163 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/bin/env python
 | 
						|
__author__ = 'dongyun.zdy'
 | 
						|
 | 
						|
 | 
						|
import math
 | 
						|
import numpy as np
 | 
						|
from scipy.optimize import leastsq
 | 
						|
from scipy.optimize import curve_fit
 | 
						|
import sys
 | 
						|
from lmfit import Model
 | 
						|
import getopt
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def mg_model_form(args,
 | 
						|
                  Tstartup,
 | 
						|
                  Trow_once,
 | 
						|
                  Tres_once,
 | 
						|
                  Taggr_prepare_result,
 | 
						|
                  Taggr_process,
 | 
						|
                  Tgroup_hash_col,
 | 
						|
                  Tcopy_col
 | 
						|
                  ):
 | 
						|
    (
 | 
						|
        Nrow_input,
 | 
						|
        Nrow_res,
 | 
						|
        Ncol_input,
 | 
						|
        Ncol_aggr,
 | 
						|
        Ncol_group
 | 
						|
    ) = args
 | 
						|
 | 
						|
    total_cost = Tstartup +  Nrow_res * Tres_once + Nrow_input * Trow_once
 | 
						|
    #cost for judge group
 | 
						|
    total_cost += Nrow_input * Ncol_group * Tgroup_hash_col
 | 
						|
 | 
						|
    #cost for group related operation
 | 
						|
    total_cost += Nrow_res * (Ncol_input * Tcopy_col)
 | 
						|
    total_cost += Nrow_res * (Ncol_aggr * Taggr_prepare_result)
 | 
						|
 | 
						|
    #cost for input row process
 | 
						|
    total_cost += Nrow_input * (Ncol_aggr * Taggr_process)
 | 
						|
 | 
						|
    return total_cost
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
eval_count = 0
 | 
						|
 | 
						|
 | 
						|
def mg_model_arr(arg_sets,
 | 
						|
                 Tstartup,
 | 
						|
                 Trow_once,
 | 
						|
                 Tres_once,
 | 
						|
                 Taggr_prepare_result,
 | 
						|
                 Taggr_process,
 | 
						|
                 Tgroup_hash_col,
 | 
						|
                 Tcopy_col
 | 
						|
                 ) :
 | 
						|
 | 
						|
    res = [mg_model_form(single_arg_set,
 | 
						|
                         Tstartup,
 | 
						|
                         Trow_once,
 | 
						|
                         Tres_once,
 | 
						|
                         Taggr_prepare_result,
 | 
						|
                         Taggr_process,
 | 
						|
                         Tgroup_hash_col,
 | 
						|
                         Tcopy_col
 | 
						|
                        ) for single_arg_set in arg_sets]
 | 
						|
    global eval_count
 | 
						|
    eval_count += 1
 | 
						|
    print "eval "+ str(eval_count)
 | 
						|
    return np.array(res)
 | 
						|
 | 
						|
mg_model = Model(mg_model_arr)
 | 
						|
mg_model.set_param_hint("Tstartup", min=0.0)
 | 
						|
mg_model.set_param_hint("Trow_once", min=0.0)
 | 
						|
mg_model.set_param_hint("Tres_once", min=0.0)
 | 
						|
mg_model.set_param_hint("Taggr_prepare_result", min=0.0)
 | 
						|
mg_model.set_param_hint("Taggr_process", min=0.0)
 | 
						|
mg_model.set_param_hint("Tgroup_hash_col", min=0.0)
 | 
						|
mg_model.set_param_hint("Tcopy_col", min=0.0)
 | 
						|
def extract_info_from_line(line):
 | 
						|
    splited = line.split(",")
 | 
						|
    line_info = []
 | 
						|
    for item in splited:
 | 
						|
        line_info.append(float(item))
 | 
						|
    return line_info
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    file_name = "scan_model.res.formal.prep"
 | 
						|
    out_file_name = "scan_model.fit"
 | 
						|
 | 
						|
 | 
						|
    output_fit_res = False
 | 
						|
    wrong_arg = False
 | 
						|
    opts,args = getopt.getopt(sys.argv[1:],"i:o:")
 | 
						|
    for op, value in opts:
 | 
						|
        if "-i" == op:
 | 
						|
            file_name = value
 | 
						|
        elif "-o" == op:
 | 
						|
            output_fit_res = True
 | 
						|
            out_file_name = value
 | 
						|
        else:
 | 
						|
            wrong_arg = True
 | 
						|
 | 
						|
    if wrong_arg:
 | 
						|
        print "wrong arg"
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    file = open(file_name, "r")
 | 
						|
    arg_sets = []
 | 
						|
    times = []
 | 
						|
    case_params = []
 | 
						|
    for line in file:
 | 
						|
        case_param = extract_info_from_line(line)
 | 
						|
        case_params.append(case_param)
 | 
						|
 | 
						|
        # Nrow_input,
 | 
						|
        # Nrow_res,
 | 
						|
        # Ncol_input,
 | 
						|
        # Ncol_aggr,
 | 
						|
        # Ncol_group
 | 
						|
 | 
						|
 | 
						|
        arg_sets.append((case_param[0],
 | 
						|
                         case_param[5],
 | 
						|
                         case_param[4],
 | 
						|
                         case_param[2],
 | 
						|
                         case_param[3]
 | 
						|
                         ))
 | 
						|
        times.append(case_param[6])
 | 
						|
    file.close()
 | 
						|
    arg_sets_np = np.array(arg_sets)
 | 
						|
    times_np = np.array(times)
 | 
						|
    #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | 
						|
    result = mg_model.fit(times_np, arg_sets=arg_sets_np,
 | 
						|
                         Tstartup = 0.1,
 | 
						|
                         Trow_once = 0.1,
 | 
						|
                         Tres_once = 0.1,
 | 
						|
                         Taggr_prepare_result = 0.1,
 | 
						|
                         Taggr_process = 0.1,
 | 
						|
                         Tgroup_hash_col = 0.1,
 | 
						|
                         Tcopy_col = 0.1
 | 
						|
                         )
 | 
						|
 | 
						|
    res_line = str(result.best_values["Tstartup"]) + ","
 | 
						|
    res_line += str(result.best_values["Trow_once"]) + ","
 | 
						|
    res_line += str(result.best_values["Tres_once"]) + "," 
 | 
						|
    res_line += str(result.best_values["Taggr_prepare_result"]) + ","
 | 
						|
    res_line += str(result.best_values["Taggr_process"]) + ","
 | 
						|
    res_line += str(result.best_values["Tgroup_hash_col"]) + ","
 | 
						|
    res_line += str(result.best_values["Tcopy_col"]) 
 | 
						|
 | 
						|
 | 
						|
    print result.fit_report()
 | 
						|
 | 
						|
    if output_fit_res:
 | 
						|
        out_file = open(out_file_name, "w")
 | 
						|
        out_file.write(res_line)
 | 
						|
        out_file.close()
 |