.set_whole_range();
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, 0, row_cnt_ - 1, is_reverse_scan, i);
}
// the first row of sstable
generate_range(0, 0, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, 0, 0, is_reverse_scan, i);
}
// the last row of sstable
generate_range(row_cnt_ - 1, row_cnt_ - 1, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, row_cnt_ - 1, row_cnt_ - 1, is_reverse_scan, i);
}
// not exist
generate_range(row_cnt_, row_cnt_, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, row_cnt_, row_cnt_, is_reverse_scan, i);
}
// invalid invoke when not inited
ObSSTable sstable;
convert_range(range, ext_range, allocator_);
ret = sstable.scan(param_, context_, ext_range, scanner);
ASSERT_NE(OB_SUCCESS, ret);
destroy_query_param();
}
void TestSSTableSingleScanner::test_normal(const bool is_reverse_scan, const int64_t limit)
{
int ret = OB_SUCCESS;
ObStoreRange range;
ObRandom random;
const int64_t random_start = random.get(0, 10000000) % row_cnt_;
const int64_t random_end = random.get(0, 100000000) % row_cnt_;
const int64_t start = std::min(random_start, random_end);
const int64_t end = std::max(random_start, random_end);
// prepare query param
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
// multiple rows exist
generate_range(start, end, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, start, end, is_reverse_scan, i);
}
// multiple rows, partial exist
generate_range(start, row_cnt_ + 10, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, start, row_cnt_ + 10, is_reverse_scan, i);
}
// single row exist
generate_range(row_cnt_ / 2, row_cnt_ / 2, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, row_cnt_ / 2, row_cnt_ / 2, is_reverse_scan, i);
}
// not exist
generate_range(row_cnt_ + 10, row_cnt_ + 20, range);
for (int64_t i = HIT_ALL; i < HIT_MAX; ++i) {
test_one_case(range, row_cnt_ + 10, row_cnt_ + 20, is_reverse_scan, i);
}
destroy_query_param();
}
void TestSSTableSingleScanner::test_multi_block_read_continue_io(const bool is_reverse_scan, const int64_t limit)
{
int ret = OB_SUCCESS;
ObStoreRange range;
// prepare query param
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
// size < multiblock_read_size
GCONF.multiblock_read_size = 10 * 1024;
destroy_all_cache();
generate_range(0, 10, range);
test_one_case(range, 0, 10, is_reverse_scan, HIT_NONE);
// size > multiblock_read_size
destroy_all_cache();
generate_range(0, 100, range);
test_one_case(range, 0, 100, is_reverse_scan, HIT_NONE);
destroy_query_param();
}
void TestSSTableSingleScanner::test_multi_block_read_discrete_io(const bool is_reverse_scan, const int64_t limit)
{
int ret = OB_SUCCESS;
ObStoreRange range;
// prepare query param
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
// gap_size < multiblock_read_gap_size
GCONF.multiblock_read_size = 10 * 1024;
GCONF.multiblock_read_gap_size = 5 * 1024;
destroy_all_cache();
generate_range(10, 25, range);
test_one_case(range, 10, 25, is_reverse_scan, HIT_NONE);
generate_range(0, 100, range);
test_one_case(range, 0, 100, is_reverse_scan, HIT_NONE);
// gap_size > multiblock_read_gap_size
destroy_all_cache();
generate_range(10, 60, range);
test_one_case(range, 10, 60, is_reverse_scan, HIT_NONE);
generate_range(0, 100, range);
test_one_case(range, 0, 100, is_reverse_scan, HIT_NONE);
destroy_query_param();
}
TEST_F(TestSSTableSingleScanner, test_border)
{
const bool is_reverse_scan = false;
int64_t limit = -1;
test_border(is_reverse_scan, limit);
limit = 1;
test_border(is_reverse_scan, limit);
STORAGE_LOG(INFO, "memory usage", K(lib::get_memory_hold()), K(lib::get_memory_limit()));
ObMallocAllocator::get_instance()->print_tenant_ctx_memory_usage(500);
ObMallocAllocator::get_instance()->print_tenant_memory_usage(500);
ObMallocAllocator::get_instance()->print_tenant_memory_usage(1);
}
TEST_F(TestSSTableSingleScanner, test_border_reverse_scan)
{
const bool is_reverse_scan = true;
int64_t limit = -1;
test_border(is_reverse_scan, limit);
limit = 1;
test_border(is_reverse_scan, limit);
}
TEST_F(TestSSTableSingleScanner, test_normal)
{
const bool is_reverse_scan = false;
int64_t limit = -1;
test_normal(is_reverse_scan, limit);
limit = 1;
test_normal(is_reverse_scan, limit);
}
TEST_F(TestSSTableSingleScanner, test_normal_reverse_scan)
{
const bool is_reverse_scan = true;
int64_t limit = -1;
test_normal(is_reverse_scan, limit);
limit = 1;
test_normal(is_reverse_scan, limit);
}
TEST_F(TestSSTableSingleScanner, test_scan_mix_columns)
{
int ret = OB_SUCCESS;
ObStoreRowIterator* scanner = NULL;
ObStoreRange range;
ObExtStoreRange ext_range;
ObTableAccessParam param;
const ObStoreRow* prow = NULL;
// prepare query param
const bool is_reverse_scan = false;
const int64_t limit = -1;
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
columns_.reset();
ret = table_schema_.get_column_ids(columns_);
ASSERT_EQ(OB_SUCCESS, ret);
int64_t column_ids[5] = {3, 5, 3, 23, 12};
ObColDesc col_desc;
const share::schema::ObColumnSchemaV2* column = NULL;
for (int64_t i = 0; i < (int64_t)(sizeof(column_ids) / sizeof(int64_t)); ++i) {
if (NULL == (column = table_schema_.get_column_schema(column_ids[i]))) {
ret = OB_ERR_UNEXPECTED;
STORAGE_LOG(WARN, "cannot find column.", K(i), K(column_ids[i]));
} else {
col_desc.col_id_ = column->get_column_id();
col_desc.col_type_ = column->get_meta_type();
if (OB_FAIL(columns_.push_back(col_desc))) {
STORAGE_LOG(WARN, "push to columns failed.", K(ret));
}
}
}
param_.out_cols_ = &columns_;
// whole range
range.set_whole_range();
convert_range(range, ext_range, allocator_);
ret = sstable_.scan(param_, context_, ext_range, scanner);
ASSERT_EQ(OB_SUCCESS, ret);
for (int64_t i = 0; i < row_cnt_; ++i) {
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_TRUE(NULL != prow);
}
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
}
TEST_F(TestSSTableSingleScanner, test_estimate)
{
int ret = OB_SUCCESS;
ObStoreRange range;
ObExtStoreRange ext_range;
ObPartitionEst cost_metrics;
ObStoreRow row;
// prepare query param
const bool is_reverse_scan = false;
const int64_t limit = -1;
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
range.set_whole_range();
cost_metrics.reset();
convert_range(range, ext_range, allocator_);
ret = sstable_.estimate_scan_row_count(context_.query_flag_, table_key_.table_id_, ext_range, cost_metrics);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_TRUE(cost_metrics.logical_row_count_ > 2900);
ObStoreRow start_row;
ObStoreRow end_row;
ObObj start_cells[TEST_COLUMN_CNT];
ObObj end_cells[TEST_COLUMN_CNT];
start_row.row_val_.assign(start_cells, TEST_COLUMN_CNT);
end_row.row_val_.assign(end_cells, TEST_COLUMN_CNT);
ret = row_generate_.get_next_row(0, start_row);
ASSERT_EQ(OB_SUCCESS, ret);
ret = row_generate_.get_next_row(2, end_row);
ASSERT_EQ(OB_SUCCESS, ret);
range.get_start_key().assign(start_cells, TEST_ROWKEY_COLUMN_CNT);
range.get_end_key().assign(end_cells, TEST_ROWKEY_COLUMN_CNT);
range.get_border_flag().set_inclusive_start();
range.get_border_flag().set_inclusive_end();
convert_range(range, ext_range, allocator_);
cost_metrics.logical_row_count_ = 0;
ret = sstable_.estimate_scan_row_count(context_.query_flag_, table_key_.table_id_, ext_range, cost_metrics);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_EQ(3, cost_metrics.logical_row_count_);
}
TEST_F(TestSSTableSingleScanner, test_daily_merge)
{
int ret = OB_SUCCESS;
ObStoreRowIterator* scanner = NULL;
ObArray<ObExtStoreRange> ranges;
ObStoreRange range;
ObStoreRow row;
ObObj cells[TEST_COLUMN_CNT];
row.row_val_.assign(cells, TEST_COLUMN_CNT);
ObExtStoreRange ext_range;
const ObStoreRow* prow = NULL;
// prepare query param
const bool is_reverse_scan = false;
const int64_t limit = -1;
ret = prepare_query_param(is_reverse_scan, limit);
ASSERT_EQ(OB_SUCCESS, ret);
context_.query_flag_.daily_merge_ = 1;
context_.query_flag_.whole_macro_scan_ = 1;
// test whole range
range.set_whole_range();
convert_range(range, ext_range, allocator_);
ranges.push_back(ext_range);
ret = sstable_.scan(param_, context_, ext_range, scanner);
ASSERT_EQ(OB_SUCCESS, ret);
for (int64_t i = 0; i < row_cnt_; ++i) {
ret = row_generate_.get_next_row(i, row);
ASSERT_EQ(OB_SUCCESS, ret);
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_SUCCESS, ret);
ASSERT_TRUE(row.row_val_ == prow->row_val_);
}
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
ret = scanner->get_next_row(prow);
ASSERT_EQ(OB_ITER_END, ret);
}
TEST_F(TestSSTableSingleScanner, test_skip_single_range)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = row_cnt_ / 4;
info.gap_key_ = row_cnt_ / 2;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(false, skip_info_array);
STORAGE_LOG(INFO, "memory usage", K(lib::get_memory_hold()), K(lib::get_memory_limit()));
ObMallocAllocator::get_instance()->print_tenant_ctx_memory_usage(500);
ObMallocAllocator::get_instance()->print_tenant_memory_usage(500);
ObMallocAllocator::get_instance()->print_tenant_memory_usage(1);
}
TEST_F(TestSSTableSingleScanner, test_skip_single_range_reverse_scan)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = row_cnt_ / 2;
info.gap_key_ = row_cnt_ / 4;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(true, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_multiple_ranges)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = 10;
info.gap_key_ = 20;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 200;
info.gap_key_ = 205;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 1000;
info.gap_key_ = row_cnt_ / 2;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = row_cnt_ / 3 * 2;
info.gap_key_ = row_cnt_ / 4 * 3;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(false, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_multiple_ranges_reverse_scan)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = row_cnt_ / 4 * 3;
info.gap_key_ = row_cnt_ / 3 * 2;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = row_cnt_ / 2;
info.gap_key_ = 1000;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 205;
info.gap_key_ = 200;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 20;
info.gap_key_ = 10;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(true, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_in_same_micro_range)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = 10;
info.gap_key_ = 20;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 22;
info.gap_key_ = 25;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 27;
info.gap_key_ = 30;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 1900;
info.gap_key_ = row_cnt_ + 1;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(false, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_in_same_micro_range_reverse_scan)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.gap_key_ = 1900;
info.start_key_ = row_cnt_ - 1;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.gap_key_ = 27;
info.start_key_ = 30;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.gap_key_ = 22;
info.start_key_ = 25;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.gap_key_ = 10;
info.start_key_ = 20;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(true, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_random_range)
{
int ret = OB_SUCCESS;
const int64_t skip_range_cnt = 10;
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
ObRandom random;
int64_t last_gap_key = 0;
for (int64_t i = 0; OB_SUCC(ret) && i < skip_range_cnt && last_gap_key <= row_cnt_ - 1; ++i) {
info.start_key_ = random.get(last_gap_key, row_cnt_ - 1);
info.gap_key_ = random.get(info.start_key_ + 1, row_cnt_ - 1);
last_gap_key = info.gap_key_;
if (info.start_key_ >= row_cnt_ - 1 && info.start_key_ != info.gap_key_) {
ret = skip_info_array.push_back(info);
ASSERT_EQ(OB_SUCCESS, ret);
}
}
test_skip_range(false, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_random_range_reverse_scan)
{
int ret = OB_SUCCESS;
const int64_t skip_range_cnt = 10;
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
ObRandom random;
int64_t last_gap_key = row_cnt_ - 1;
for (int64_t i = 0; (OB_SUCC(ret) && i < skip_range_cnt) && last_gap_key > 0; ++i) {
info.start_key_ = random.get(0, last_gap_key);
info.gap_key_ = random.get(0, info.start_key_ - 1);
last_gap_key = info.gap_key_;
if (last_gap_key >= 0 && info.start_key_ != info.gap_key_) {
ret = skip_info_array.push_back(info);
ASSERT_EQ(OB_SUCCESS, ret);
}
}
STORAGE_LOG(INFO, "test skip random range reverse scan", K(skip_info_array));
test_skip_range(true, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_random_range_reverse_scan_bug)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = 1390;
info.gap_key_ = 346;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 229;
info.gap_key_ = 34;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 3;
info.gap_key_ = 0;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(true, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_skip_random_range_reverse_scan_bug2)
{
ObArray<SkipInfo> skip_info_array;
SkipInfo info;
info.start_key_ = 1844;
info.gap_key_ = 653;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 351;
info.gap_key_ = 247;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
info.start_key_ = 212;
info.gap_key_ = 1;
ASSERT_EQ(OB_SUCCESS, skip_info_array.push_back(info));
test_skip_range(true, skip_info_array);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_continue_io)
{
test_multi_block_read_continue_io(false, -1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_continue_io_reverse_scan)
{
test_multi_block_read_continue_io(true, -1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_continue_io_limit)
{
test_multi_block_read_continue_io(false, 1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_continue_io_limit_reverse_scan)
{
test_multi_block_read_continue_io(true, 1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_read_discrete_io)
{
test_multi_block_read_discrete_io(false, -1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_read_discrete_io_reverse_scan)
{
test_multi_block_read_discrete_io(true, -1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_read_discrete_io_limit)
{
test_multi_block_read_discrete_io(false, 1);
}
TEST_F(TestSSTableSingleScanner, test_multi_block_read_discrete_io_limit_reverse_scan)
{
test_multi_block_read_discrete_io(true, 1);
}
} // end namespace unittest
} // end namespace oceanbase
int main(int argc, char** argv)
{
system("rm -f test_sstable_single_scan.log*");
OB_LOGGER.set_file_name("test_sstable_single_scan.log");
OB_LOGGER.set_log_level("INFO");
CLOG_LOG(INFO, "begin unittest: test_sstable_single_scan");
oceanbase::lib::set_memory_limit(30L * 1024 * 1024 * 1024);
oceanbase::common::ObLogger::get_logger().set_log_level("INFO");
testing::InitGoogleTest(&argc, argv);
STORAGE_LOG(INFO, "sizeof KVCacheInst", K(sizeof(ObKVCacheInst)));
STORAGE_LOG(INFO, "sizeof KVCacheInfo", K(sizeof(ObKVCacheInfo)));
return RUN_ALL_TESTS();
}