598 lines
27 KiB
C++
598 lines
27 KiB
C++
/**
|
|
* Copyright (c) 2021 OceanBase
|
|
* OceanBase CE is licensed under Mulan PubL v2.
|
|
* You can use this software according to the terms and conditions of the Mulan PubL v2.
|
|
* You may obtain a copy of Mulan PubL v2 at:
|
|
* http://license.coscl.org.cn/MulanPubL-2.0
|
|
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
|
|
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
|
|
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
|
|
* See the Mulan PubL v2 for more details.
|
|
*/
|
|
|
|
#define USING_LOG_PREFIX SQL_EXE
|
|
|
|
#include "ob_granule_util.h"
|
|
#include "share/ob_i_tablet_scan.h"
|
|
#include "share/config/ob_server_config.h"
|
|
#include "lib/ob_errno.h"
|
|
#include "sql/ob_sql_define.h"
|
|
#include "sql/optimizer/ob_table_partition_info.h"
|
|
#include "sql/engine/ob_exec_context.h"
|
|
#include "sql/engine/px/ob_px_util.h"
|
|
#include "ob_granule_pump.h"
|
|
#include "storage/tx_storage/ob_access_service.h"
|
|
#include "share/schema/ob_table_param.h"
|
|
#include "sql/engine/ob_engine_op_traits.h"
|
|
#include "share/external_table/ob_external_table_file_mgr.h"
|
|
#include "share/external_table/ob_external_table_utils.h"
|
|
#include "sql/engine/table/ob_external_table_access_service.h"
|
|
#include "sql/das/ob_das_simple_op.h"
|
|
|
|
using namespace oceanbase::common;
|
|
using namespace oceanbase::share;
|
|
namespace oceanbase
|
|
{
|
|
namespace sql
|
|
{
|
|
|
|
void ObParallelBlockRangeTaskParams::reset()
|
|
{
|
|
parallelism_ = 0;
|
|
expected_task_load_ = sql::OB_EXPECTED_TASK_LOAD;
|
|
min_task_count_per_thread_ = sql::OB_MIN_PARALLEL_TASK_COUNT;
|
|
max_task_count_per_thread_ = sql::OB_MAX_PARALLEL_TASK_COUNT;
|
|
min_task_access_size_ = GCONF.px_task_size >> 20;
|
|
}
|
|
|
|
int ObParallelBlockRangeTaskParams::valid() const
|
|
{
|
|
int ret = OB_SUCCESS;
|
|
if (min_task_count_per_thread_ <= 0
|
|
|| max_task_count_per_thread_ <= 0
|
|
|| min_task_access_size_ <= 0
|
|
|| parallelism_ <= 0
|
|
|| expected_task_load_ <= 0) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("params is invalid", K(*this), K(ret));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool ObGranuleUtil::is_partition_granule(int64_t partition_count,
|
|
int64_t parallelism,
|
|
int64_t partition_scan_hold,
|
|
int64_t hash_partition_scan_hold,
|
|
bool hash_part)
|
|
{
|
|
bool partition_granule = false;
|
|
// if parallelism is too small, we use partition granule.
|
|
if (hash_part) {
|
|
partition_granule = partition_count >= hash_partition_scan_hold * parallelism || 1 == parallelism;
|
|
} else {
|
|
partition_granule = partition_count >= partition_scan_hold * parallelism || 1 == parallelism;
|
|
}
|
|
return partition_granule;
|
|
}
|
|
|
|
int ObGranuleUtil::split_granule_for_external_table(ObIAllocator &allocator,
|
|
const ObTableScanSpec *tsc,
|
|
const ObIArray<ObNewRange> &ranges,
|
|
const ObIArray<ObDASTabletLoc *> &tablets,
|
|
const ObIArray<ObExternalFileInfo> &external_table_files,
|
|
int64_t parallelism,
|
|
ObIArray<ObDASTabletLoc *> &granule_tablets,
|
|
ObIArray<ObNewRange> &granule_ranges,
|
|
ObIArray<int64_t> &granule_idx)
|
|
{
|
|
UNUSED(parallelism);
|
|
UNUSED(tsc);
|
|
int ret = OB_SUCCESS;
|
|
if (ranges.count() < 1 || tablets.count() < 1 || OB_ISNULL(tsc)) {
|
|
ret = OB_INVALID_ARGUMENT;
|
|
LOG_WARN("the invalid argument", K(ret), K(ranges.count()), K(tablets.count()));
|
|
} else if (external_table_files.count() == 1 &&
|
|
external_table_files.at(0).file_id_ == INT64_MAX) {
|
|
// dealing dummy file
|
|
ObNewRange new_range;
|
|
if (OB_FAIL(ObExternalTableUtils::convert_external_table_empty_range(
|
|
external_table_files.at(0).file_url_,
|
|
external_table_files.at(0).file_id_,
|
|
tsc->get_ref_table_id(),
|
|
allocator,
|
|
new_range))) {
|
|
LOG_WARN("failed to convert external table empty range", K(ret));
|
|
} else if (OB_FAIL(granule_ranges.push_back(new_range)) ||
|
|
OB_FAIL(granule_idx.push_back(external_table_files.at(0).file_id_)) ||
|
|
OB_FAIL(granule_tablets.push_back(tablets.at(0)))) {
|
|
LOG_WARN("fail to push back", K(ret));
|
|
}
|
|
} else {
|
|
for (int64_t i = 0; OB_SUCC(ret) && i < ranges.count(); ++i) {
|
|
for (int64_t j = 0; OB_SUCC(ret) && j < external_table_files.count(); ++j) {
|
|
ObNewRange new_range;
|
|
bool is_valid = false;
|
|
if (OB_FAIL(ObExternalTableUtils::convert_external_table_new_range(
|
|
external_table_files.at(j).file_url_,
|
|
external_table_files.at(j).file_id_,
|
|
tsc->get_ref_table_id(),
|
|
ranges.at(i),
|
|
allocator,
|
|
new_range,
|
|
is_valid))) {
|
|
LOG_WARN("failed to convert external table new range", K(ret));
|
|
} else if (is_valid && (OB_FAIL(granule_ranges.push_back(new_range)) ||
|
|
OB_FAIL(granule_idx.push_back(external_table_files.at(j).file_id_)) ||
|
|
OB_FAIL(granule_tablets.push_back(tablets.at(0))))) {
|
|
LOG_WARN("fail to push back", K(ret));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
LOG_DEBUG("check external split ranges", K(ranges), K(granule_ranges), K(external_table_files));
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::split_block_ranges(ObExecContext &exec_ctx,
|
|
ObIAllocator &allocator,
|
|
const ObTableScanSpec *tsc,//may be is null, attention use
|
|
const ObIArray<common::ObNewRange> &in_ranges,
|
|
const ObIArray<ObDASTabletLoc*> &tablets,
|
|
int64_t parallelism,
|
|
int64_t tablet_size,
|
|
bool force_partition_granule,
|
|
common::ObIArray<ObDASTabletLoc*> &granule_tablets,
|
|
common::ObIArray<common::ObNewRange> &granule_ranges,
|
|
common::ObIArray<int64_t> &granule_idx,
|
|
bool range_independent)
|
|
{
|
|
int ret = OB_SUCCESS;
|
|
int64_t total_macros_count = 0;
|
|
int64_t total_task_count = 1;
|
|
int64_t macros_count_per_task = 0;
|
|
common::ObSEArray<uint64_t, 16> macros_count_by_partition;
|
|
common::ObSEArray<int64_t, 16> macros_count_by_partition_int64;
|
|
common::ObSEArray<int64_t, 16> task_count_by_partition;
|
|
common::ObSEArray<common::ObNewRange, 16> ranges;
|
|
bool only_empty_range = false;
|
|
|
|
/**
|
|
* prepare
|
|
*/
|
|
if (in_ranges.count() <= 0 || tablets.count() <= 0) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("ranges/tablets is empty", K(in_ranges), K(tablets), K(ret));
|
|
} else if (OB_FAIL(remove_empty_range(in_ranges, ranges, only_empty_range))) {
|
|
LOG_WARN("failed to remove empty range", K(ret));
|
|
} else if (force_partition_granule
|
|
|| only_empty_range) {
|
|
// partition granule iterator
|
|
// 按照partition粒度切分任务的情况下,任务的个数等于partition的个数(`tablets.count()`)
|
|
int64_t pk_idx = 0;
|
|
FOREACH_CNT_X(tablet, tablets, OB_SUCC(ret)) {
|
|
FOREACH_CNT_X(range, ranges, OB_SUCC(ret)) {
|
|
if (OB_FAIL(granule_tablets.push_back(*tablet))) {
|
|
LOG_WARN("push basck tablet failed", K(ret));
|
|
} else if (OB_FAIL(granule_ranges.push_back(*range))) {
|
|
LOG_WARN("push back range failed", K(ret));
|
|
} else if (OB_FAIL(granule_idx.push_back(pk_idx))) {
|
|
LOG_WARN("push back pk_idx failed", K(ret));
|
|
} else if (range_independent) {
|
|
pk_idx++;
|
|
}
|
|
}
|
|
if (!range_independent) {
|
|
pk_idx++;
|
|
}
|
|
}
|
|
LOG_TRACE("gi partition granule");
|
|
} else if (OB_FAIL(split_block_granule(exec_ctx,
|
|
allocator,
|
|
tsc,
|
|
ranges,
|
|
tablets,
|
|
parallelism,
|
|
tablet_size,
|
|
granule_tablets,
|
|
granule_ranges,
|
|
granule_idx,
|
|
range_independent))) {
|
|
LOG_WARN("failed to split block granule tasks", K(ret));
|
|
} else {
|
|
LOG_TRACE("get the splited results through the new gi split method",
|
|
K(ret), K(granule_tablets.count()), K(granule_ranges.count()), K(granule_idx));
|
|
}
|
|
LOG_TRACE("split ranges to granule", K(ret), K(total_task_count), K(parallelism),
|
|
K(total_macros_count), K(macros_count_by_partition), K(macros_count_per_task),
|
|
K(granule_tablets.count()), K(granule_tablets), K(granule_ranges.count()), K(granule_ranges),
|
|
K(granule_idx.count()), K(granule_idx), K(tablets), K(task_count_by_partition));
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::remove_empty_range(const common::ObIArray<common::ObNewRange> &in_ranges,
|
|
common::ObIArray<common::ObNewRange> &ranges,
|
|
bool &only_empty_range) {
|
|
int ret = OB_SUCCESS;
|
|
for (int64_t i = 0; i < in_ranges.count() && OB_SUCC(ret); ++i) {
|
|
if (!in_ranges.at(i).empty()) {
|
|
if (OB_FAIL(ranges.push_back(in_ranges.at(i)))) {
|
|
LOG_WARN("fail to push back ranges", K(ret));
|
|
}
|
|
}
|
|
}
|
|
if (OB_SUCC(ret) && ranges.empty()) {
|
|
if (OB_FAIL(ranges.assign(in_ranges))) {
|
|
LOG_WARN("failed to assign ranges", K(ret));
|
|
} else {
|
|
only_empty_range = true;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::split_block_granule(ObExecContext &exec_ctx,
|
|
ObIAllocator &allocator,
|
|
const ObTableScanSpec *tsc,//may be is null, attention use!
|
|
const ObIArray<ObNewRange> &input_ranges,
|
|
const ObIArray<ObDASTabletLoc*> &tablets,
|
|
int64_t parallelism,
|
|
int64_t tablet_size,
|
|
ObIArray<ObDASTabletLoc*> &granule_tablets,
|
|
ObIArray<ObNewRange> &granule_ranges,
|
|
ObIArray<int64_t> &granule_idx,
|
|
bool range_independent)
|
|
{
|
|
// the step for split task by block granule method:
|
|
// 1. check the validity of input parameters
|
|
// 2. get size for each partition, and calc the total size for all partitions
|
|
// 3. calculate the total number of tasks
|
|
// 4. each partition gets its number of tasks by the weight of partition data in the total data
|
|
// 5. calculate task ranges for each partition, and get the result
|
|
|
|
int ret = OB_SUCCESS;
|
|
ObAccessService *access_service = MTL(ObAccessService *);
|
|
// 1. check the validity of input parameters
|
|
if (input_ranges.count() < 1 || tablets.count() < 1 || parallelism < 1 || tablet_size < 1) {
|
|
ret = OB_INVALID_ARGUMENT;
|
|
LOG_WARN("the invalid argument",
|
|
K(ret), K(input_ranges.count()), K(tablets.count()), K(parallelism), K(tablet_size));
|
|
}
|
|
|
|
// 2. get size for each partition, and calc the total size for all partitions
|
|
common::ObSEArray<int64_t, 16> size_each_partitions;
|
|
int64_t total_size = 0;
|
|
int64_t empty_partition_cnt = 0;
|
|
ObSEArray<ObStoreRange, 16> input_store_ranges;
|
|
bool need_convert_new_range = true;//only rowid range need extra convert.
|
|
if (OB_SUCC(ret)) {
|
|
for (int i = 0; i < tablets.count() && OB_SUCC(ret); i++) {
|
|
const ObDASTabletLoc &tablet = *tablets.at(i);
|
|
int64_t partition_size = 0;
|
|
// get partition size from storage
|
|
if (need_convert_new_range &&
|
|
OB_FAIL(convert_new_range_to_store_range(allocator,
|
|
tsc,
|
|
tablet.tablet_id_,
|
|
input_ranges,
|
|
input_store_ranges,
|
|
need_convert_new_range))) {
|
|
LOG_WARN("failed to convert new range to store range", K(ret));
|
|
} else if (OB_FAIL(ObDASSimpleUtils::get_multi_ranges_cost(exec_ctx, tablets.at(i),
|
|
input_store_ranges,
|
|
partition_size))) {
|
|
LOG_WARN("failed to get multi ranges cost", K(ret), K(tablet));
|
|
} else {
|
|
// B to MB
|
|
partition_size = partition_size / 1024 / 1024;
|
|
}
|
|
|
|
if (OB_SUCC(ret)) {
|
|
if (partition_size == 0) {
|
|
empty_partition_cnt++;
|
|
}
|
|
if (OB_FAIL(size_each_partitions.push_back(partition_size))) {
|
|
LOG_WARN("failed to push partition size", K(ret));
|
|
} else {
|
|
total_size += partition_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 3. calc the total number of tasks for all partitions
|
|
int64_t esti_task_cnt_by_data_size = 0;
|
|
if (OB_SUCC(ret)) {
|
|
ObParallelBlockRangeTaskParams params;
|
|
params.parallelism_ = parallelism;
|
|
params.expected_task_load_ = tablet_size/1024/1024;
|
|
if (OB_FAIL(compute_total_task_count(params, total_size, esti_task_cnt_by_data_size))) {
|
|
LOG_WARN("compute task count failed", K(ret));
|
|
} else {
|
|
esti_task_cnt_by_data_size += empty_partition_cnt;
|
|
// 确保total task count是大于等于partition的个数的
|
|
if (esti_task_cnt_by_data_size < tablets.count()) {
|
|
esti_task_cnt_by_data_size = tablets.count();
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4. split the total number of tasks into each partition
|
|
common::ObSEArray<int64_t, 16> task_cnt_each_partitions;
|
|
if (OB_SUCC(ret)) {
|
|
if (OB_FAIL(compute_task_count_each_partition(total_size,
|
|
esti_task_cnt_by_data_size,
|
|
size_each_partitions,
|
|
task_cnt_each_partitions))) {
|
|
LOG_WARN("failed to compute task count for each partition", K(ret));
|
|
}
|
|
}
|
|
|
|
// 5. calc task ranges for each partition, and get the result
|
|
if (OB_SUCC(ret)) {
|
|
int64_t tablet_idx = 0;
|
|
for (int i = 0; i < tablets.count() && OB_SUCC(ret); i++) {
|
|
ObDASTabletLoc *tablet = tablets.at(i);
|
|
int64_t expected_task_cnt = task_cnt_each_partitions.at(i);
|
|
// split input ranges to n task by PG interface
|
|
if (need_convert_new_range &&
|
|
OB_FAIL(convert_new_range_to_store_range(allocator,
|
|
tsc,
|
|
tablet->tablet_id_,
|
|
input_ranges,
|
|
input_store_ranges,
|
|
need_convert_new_range))) {
|
|
LOG_WARN("failed to convert new range to store range", K(ret));
|
|
} else if (OB_FAIL(get_tasks_for_partition(exec_ctx,
|
|
allocator,
|
|
expected_task_cnt,
|
|
*tablet,
|
|
input_store_ranges,
|
|
granule_tablets,
|
|
granule_ranges,
|
|
granule_idx,
|
|
tablet_idx,
|
|
range_independent))) {
|
|
LOG_WARN("failed to get tasks for partition", K(ret));
|
|
} else {
|
|
LOG_TRACE("get tasks for partition",
|
|
K(ret), KPC(tablet), K(granule_ranges.count()), K(granule_tablets), K(granule_idx));
|
|
}
|
|
}
|
|
if (OB_SUCC(ret)) {
|
|
if (granule_tablets.empty() ||
|
|
granule_tablets.count() != granule_ranges.count() ||
|
|
granule_tablets.count() != granule_idx.count()) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("the ranges or offsets are empty",
|
|
K(ret), K(granule_tablets.count()), K(granule_ranges.count()), K(granule_idx.count()));
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::compute_total_task_count(const ObParallelBlockRangeTaskParams ¶ms,
|
|
int64_t total_size,
|
|
int64_t &total_task_count)
|
|
{
|
|
int ret = OB_SUCCESS;
|
|
int64_t tmp_total_task_count = -1;
|
|
if (OB_FAIL(params.valid())) {
|
|
LOG_WARN("params is invalid" , K(ret));
|
|
} else {
|
|
// total size
|
|
int64_t total_access_size = total_size;
|
|
// default value is 2 MB
|
|
int64_t min_task_access_size = NON_ZERO_VALUE(params.min_task_access_size_);
|
|
// default value of expected_task_load_ is 128 MB
|
|
int64_t expected_task_load = max(params.expected_task_load_, min_task_access_size);
|
|
|
|
// lower bound size: dop*128M*13
|
|
int64_t lower_bound_size = params.parallelism_ * expected_task_load * params.min_task_count_per_thread_;
|
|
// hight bound size: dop*128M*100
|
|
int64_t upper_bound_size = params.parallelism_ * expected_task_load * params.max_task_count_per_thread_;
|
|
|
|
if (total_access_size < 0 || lower_bound_size < 0 || upper_bound_size < 0 ) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("params is invalid",
|
|
K(total_access_size), K(lower_bound_size), K(upper_bound_size), K(params));
|
|
} else if (total_access_size < lower_bound_size) {
|
|
// the data size is less than lower bound size
|
|
// when the amount of data is small,
|
|
// more tasks can easily achieve better dynamic load balancing
|
|
tmp_total_task_count = min(params.min_task_count_per_thread_ * params.parallelism_,
|
|
total_access_size/min_task_access_size);
|
|
tmp_total_task_count = max(tmp_total_task_count, total_access_size / expected_task_load);
|
|
LOG_TRACE("the data is less than lower bound size", K(ret), K(tmp_total_task_count));
|
|
} else if (total_access_size > upper_bound_size) {
|
|
// the data size is greater than upper bound size
|
|
tmp_total_task_count = params.max_task_count_per_thread_ * params.parallelism_;
|
|
LOG_TRACE("the data size is greater upper bound size", K(ret), K(tmp_total_task_count));
|
|
} else {
|
|
// the data size is between lower bound size and upper bound size
|
|
tmp_total_task_count = total_access_size / expected_task_load;
|
|
LOG_TRACE("the data size is between lower bound size and upper bound size",
|
|
K(ret), K(tmp_total_task_count));
|
|
}
|
|
}
|
|
if (OB_SUCC(ret)) {
|
|
// the result of task count must be greater than or equal to zero
|
|
total_task_count = tmp_total_task_count;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::compute_task_count_each_partition(int64_t total_size,
|
|
int64_t total_task_cnt,
|
|
const common::ObIArray<int64_t> &size_each_partition,
|
|
common::ObIArray<int64_t> &task_cnt_each_partition)
|
|
{
|
|
int ret = OB_SUCCESS;
|
|
// must ensure at least one task per partition.
|
|
if (total_size <=0 || total_task_cnt == size_each_partition.count()) {
|
|
// if the total count of tasks is equal to the number of partitions,
|
|
// each partition just has one task.
|
|
for (int i = 0; i < size_each_partition.count() && OB_SUCC(ret); i++) {
|
|
// only one task for each partition
|
|
if (OB_FAIL(task_cnt_each_partition.push_back(1))) {
|
|
LOG_WARN("failed to push back array", K(ret));
|
|
}
|
|
}
|
|
LOG_TRACE("compute task count for each partition, each partition has only one task", K(ret));
|
|
} else {
|
|
// allocate task count for each partition by the weight of partition data in the total data
|
|
int64_t alloc_task_cnt = 0;
|
|
for (int i = 0; i < size_each_partition.count() && OB_SUCC(ret); i++) {
|
|
int64_t partition_size = size_each_partition.at(i);
|
|
int64_t task_cnt = ((double) partition_size / (double) total_size) * total_task_cnt;
|
|
// if the data volume of a partition is very small, but it still needs a task.
|
|
if (task_cnt == 0) {
|
|
task_cnt = 1;
|
|
}
|
|
alloc_task_cnt += task_cnt;
|
|
if (OB_FAIL(task_cnt_each_partition.push_back(task_cnt))) {
|
|
LOG_WARN("failed to push task cnt", K(ret));
|
|
}
|
|
}
|
|
LOG_TRACE("compute task count for partition, allocate task count",
|
|
K(ret), K(alloc_task_cnt), K(total_task_cnt));
|
|
}
|
|
// check the size of task_cnt_each_partition array
|
|
if (OB_SUCC(ret) && task_cnt_each_partition.count() != size_each_partition.count()) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("the size of task count each partition is not right",
|
|
K(ret), K(size_each_partition.count()), K(task_cnt_each_partition.count()));
|
|
}
|
|
// check the returned result
|
|
for (int i = 0; i < task_cnt_each_partition.count() && OB_SUCC(ret); i++) {
|
|
if (task_cnt_each_partition.at(i) < 1) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("the partition has error task number", K(ret), K(task_cnt_each_partition.at(i)));
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::get_tasks_for_partition(ObExecContext &exec_ctx,
|
|
ObIAllocator &allocator,
|
|
int64_t expected_task_cnt,
|
|
ObDASTabletLoc &tablet,
|
|
ObIArray<ObStoreRange> &input_storage_ranges,
|
|
common::ObIArray<ObDASTabletLoc*> &granule_tablets,
|
|
common::ObIArray<common::ObNewRange> &granule_ranges,
|
|
common::ObIArray<int64_t> &granule_idx,
|
|
int64_t &tablet_idx,
|
|
bool range_independent)
|
|
{
|
|
int ret = OB_SUCCESS;
|
|
ObAccessService *access_service = MTL(ObAccessService *);
|
|
ObArrayArray<ObStoreRange> multi_range_split_array;
|
|
if (expected_task_cnt < 1) {
|
|
ret = OB_INVALID_ARGUMENT;
|
|
LOG_WARN("invalid arg", K(ret), K(expected_task_cnt));
|
|
} else if (expected_task_cnt == 1) {
|
|
// no need to split the input_ranges, if the expected count of task.
|
|
for (int i = 0; i < input_storage_ranges.count() && OB_SUCC(ret); i++) {
|
|
ObNewRange new_range;
|
|
input_storage_ranges.at(i).to_new_range(new_range);
|
|
if (OB_FAIL(granule_tablets.push_back(&tablet))) {
|
|
LOG_WARN("failed to push back tablet", K(ret));
|
|
} else if (OB_FAIL(granule_ranges.push_back(new_range))) {
|
|
LOG_WARN("failed to push back range", K(ret));
|
|
} else if (OB_FAIL(granule_idx.push_back(tablet_idx))) {
|
|
LOG_WARN("failed to push back idx", K(ret));
|
|
} else if (range_independent) {
|
|
tablet_idx++;
|
|
}
|
|
}
|
|
if (!range_independent) {
|
|
tablet_idx++;
|
|
}
|
|
} else if (OB_FAIL(ObDASSimpleUtils::split_multi_ranges(exec_ctx,
|
|
&tablet,
|
|
input_storage_ranges,
|
|
expected_task_cnt,
|
|
multi_range_split_array))) {
|
|
LOG_WARN("failed to split multi ranges", K(ret), K(tablet), K(expected_task_cnt));
|
|
} else {
|
|
LOG_TRACE("split multi ranges",
|
|
K(ret), K(tablet), K(input_storage_ranges),
|
|
K(expected_task_cnt == multi_range_split_array.count()), K(multi_range_split_array));
|
|
// convert ObStoreRange array to ObNewRange array
|
|
for (int i = 0; i < multi_range_split_array.count() && OB_SUCC(ret); i++) {
|
|
ObIArray<ObStoreRange> &storage_task_ranges = multi_range_split_array.at(i);
|
|
for (int j = 0; j < storage_task_ranges.count() && OB_SUCC(ret); j++) {
|
|
ObNewRange new_range;
|
|
storage_task_ranges.at(j).to_new_range(new_range);
|
|
if (OB_INVALID_INDEX == new_range.table_id_) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("invalid table id", K(ret), K(new_range), K(multi_range_split_array.at(i)));
|
|
} else if (OB_FAIL(granule_tablets.push_back(&tablet))) {
|
|
LOG_WARN("failed to push back tablet", K(ret), K(tablet));
|
|
} else if (OB_FAIL(granule_ranges.push_back(new_range))) {
|
|
LOG_WARN("failed to push back new task range", K(ret), K(new_range));
|
|
} else if (OB_FAIL(granule_idx.push_back(tablet_idx))) {
|
|
LOG_WARN("failed to push back idx", K(ret), K(tablet_idx));
|
|
} else if (range_independent) {
|
|
tablet_idx++;
|
|
}
|
|
}
|
|
if (!range_independent) {
|
|
tablet_idx++;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ObGranuleUtil::convert_new_range_to_store_range(ObIAllocator &allocator,
|
|
const ObTableScanSpec *tsc,
|
|
const ObTabletID &tablet_id,
|
|
const ObIArray<ObNewRange> &input_ranges,
|
|
ObIArray<ObStoreRange> &input_store_ranges,
|
|
bool &need_convert_new_range)
|
|
{
|
|
int ret = OB_SUCCESS;
|
|
ObStoreRange store_range;
|
|
input_store_ranges.reuse();
|
|
need_convert_new_range = false;
|
|
for (int64_t i = 0; OB_SUCC(ret) && i < input_ranges.count(); i++) {
|
|
if (input_ranges.at(i).is_physical_rowid_range_) {
|
|
ObNewRange new_range;
|
|
if (OB_ISNULL(tsc) || OB_UNLIKELY(tsc->get_columns_desc().count() < 1)) {
|
|
ret = OB_ERR_UNEXPECTED;
|
|
LOG_WARN("get unexpected error", K(ret), K(tsc));
|
|
} else {
|
|
ObArrayWrap<ObColDesc> rowkey_descs(&tsc->get_columns_desc().at(0),
|
|
tsc->get_rowkey_cnt());
|
|
if (OB_FAIL(deep_copy_range(allocator, input_ranges.at(i), new_range))) {
|
|
LOG_WARN("failed to deep copy range", K(ret));
|
|
} else if (OB_FAIL(ObTableScanOp::transform_physical_rowid(allocator,
|
|
tablet_id,
|
|
rowkey_descs,
|
|
new_range))) {
|
|
LOG_WARN("transform physical rowid for range failed", K(ret), K(new_range));
|
|
} else {
|
|
store_range.assign(new_range);
|
|
if (OB_FAIL(input_store_ranges.push_back(store_range))) {
|
|
LOG_WARN("failed to push back input store range", K(ret));
|
|
} else {
|
|
need_convert_new_range = true;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
store_range.assign(input_ranges.at(i));
|
|
if (OB_FAIL(input_store_ranges.push_back(store_range))) {
|
|
LOG_WARN("failed to push back input store range", K(ret));
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
}
|
|
}
|
|
|