wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

347 lines
8.1 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#ifndef __OB_COMMON_TEST_BASE_H__
#define __OB_COMMON_TEST_BASE_H__
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <sys/time.h>
#include <unistd.h>
inline uint64_t rand64(uint64_t h)
{
if (0 == h) return 1;
h ^= h >> 33;
h *= 0xff51afd7ed558ccd;
h ^= h >> 33;
h *= 0xc4ceb9fe1a85ec53;
h ^= h >> 33;
//h &= ~(1ULL<<63);
return h;
}
int64_t get_us()
{
struct timeval time_val;
gettimeofday(&time_val, NULL);
return time_val.tv_sec * 1000000 + time_val.tv_usec;
}
#define profile(expr, n) { \
int64_t start = get_usec(); \
expr;\
int64_t end = get_usec();\
printf("%s: 1000000*%ld/%ld=%ld\n", #expr, n, end - start, 1000000 * n / (end - start)); \
}
struct Callable
{
Callable(): stop_(false) {}
virtual ~Callable() {}
virtual int call(pthread_t thread, int64_t idx) = 0;
volatile bool stop_;
};
typedef void *(*pthread_handler_t)(void *);
class BaseWorker
{
public:
static const int64_t MAX_N_THREAD = 16;
struct WorkContext
{
WorkContext() : callable_(NULL), idx_(0) {}
~WorkContext() {}
WorkContext &set(Callable *callable, int64_t idx)
{
callable_ = callable;
idx_ = idx;
return *this;
}
Callable *callable_;
pthread_t thread_;
int64_t idx_;
};
public:
BaseWorker(): n_thread_(0), thread_running_(false) {}
~BaseWorker()
{
wait();
}
public:
BaseWorker &set_thread_num(int64_t n) { n_thread_ = n; return *this; }
int start(Callable *callable, int64_t idx = -1)
{
int err = 0;
for (int64_t i = 0; i < n_thread_; i++) {
if (idx > 0 && idx != i) { continue; }
fprintf(stderr, "worker[%ld] start.\n", i);
pthread_create(&ctx_[i].thread_, NULL, (pthread_handler_t)do_work, (void *)(&ctx_[i].set(callable,
i)));
}
thread_running_ = true;
return err;
}
int wait(int64_t idx = -1)
{
int err = 0;
int64_t ret = 0;
for (int64_t i = 0; thread_running_ && i < n_thread_; i++) {
if (idx > 0 && idx != i) { continue; }
pthread_join(ctx_[i].thread_, (void **)&ret);
if (ret != 0) {
fprintf(stderr, "thread[%ld] => %ld\n", i, ret);
} else {
fprintf(stderr, "thread[%ld] => OK.\n", i);
}
}
thread_running_ = false;
return err;
}
static int do_work(WorkContext *ctx)
{
int err = 0;
if (NULL == ctx || NULL == ctx->callable_) {
err = -EINVAL;
} else {
err = ctx->callable_->call(ctx->thread_, ctx->idx_);
}
return err;
}
int par_do(Callable *callable, int64_t duration)
{
int err = 0;
if (0 != (err = start(callable))) {
fprintf(stderr, "start()=>%d\n", err);
} else {
usleep(static_cast<__useconds_t>(duration));
callable->stop_ = true;
}
if (0 != (err = wait())) {
fprintf(stderr, "wait()=>%d\n", err);
}
return err;
}
protected:
int64_t n_thread_;
bool thread_running_;
WorkContext ctx_[MAX_N_THREAD];
};
int PARDO(int64_t thread_num, Callable *call, int64_t duration)
{
BaseWorker worker;
fprintf(stderr, "thread_num=%ld\n", thread_num);
return worker.set_thread_num(thread_num).par_do(call, duration);
}
#if 0
struct SimpleCallable: public Callable
{
int64_t n_items_;
SimpleCallable &set(int64_t n_items)
{
n_items_ = n_items;
return *this;
}
int call(pthread_t thread, int64_t idx)
{
int err = 0;
fprintf(stdout, "worker[%ld] run\n", idx);
if (idx % 2) {
err = -EPERM;
}
return err;
}
};
int main(int argc, char **argv)
{
int err = 0;
BaseWorker worker;
SimpleCallable callable;
int64_t n_thread = 0;
int64_t n_items = 0;
if (argc != 3) {
err = -EINVAL;
fprintf(stderr, "%s n_thread n_item\n", argv[0]);
} else {
n_thread = atoll(argv[1]);
n_items = atoll(argv[2]);
profile(worker.set_thread_num(n_thread).par_do(&callable.set(n_items), 10000000), n_items);
}
}
#endif
class RWT: public Callable
{
typedef void *(*pthread_handler_t)(void *);
struct Thread
{
int set(RWT *self, int64_t idx) { self_ = self, idx_ = idx; return 0; }
pthread_t thread_;
RWT *self_;
int64_t idx_;
};
public:
RWT(): n_read_thread_(0), n_write_thread_(0), n_admin_thread_(0) {}
virtual ~RWT() {}
public:
int64_t get_thread_num() { return 1 + n_read_thread_ + n_write_thread_ + n_admin_thread_; }
RWT &set(const int64_t n_read, const int64_t n_write, const int64_t n_admin = 0)
{
n_read_thread_ = n_read;
n_write_thread_ = n_write;
n_admin_thread_ = n_admin;
return *this;
}
int report_loop()
{
int err = 0;
int64_t report_interval = 1000 * 1000;
while (!stop_ && 0 == err) {
usleep(static_cast<__useconds_t>(report_interval));
err = report();
}
return err;
}
virtual int call(pthread_t thread, const int64_t idx_)
{
int err = 0;
int64_t idx = idx_;
(void)(thread);
fprintf(stderr, "rwt.start(idx=%ld)\n", idx_);
if (idx < 0) {
err = -EINVAL;
}
if (0 == err && idx >= 0) {
if (idx == 0) {
err = report_loop();
}
idx -= 1;
}
if (0 == err && idx >= 0) {
if (idx < n_read_thread_) {
err = read(idx);
}
idx -= n_read_thread_;
}
if (0 == err && idx >= 0) {
if (idx < n_write_thread_) {
err = write(idx);
}
idx -= n_write_thread_;
}
if (0 == err && idx >= 0) {
if (idx < n_admin_thread_) {
err = admin(idx);
}
idx -= n_admin_thread_;
}
if (0 == err && idx >= 0) {
err = -EINVAL;
}
if (0 != err) {
stop_ = true;
}
fprintf(stderr, "rwt.start(idx=%ld)=>%d\n", idx_, err);
return err;
}
virtual int report() { return 0; }
virtual int read(const int64_t idx) = 0;
virtual int write(const int64_t idx) = 0;
virtual int admin(const int64_t idx) { (void)(idx); return 0; }
protected:
int64_t n_read_thread_;
int64_t n_write_thread_;
int64_t n_admin_thread_;
};
#define _cfg(k, v) getenv(k)?:v
#define _cfgi(k, v) atoll(getenv(k)?:v)
inline int64_t rand_range(int64_t s, int64_t e)
{
return s + random() % (e - s);
}
#define RWT_def(base) \
TEST_F(base, Rand){ \
ASSERT_EQ(0, PARDO(get_thread_num(), this, duration)); \
ASSERT_EQ(0, check_error()); \
}
#include "gtest/gtest.h"
#include "common/data_buffer.h"
#include "lib/allocator/ob_allocator.h"
#include "lib/allocator/ob_malloc.h"
#include "lib/regex/regex/utils.h"
using namespace oceanbase::common;
struct BufHolder
{
BufHolder(int64_t limit) { buf_ = (char *)ob_malloc(limit, ObModIds::TEST); }
~BufHolder() { ob_free((void *)buf_); }
char *buf_;
};
struct BaseConfig
{
static const int64_t buf_limit = 1 << 21;
BufHolder buf_holder;
ObDataBuffer buf;
int64_t duration;
const char *schema;
int64_t table_id;
BaseConfig(): buf_holder(buf_limit)
{
buf.set_data(buf_holder.buf_, buf_limit);
duration = _cfgi("duration", "3000000");
schema = "./test.schema";
table_id = 1002;
}
};
class FixedAllocator: public ObIAllocator
{
public:
FixedAllocator(char *buf, int64_t limit): buf_(buf), limit_(limit), pos_(0) {}
virtual ~FixedAllocator() {}
public:
void reset() { pos_ = 0; }
virtual void *alloc(const int64_t sz)
{
void *ptr = NULL;
int64_t pos = 0;
if ((pos = __sync_add_and_fetch(&pos_, sz)) > limit_) {
__sync_add_and_fetch(&pos_, -sz);
} else {
ptr = buf_ + pos;
}
return ptr;
}
virtual void free(void *ptr) { UNUSED(ptr); }
private:
char *buf_;
int64_t limit_;
int64_t pos_;
};
#endif /* __OB_COMMON_TEST_BASE_H__ */