oceanbase/unittest/share/test_geo_bin.cpp
obdev 81b8923b14 [FEAT MERGE] system resource optimization
Co-authored-by: tushicheng <18829573815@163.com>
Co-authored-by: HaHaJeff <jeffzhouhhh@gmail.com>
Co-authored-by: dimstars <liangjinrongcm@gmail.com>
2023-08-29 10:41:01 +00:00

4516 lines
177 KiB
C++

#include <gtest/gtest.h>
#define BOOST_GEOMETRY_DISABLE_DEPRECATED_03_WARNING 1
#define BOOST_ALLOW_DEPRECATED_HEADERS 1
#include <boost/geometry.hpp>
#define private public
#include "lib/geo/ob_geo_bin.h"
#include "lib/geo/ob_geo_ibin.h"
#include "lib/geo/ob_geo_bin_traits.h"
#include "lib/geo/ob_geo_tree.h"
#include "lib/geo/ob_geo_tree_traits.h"
#include "lib/json_type/ob_json_common.h"
#include "lib/geo/ob_geo_wkb_visitor.h"
#include "lib/geo/ob_geo_wkb_size_visitor.h"
#include "lib/geo/ob_geo_coordinate_range_visitor.h"
#include "lib/geo/ob_geo_longtitude_correct_visitor.h"
#include "lib/geo/ob_geo_to_tree_visitor.h"
#include "lib/geo/ob_geo_reverse_coordinate_visitor.h"
#include "lib/geo/ob_srs_info.h"
#include "lib/geo/ob_geo_utils.h"
#include "observer/omt/ob_tenant_srs.h"
#include "share/schema/ob_multi_version_schema_service.h"
#include "lib/random/ob_random.h"
#undef private
#include <sys/time.h>
namespace oceanbase {
using namespace oceanbase::share::schema;
using namespace omt;
namespace common {
class TestGeoBin : public ::testing::Test {
public:
TestGeoBin()
{}
~TestGeoBin()
{}
virtual void SetUp()
{}
virtual void TearDown()
{}
static void SetUpTestCase()
{}
static void TearDownTestCase()
{}
private:
// disallow copy
DISALLOW_COPY_AND_ASSIGN(TestGeoBin);
};
enum class GeogValueValidType {
NOT_DEFINED = 0,
IN_RANGE,
OUT_RANGE
};
static const ObSrsItem *srs_item = NULL;
static ObArenaAllocator allocator_(ObModIds::TEST);
class ObMockProjectedSrsBase : public ObSpatialReferenceSystemBase
{
public:
ObMockProjectedSrsBase(){}
virtual ~ObMockProjectedSrsBase(){}
ObSrsType srs_type() const { return ObSrsType::PROJECTED_SRS; }
double prime_meridian() const { return 0.0; }
double linear_unit() const { return 0.0; }
double angular_unit() const { return 0.0; }
double semi_major_axis() const { return 0.0; }
double inverse_flattening() const { return 0.0; }
bool is_wgs84() const { return true; }
bool has_wgs84_value() const { return true; }
void set_bounds(double min_x, double min_y, double max_x, double max_y) { UNUSEDx(min_x, min_y, max_x, max_y); }
int set_proj4text(ObIAllocator &allocator, const ObString &src_proj4) { UNUSEDx(allocator, src_proj4); return OB_SUCCESS; }
void set_proj4text(ObString &src_proj4) { UNUSED(src_proj4); }
const ObSrsBoundsItem* get_bounds() const { return NULL; }
ObString get_proj4text() { return ObString(); }
ObAxisDirection axis_direction(uint8_t axis_index) const { UNUSED(axis_index); return ObAxisDirection::EAST; }
int get_proj4_param(ObIAllocator *allocator, ObString &proj4_param) const { UNUSEDx(allocator, proj4_param); return OB_SUCCESS; }
uint32_t get_srid() const { return 0; }
private:
DISALLOW_COPY_AND_ASSIGN(ObMockProjectedSrsBase);
};
static ObMockProjectedSrsBase mock_projected_srs;
static ObSrsItem project_srs(&mock_projected_srs);
static const ObSrsItem *mock_projected_srs_item = &project_srs;
int append_srid(ObJsonBuffer& data, uint32_t srid = 0, ObGeoWkbByteOrder bo = ObGeoWkbByteOrder::LittleEndian)
{
INIT_SUCC(ret);
uint32_t ssrid = static_cast<uint32_t>(srid);
if (OB_FAIL(data.reserve(sizeof(uint32_t)))) {
} else {
char *ptr = data.ptr() + data.length();
ObGeoWkbByteOrderUtil::write<uint32_t>(ptr, ssrid, bo);
ret = data.set_length(data.length() + sizeof(uint32_t));
}
return ret;
}
int append_bo(ObJsonBuffer& data, ObGeoWkbByteOrder bo = ObGeoWkbByteOrder::LittleEndian)
{
uint8_t sbo = static_cast<uint8_t>(bo);
return data.append(reinterpret_cast<char*>(&sbo), sizeof(uint8_t));
}
int append_type(ObJsonBuffer& data, ObGeoType type, ObGeoWkbByteOrder bo = ObGeoWkbByteOrder::LittleEndian)
{
INIT_SUCC(ret);
uint32_t stype = static_cast<uint32_t>(type);
if (OB_FAIL(data.reserve(sizeof(uint32_t)))) {
} else {
char *ptr = data.ptr() + data.length();
ObGeoWkbByteOrderUtil::write<uint32_t>(ptr, stype, bo);
ret = data.set_length(data.length() + sizeof(uint32_t));
}
return ret;
}
int append_uint32(ObJsonBuffer& data, uint32_t val, ObGeoWkbByteOrder bo = ObGeoWkbByteOrder::LittleEndian)
{
INIT_SUCC(ret);
if (OB_FAIL(data.reserve(sizeof(uint32_t)))) {
} else {
char *ptr = data.ptr() + data.length();
ObGeoWkbByteOrderUtil::write<uint32_t>(ptr, val, bo);
ret = data.set_length(data.length() + sizeof(uint32_t));
}
return ret;
}
int append_double(ObJsonBuffer& data, double val, ObGeoWkbByteOrder bo = ObGeoWkbByteOrder::LittleEndian)
{
INIT_SUCC(ret);
if (OB_FAIL(data.reserve(sizeof(double)))) {
} else {
char *ptr = data.ptr() + data.length();
ObGeoWkbByteOrderUtil::write<double>(ptr, val, bo);
ret = data.set_length(data.length() + sizeof(double));
}
return ret;
}
void append_random_inner_point(ObJsonBuffer& data, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
if (type == GeogValueValidType::NOT_DEFINED) {
double x = static_cast<double>(rand())/static_cast<double>(rand());
double y = static_cast<double>(rand())/static_cast<double>(rand());
ASSERT_EQ(OB_SUCCESS, append_double(data, x));
ASSERT_EQ(OB_SUCCESS, append_double(data, y));
xv.push_back(x);
yv.push_back(y);
} else if (type == GeogValueValidType::IN_RANGE) {
ASSERT_TRUE(srs_item != NULL);
double x = fmod(static_cast<double>(rand())/static_cast<double>(rand()), static_cast<double>(180));
x *= srs_item->angular_unit();
double y = fmod(static_cast<double>(rand())/static_cast<double>(rand()), static_cast<double>(90));
y *= srs_item->angular_unit();
ASSERT_EQ(OB_SUCCESS, append_double(data, x));
ASSERT_EQ(OB_SUCCESS, append_double(data, y));
xv.push_back(x);
yv.push_back(y);
} else {
ASSERT_TRUE(srs_item != NULL);
double x = static_cast<double>(rand())/static_cast<double>(rand());
x += static_cast<double>(180);
double y = static_cast<double>(rand())/static_cast<double>(rand());
y += static_cast<double>(90);
ASSERT_EQ(OB_SUCCESS, append_double(data, x));
ASSERT_EQ(OB_SUCCESS, append_double(data, y));
xv.push_back(x);
yv.push_back(y);
}
}
void append_random_point(ObJsonBuffer& data, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
append_random_inner_point(data, xv, yv, type);
}
void append_ring(ObJsonBuffer& data, uint32_t pnum, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
for (int k = 0; k < pnum; k++) {
if (type == GeogValueValidType::OUT_RANGE && k == pnum - 1) {
append_random_inner_point(data, xv, yv, GeogValueValidType::OUT_RANGE);
} else {
append_random_inner_point(data, xv, yv, type);
}
}
}
void append_line(ObJsonBuffer& data, uint32_t pnum, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
append_ring(data, pnum, xv, yv, type);
}
void append_poly(ObJsonBuffer& data, uint32_t lnum, uint32_t pnum, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
// push rings
for (int j = 0; j < lnum; j++) {
if (type == GeogValueValidType::OUT_RANGE && j == lnum - 1) {
append_ring(data, pnum, xv, yv, GeogValueValidType::OUT_RANGE);
} else {
append_ring(data, pnum, xv, yv, type);
}
}
}
void append_multi_point(ObJsonBuffer& data, uint32_t pnum, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOINT));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
for (int i = 0; i < pnum; i++) {
if (type == GeogValueValidType::OUT_RANGE && i == pnum - 1) {
append_random_point(data, xv, yv, GeogValueValidType::OUT_RANGE);
} else {
append_random_point(data, xv, yv, type);
}
}
}
void append_multi_line(ObJsonBuffer& data, uint32_t lnum, uint32_t pnum, common::ObVector<double>& xv, common::ObVector<double>& yv,
GeogValueValidType type = GeogValueValidType::NOT_DEFINED)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTILINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
// push lines
for (int j = 0; j < lnum; j++) {
append_line(data, pnum, xv, yv, type);
}
}
template<typename T>
void check_lines(T& line, uint32_t& pc, common::ObVector<double>& xv, common::ObVector<double>& yv, bool is_const = false)
{
auto lei = line.end();
auto lbi = line.begin();
if (is_const) {
typename T::const_iterator iter = lbi;
for (; iter != lei; ++iter, ++pc) {
ASSERT_EQ(xv[pc], iter->template get<0>());
ASSERT_EQ(yv[pc], iter->template get<1>());
}
uint32_t ii = pc;
--iter;
--ii;
for (; iter >= lbi; --iter, --ii) {
ASSERT_EQ(xv[ii], iter->template get<0>());
ASSERT_EQ(yv[ii], iter->template get<1>());
}
} else {
typename T::iterator iter = lbi;
for (; iter != lei; ++iter, ++pc) {
ASSERT_EQ(xv[pc], iter->template get<0>());
ASSERT_EQ(yv[pc], iter->template get<1>());
}
uint32_t ii = pc;
--iter;
--ii;
for (; iter >= lbi; --iter, --ii) {
ASSERT_EQ(xv[ii], iter->template get<0>());
ASSERT_EQ(yv[ii], iter->template get<1>());
}
}
}
// Cartesian
TEST_F(TestGeoBin, point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.323));
ASSERT_EQ(OB_SUCCESS, append_double(data, 999.5456));
ObWkbGeomPoint& p = *reinterpret_cast<ObWkbGeomPoint*>(data.ptr());
ASSERT_EQ(1.323, p.get<0>());
ASSERT_EQ(999.5456, p.get<1>());
p.set<0>(3.321);
p.set<1>(4.444);
ObWkbGeomPoint& p2 = *reinterpret_cast<ObWkbGeomPoint*>(data.ptr());
ASSERT_EQ(3.321, p2.get<0>());
ASSERT_EQ(4.444, p2.get<1>());
}
TEST_F(TestGeoBin, linestring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(data, num, xv, yv);
ObWkbGeomLineString& line = *reinterpret_cast<ObWkbGeomLineString*>(data.ptr());
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomLineString::iterator iter = line.begin();
auto ei = line.end();
auto bi = line.begin();
for (int i = 0; iter != ei; ++iter, i++) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = num - 1; iter >= bi; --iter, i--) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomLineString::const_iterator citer = line.begin();
for (int i = 0; citer != ei; ++citer, i++) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
for (int i = num - 1; citer >= bi; --citer, i--) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, polygon)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10001;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_poly(data, lnum, pnum, xv, yv);
ObWkbGeomPolygon& poly = *reinterpret_cast<ObWkbGeomPolygon*>(data.ptr());
ObWkbGeomLinearRing& exterior = poly.exterior_ring();
ObWkbGeomPolygonInnerRings& inner_rings = poly.inner_rings();
uint32_t pc = 0;
// check exterior
check_lines(exterior, pc, xv, yv);
// check inner rings
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomPolygonInnerRings::iterator iter = inner_rings.begin();
auto irei = inner_rings.end();
auto irbi = inner_rings.begin();
for (; iter != irei; iter++) {
check_lines(*iter, pc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
pc -= pnum;
for (; iter >= irbi; iter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*iter, tpc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = pnum;
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomPolygonInnerRings::const_iterator citer = inner_rings.begin();
for (; citer != irei; citer++) {
check_lines(*citer, pc, xv, yv, true);
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
pc -= pnum;
for (; citer >= irbi; citer--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*citer, tpc, xv, yv, true);
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, multi_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_point(data, num, xv, yv);
ObWkbGeomMultiPoint& mp = *reinterpret_cast<ObWkbGeomMultiPoint*>(data.ptr());
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomMultiPoint::iterator iter = mp.begin();
auto mpbi = mp.begin();
auto mpei = mp.end();
for (int i = 0; iter != mpei; ++iter, i++) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = num - 1; iter >= mpbi; --iter, i--) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomMultiPoint::const_iterator citer = mp.begin();
for (int i = 0; citer != mpei; ++citer, i++) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
for (int i = num - 1; citer >= mpbi; --citer, i--) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, multi_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(data, lnum, pnum, xv, yv);
ObWkbGeomMultiLineString& ml = *reinterpret_cast<ObWkbGeomMultiLineString*>(data.ptr());
uint32_t pc = 0;
// check lines
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomMultiLineString::iterator iter = ml.begin();
auto mlbi = ml.begin();
auto mlei = ml.end();
for (; iter != mlei; iter++) {
check_lines(*iter, pc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
pc -= pnum;
for (; iter >= mlbi; iter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*iter, tpc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = 0;
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomMultiLineString::const_iterator citer = ml.begin();
for (; citer != mlei; citer++) {
check_lines(*citer, pc, xv, yv, true);
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
pc -= pnum;
for (; citer >= mlbi; citer--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*citer, tpc, xv, yv, true);
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, multi_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 99 inner line, every line has 100 point
uint32_t polynum = 100;
uint32_t lnum = 100;
uint32_t pnum = 100;
common::ObVector<double> xv[polynum];
common::ObVector<double> yv[polynum];
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
append_poly(data, lnum, pnum, xv[i], yv[i]);
}
ObWkbGeomMultiPolygon& mp = *reinterpret_cast<ObWkbGeomMultiPolygon*>(data.ptr());
ObWkbGeomMultiPolygon::iterator iter = mp.begin();
auto mpei = mp.end();
auto mpbi = mp.begin();
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
for (int i = 0; iter != mpei; ++iter, i++) {
typename ObWkbGeomMultiPolygon::value_type& poly = *iter;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i]);
auto& inner_rings = iter->inner_rings();
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
auto irei = inner_rings.end();
auto irbi = inner_rings.begin();
for (; riter != irei; riter++) {
check_lines(*riter, pc, xv[i], yv[i]);
}
--riter;
pc -= pnum;
for (; riter >= irbi; riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i]);
}
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = polynum - 1; iter >= mpbi; --iter, --i) {
typename ObWkbGeomMultiPolygon::value_type& poly = *iter;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i]);
auto& inner_rings = iter->inner_rings();
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
auto irei = inner_rings.end();
auto irbi = inner_rings.begin();
for (; riter != irei; riter++) {
check_lines(*riter, pc, xv[i], yv[i]);
}
--riter;
pc -= pnum;
for (; riter >= irbi; riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i]);
}
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
// const_iter
ObWkbGeomMultiPolygon::const_iterator citer = mp.begin();
t1 = std::chrono::high_resolution_clock::now();
for (int i = 0; citer != mpei; ++citer, i++) {
typename ObWkbGeomMultiPolygon::value_type& poly = *citer;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i], true);
auto& inner_rings = citer->inner_rings();
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
auto irei = inner_rings.end();
auto irbi = inner_rings.begin();
for (; riter != irei; riter++) {
check_lines(*riter, pc, xv[i], yv[i], true);
}
--riter;
pc -= pnum;
for (; riter >= irbi; riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i], true);
}
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
for (int i = polynum - 1; citer >= mpbi; --citer, --i) {
typename ObWkbGeomMultiPolygon::value_type& poly = *citer;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i], true);
auto& inner_rings = citer->inner_rings();
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
auto irei = inner_rings.end();
auto irbi = inner_rings.begin();
for (; riter != irei; riter++) {
check_lines(*riter, pc, xv[i], yv[i], true);
}
--riter;
pc -= pnum;
for (; riter >= irbi; riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i], true);
}
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, geom_collection)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data, xv[0], yv[0]);
// line
append_line(data, 100, xv[1], yv[1]);
// polygon
append_poly(data, 100, 100, xv[2], yv[2]);
// multipoint
append_multi_point(data, 100, xv[3], yv[3]);
// multiline
append_multi_line(data, 1000, 10, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 10));
for (int i = 0; i < 10; i++) {
append_poly(data, 10, 100, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
// check
ObWkbGeomCollection& gc = *reinterpret_cast<ObWkbGeomCollection*>(data.ptr());
ObWkbGeomCollection::iterator iter = gc.begin();
for (int i = 0; iter != gc.end(); ++iter, ++i) {
typename ObWkbGeomCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = gc.get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeomPoint* point = reinterpret_cast<const ObWkbGeomPoint*>(sub_ptr);
ASSERT_EQ(xv[0][0], point->get<0>());
ASSERT_EQ(yv[0][0], point->get<1>());
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeomLineString* line = reinterpret_cast<const ObWkbGeomLineString*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, line->size());
check_lines(*line, pc, xv[1], yv[1]);
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeomPolygon* poly = reinterpret_cast<const ObWkbGeomPolygon*>(sub_ptr);
uint32_t pc = 0;
check_lines(poly->exterior_ring(), pc, xv[2], yv[2]);
auto& inner_rings = poly->inner_rings();
ASSERT_EQ(99, inner_rings.size());
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[2], yv[2]);
}
--riter;
pc -= 100;
for (; riter >= inner_rings.begin(); riter--, pc -= 100) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[2], yv[2]);
}
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeomMultiPoint* mp = reinterpret_cast<const ObWkbGeomMultiPoint*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, mp->size());
check_lines(*mp, pc, xv[3], yv[3]);
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeomMultiLineString* ml = reinterpret_cast<const ObWkbGeomMultiLineString*>(sub_ptr);
ASSERT_EQ(1000, ml->size());
uint32_t pc = 0;
ObWkbGeomMultiLineString::iterator liter = ml->begin();
for (; liter != ml->end(); liter++) {
check_lines(*liter, pc, xv[4], yv[4]);
}
liter--;
pc -= 10;
for (; liter >= ml->begin(); liter--, pc -= 10) {
uint32_t tpc = pc;
check_lines(*liter, tpc, xv[4], yv[4]);
}
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeomMultiPolygon* mp = reinterpret_cast<const ObWkbGeomMultiPolygon*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(10, mp->size());
ObWkbGeomMultiPolygon::iterator mpiter = mp->begin();
for (; mpiter != mp->end(); ++mpiter) {
ASSERT_EQ(10, mpiter->size());
check_lines(mpiter->exterior_ring(), pc, xv[5], yv[5]);
auto& inner_rings = mpiter->inner_rings();
ASSERT_EQ(9, inner_rings.size());
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[5], yv[5]);
}
uint32_t rpc = pc;
--riter;
rpc -= 100;
for (; riter >= inner_rings.begin(); riter--, rpc -= 100) {
uint32_t tpc = rpc;
check_lines(*riter, tpc, xv[5], yv[5]);
}
}
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeomCollection* subgc = reinterpret_cast<const ObWkbGeomCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
--iter;
for (int i = 6; iter >= gc.begin(); --iter, --i) {
typename ObWkbGeomCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = gc.get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeomPoint* point = reinterpret_cast<const ObWkbGeomPoint*>(sub_ptr);
ASSERT_EQ(xv[0][0], point->get<0>());
ASSERT_EQ(yv[0][0], point->get<1>());
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeomLineString* line = reinterpret_cast<const ObWkbGeomLineString*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, line->size());
check_lines(*line, pc, xv[1], yv[1]);
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeomPolygon* poly = reinterpret_cast<const ObWkbGeomPolygon*>(sub_ptr);
uint32_t pc = 0;
check_lines(poly->exterior_ring(), pc, xv[2], yv[2]);
auto& inner_rings = poly->inner_rings();
ASSERT_EQ(99, inner_rings.size());
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[2], yv[2]);
}
--riter;
pc -= 100;
for (; riter >= inner_rings.begin(); riter--, pc -= 100) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[2], yv[2]);
}
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeomMultiPoint* mp = reinterpret_cast<const ObWkbGeomMultiPoint*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, mp->size());
check_lines(*mp, pc, xv[3], yv[3]);
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeomMultiLineString* ml = reinterpret_cast<const ObWkbGeomMultiLineString*>(sub_ptr);
ASSERT_EQ(1000, ml->size());
uint32_t pc = 0;
ObWkbGeomMultiLineString::iterator liter = ml->begin();
for (; liter != ml->end(); liter++) {
check_lines(*liter, pc, xv[4], yv[4]);
}
liter--;
pc -= 10;
for (; liter >= ml->begin(); liter--, pc -= 10) {
uint32_t tpc = pc;
check_lines(*liter, tpc, xv[4], yv[4]);
}
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeomMultiPolygon* mp = reinterpret_cast<const ObWkbGeomMultiPolygon*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(10, mp->size());
ObWkbGeomMultiPolygon::iterator mpiter = mp->begin();
for (; mpiter != mp->end(); ++mpiter) {
ASSERT_EQ(10, mpiter->size());
check_lines(mpiter->exterior_ring(), pc, xv[5], yv[5]);
auto& inner_rings = mpiter->inner_rings();
ASSERT_EQ(9, inner_rings.size());
ObWkbGeomPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[5], yv[5]);
}
uint32_t rpc = pc;
--riter;
rpc -= 100;
for (; riter >= inner_rings.begin(); riter--, rpc -= 100) {
uint32_t tpc = rpc;
check_lines(*riter, tpc, xv[5], yv[5]);
}
}
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeomCollection* subgc = reinterpret_cast<const ObWkbGeomCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
}
// Geograpgic
TEST_F(TestGeoBin, Geo_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.323));
ASSERT_EQ(OB_SUCCESS, append_double(data, 999.5456));
ObWkbGeogPoint& p = *reinterpret_cast<ObWkbGeogPoint*>(data.ptr());
ASSERT_EQ(1.323, p.get<0>());
ASSERT_EQ(999.5456, p.get<1>());
p.set<0>(3.321);
p.set<1>(4.444);
ObWkbGeogPoint& p2 = *reinterpret_cast<ObWkbGeogPoint*>(data.ptr());
ASSERT_EQ(3.321, p2.get<0>());
ASSERT_EQ(4.444, p2.get<1>());
}
TEST_F(TestGeoBin, Geo_linestring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(data, num, xv, yv);
ObWkbGeogLineString& line = *reinterpret_cast<ObWkbGeogLineString*>(data.ptr());
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogLineString::iterator iter = line.begin();
for (int i = 0; iter != line.end(); ++iter, i++) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = num - 1; iter >= line.begin(); --iter, i--) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogLineString::const_iterator citer = line.begin();
for (int i = 0; citer != line.end(); ++citer, i++) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
for (int i = num - 1; citer >= line.begin(); --citer, i--) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, Geo_polygon)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10001;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_poly(data, lnum, pnum, xv, yv);
ObWkbGeogPolygon& poly = *reinterpret_cast<ObWkbGeogPolygon*>(data.ptr());
ObWkbGeogLinearRing& exterior = poly.exterior_ring();
ObWkbGeogPolygonInnerRings& inner_rings = poly.inner_rings();
uint32_t pc = 0;
// check exterior
check_lines(exterior, pc, xv, yv);
// check inner rings
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogPolygonInnerRings::iterator iter = inner_rings.begin();
for (; iter != inner_rings.end(); iter++) {
check_lines(*iter, pc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
pc -= pnum;
for (; iter >= inner_rings.begin(); iter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*iter, tpc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = pnum;
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogPolygonInnerRings::const_iterator citer = inner_rings.begin();
for (; citer != inner_rings.end(); citer++) {
check_lines(*citer, pc, xv, yv, true);
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
pc -= pnum;
for (; citer >= inner_rings.begin(); citer--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*citer, tpc, xv, yv, true);
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, Geo_multi_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_point(data, num, xv, yv);
ObWkbGeogMultiPoint& mp = *reinterpret_cast<ObWkbGeogMultiPoint*>(data.ptr());
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogMultiPoint::iterator iter = mp.begin();
for (int i = 0; iter != mp.end(); ++iter, i++) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = num - 1; iter >= mp.begin(); --iter, i--) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogMultiPoint::const_iterator citer = mp.begin();
for (int i = 0; citer != mp.end(); ++citer, i++) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
for (int i = num - 1; citer >= mp.begin(); --citer, i--) {
ASSERT_EQ(xv[i], citer->get<0>());
ASSERT_EQ(yv[i], citer->get<1>());
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, Geo_multi_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(data, lnum, pnum, xv, yv);
ObWkbGeogMultiLineString& ml = *reinterpret_cast<ObWkbGeogMultiLineString*>(data.ptr());
uint32_t pc = 0;
// check lines
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogMultiLineString::iterator iter = ml.begin();
for (; iter != ml.end(); iter++) {
check_lines(*iter, pc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
pc -= pnum;
for (; iter >= ml.begin(); iter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*iter, tpc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = 0;
t1 = std::chrono::high_resolution_clock::now();
ObWkbGeogMultiLineString::const_iterator citer = ml.begin();
for (; citer != ml.end(); citer++) {
check_lines(*citer, pc, xv, yv, true);
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
pc -= pnum;
for (; citer >= ml.begin(); citer--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*citer, tpc, xv, yv, true);
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, Geo_multi_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 99 inner line, every line has 100 point
uint32_t polynum = 100;
uint32_t lnum = 100;
uint32_t pnum = 100;
common::ObVector<double> xv[polynum];
common::ObVector<double> yv[polynum];
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
append_poly(data, lnum, pnum, xv[i], yv[i]);
}
ObWkbGeogMultiPolygon& mp = *reinterpret_cast<ObWkbGeogMultiPolygon*>(data.ptr());
ObWkbGeogMultiPolygon::iterator iter = mp.begin();
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
for (int i = 0; iter != mp.end(); ++iter, i++) {
typename ObWkbGeogMultiPolygon::value_type& poly = *iter;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i]);
auto& inner_rings = iter->inner_rings();
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[i], yv[i]);
}
--riter;
pc -= pnum;
for (; riter >= inner_rings.begin(); riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i]);
}
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = polynum - 1; iter >= mp.begin(); --iter, --i) {
typename ObWkbGeogMultiPolygon::value_type& poly = *iter;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i]);
auto& inner_rings = iter->inner_rings();
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[i], yv[i]);
}
--riter;
pc -= pnum;
for (; riter >= inner_rings.begin(); riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i]);
}
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
// const_iter
ObWkbGeogMultiPolygon::const_iterator citer = mp.begin();
t1 = std::chrono::high_resolution_clock::now();
for (int i = 0; citer != mp.end(); ++citer, i++) {
typename ObWkbGeogMultiPolygon::value_type& poly = *citer;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i], true);
auto& inner_rings = citer->inner_rings();
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[i], yv[i], true);
}
--riter;
pc -= pnum;
for (; riter >= inner_rings.begin(); riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i], true);
}
}
t2 = std::chrono::high_resolution_clock::now();
--citer;
for (int i = polynum - 1; citer >= mp.begin(); --citer, --i) {
typename ObWkbGeogMultiPolygon::value_type& poly = *citer;
uint32_t pc = 0;
check_lines(poly.exterior_ring(), pc, xv[i], yv[i], true);
auto& inner_rings = citer->inner_rings();
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[i], yv[i], true);
}
--riter;
pc -= pnum;
for (; riter >= inner_rings.begin(); riter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[i], yv[i], true);
}
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("citer:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
}
TEST_F(TestGeoBin, geog_collection)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data, xv[0], yv[0]);
// line
append_line(data, 100, xv[1], yv[1]);
// polygon
append_poly(data, 100, 100, xv[2], yv[2]);
// multipoint
append_multi_point(data, 100, xv[3], yv[3]);
// multiline
append_multi_line(data, 1000, 10, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 10));
for (int i = 0; i < 10; i++) {
append_poly(data, 10, 100, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
// check
ObWkbGeogCollection& gc = *reinterpret_cast<ObWkbGeogCollection*>(data.ptr());
ObWkbGeogCollection::iterator iter = gc.begin();
for (int i = 0; iter != gc.end(); ++iter, ++i) {
typename ObWkbGeogCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = gc.get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeogPoint* point = reinterpret_cast<const ObWkbGeogPoint*>(sub_ptr);
ASSERT_EQ(xv[0][0], point->get<0>());
ASSERT_EQ(yv[0][0], point->get<1>());
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeogLineString* line = reinterpret_cast<const ObWkbGeogLineString*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, line->size());
check_lines(*line, pc, xv[1], yv[1]);
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeogPolygon* poly = reinterpret_cast<const ObWkbGeogPolygon*>(sub_ptr);
uint32_t pc = 0;
check_lines(poly->exterior_ring(), pc, xv[2], yv[2]);
auto& inner_rings = poly->inner_rings();
ASSERT_EQ(99, inner_rings.size());
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[2], yv[2]);
}
--riter;
pc -= 100;
for (; riter >= inner_rings.begin(); riter--, pc -= 100) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[2], yv[2]);
}
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeogMultiPoint* mp = reinterpret_cast<const ObWkbGeogMultiPoint*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, mp->size());
check_lines(*mp, pc, xv[3], yv[3]);
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeogMultiLineString* ml = reinterpret_cast<const ObWkbGeogMultiLineString*>(sub_ptr);
ASSERT_EQ(1000, ml->size());
uint32_t pc = 0;
ObWkbGeogMultiLineString::iterator liter = ml->begin();
for (; liter != ml->end(); liter++) {
check_lines(*liter, pc, xv[4], yv[4]);
}
liter--;
pc -= 10;
for (; liter >= ml->begin(); liter--, pc -= 10) {
uint32_t tpc = pc;
check_lines(*liter, tpc, xv[4], yv[4]);
}
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeogMultiPolygon* mp = reinterpret_cast<const ObWkbGeogMultiPolygon*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(10, mp->size());
ObWkbGeogMultiPolygon::iterator mpiter = mp->begin();
for (; mpiter != mp->end(); ++mpiter) {
ASSERT_EQ(10, mpiter->size());
check_lines(mpiter->exterior_ring(), pc, xv[5], yv[5]);
auto& inner_rings = mpiter->inner_rings();
ASSERT_EQ(9, inner_rings.size());
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[5], yv[5]);
}
uint32_t rpc = pc;
--riter;
rpc -= 100;
for (; riter >= inner_rings.begin(); riter--, rpc -= 100) {
uint32_t tpc = rpc;
check_lines(*riter, tpc, xv[5], yv[5]);
}
}
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeogCollection* subgc = reinterpret_cast<const ObWkbGeogCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
--iter;
for (int i = 6; iter >= gc.begin(); --iter, --i) {
typename ObWkbGeogCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = gc.get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeogPoint* point = reinterpret_cast<const ObWkbGeogPoint*>(sub_ptr);
ASSERT_EQ(xv[0][0], point->get<0>());
ASSERT_EQ(yv[0][0], point->get<1>());
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeogLineString* line = reinterpret_cast<const ObWkbGeogLineString*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, line->size());
check_lines(*line, pc, xv[1], yv[1]);
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeogPolygon* poly = reinterpret_cast<const ObWkbGeogPolygon*>(sub_ptr);
uint32_t pc = 0;
check_lines(poly->exterior_ring(), pc, xv[2], yv[2]);
auto& inner_rings = poly->inner_rings();
ASSERT_EQ(99, inner_rings.size());
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[2], yv[2]);
}
--riter;
pc -= 100;
for (; riter >= inner_rings.begin(); riter--, pc -= 100) {
uint32_t tpc = pc;
check_lines(*riter, tpc, xv[2], yv[2]);
}
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeogMultiPoint* mp = reinterpret_cast<const ObWkbGeogMultiPoint*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, mp->size());
check_lines(*mp, pc, xv[3], yv[3]);
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeogMultiLineString* ml = reinterpret_cast<const ObWkbGeogMultiLineString*>(sub_ptr);
ASSERT_EQ(1000, ml->size());
uint32_t pc = 0;
ObWkbGeogMultiLineString::iterator liter = ml->begin();
for (; liter != ml->end(); liter++) {
check_lines(*liter, pc, xv[4], yv[4]);
}
liter--;
pc -= 10;
for (; liter >= ml->begin(); liter--, pc -= 10) {
uint32_t tpc = pc;
check_lines(*liter, tpc, xv[4], yv[4]);
}
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeogMultiPolygon* mp = reinterpret_cast<const ObWkbGeogMultiPolygon*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(10, mp->size());
ObWkbGeogMultiPolygon::iterator mpiter = mp->begin();
for (; mpiter != mp->end(); ++mpiter) {
ASSERT_EQ(10, mpiter->size());
check_lines(mpiter->exterior_ring(), pc, xv[5], yv[5]);
auto& inner_rings = mpiter->inner_rings();
ASSERT_EQ(9, inner_rings.size());
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, xv[5], yv[5]);
}
uint32_t rpc = pc;
--riter;
rpc -= 100;
for (; riter >= inner_rings.begin(); riter--, rpc -= 100) {
uint32_t tpc = rpc;
check_lines(*riter, tpc, xv[5], yv[5]);
}
}
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeogCollection* subgc = reinterpret_cast<const ObWkbGeogCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
}
template<typename T>
void check_null_str(ObString& str)
{
T obj;
obj.set_data(str);
ASSERT_EQ(0, obj.length());
ASSERT_EQ(true, obj.is_empty());
}
// bin interface
TEST_F(TestGeoBin, i_null_ptr)
{
ObString str(NULL);
{ // point
check_null_str<ObIWkbGeomPoint>(str);
check_null_str<ObIWkbGeogPoint>(str);
}
{ // linestring
check_null_str<ObIWkbGeomLineString>(str);
check_null_str<ObIWkbGeogLineString>(str);
}
{ // polygon
check_null_str<ObIWkbGeomPolygon>(str);
check_null_str<ObIWkbGeogPolygon>(str);
}
{ // multipoint
check_null_str<ObIWkbGeomMultiPoint>(str);
check_null_str<ObIWkbGeogMultiPoint>(str);
}
{ // multiline
check_null_str<ObIWkbGeomMultiLineString>(str);
check_null_str<ObIWkbGeogMultiLineString>(str);
}
{ // multipoly
check_null_str<ObIWkbGeomMultiPolygon>(str);
check_null_str<ObIWkbGeogMultiPolygon>(str);
}
{ // gc
check_null_str<ObIWkbGeomCollection>(str);
check_null_str<ObIWkbGeogCollection>(str);
}
}
TEST_F(TestGeoBin, ipoint)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.323));
ASSERT_EQ(OB_SUCCESS, append_double(data, 999.5456));
ObIWkbGeomPoint p;
p.set_data(data.string());
ASSERT_EQ(false, p.is_empty());
ASSERT_EQ(1.323, p.x());
ASSERT_EQ(999.5456, p.y());
ObWkbGeomPoint& bp = *reinterpret_cast<ObWkbGeomPoint*>(const_cast<char*>(p.val()));
bp.set<0>(3.321);
bp.set<1>(4.444);
ASSERT_EQ(false, p.is_empty());
ASSERT_EQ(3.321, p.x());
ASSERT_EQ(4.444, p.y());
bp.set<0>(NAN);
bp.set<1>(NAN);
ASSERT_EQ(true, p.is_empty());
}
TEST_F(TestGeoBin, ilinestring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 100;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(data, 0, xv, yv);
ObIWkbGeomLineString line;
line.set_data(data.string());
ASSERT_EQ(true, line.is_empty());
ObJsonBuffer data2(&allocator);
append_line(data2, num, xv, yv);
line.set_data(data2.string());
ASSERT_EQ(false, line.is_empty());
}
TEST_F(TestGeoBin, ipolygon)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 11;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_poly(data, 1, 0, xv, yv);
ObIWkbGeomPolygon p;
p.set_data(data.string());
ASSERT_EQ(p.is_empty(), true);
ObJsonBuffer data2(&allocator);
append_poly(data2, lnum, pnum, xv, yv);
p.set_data(data2.string());
ASSERT_EQ(p.is_empty(), false);
}
// iter cost test
class testPoint{
public:
testPoint(double ix, double iy) : x(ix), y(iy) {}
double x;
double y;
};
class testLine{
public:
testLine() {}
~testLine() {}
common::ObVector<testPoint> points;
};
class testPolygon{
public:
testLine exterior;
common::ObVector<testLine> inners;
};
TEST_F(TestGeoBin, cost_iter_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
common::ObVector<testPoint> pv;
append_line(data, num, xv, yv);
for (int i = 0; i < xv.size(); i++) {
pv.push_back(testPoint(xv[i], yv[i]));
}
ObWkbGeomLineString& line = *reinterpret_cast<ObWkbGeomLineString*>(data.ptr());
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomLineString::iterator iter = line.begin();
auto ei = line.end();
auto bi = line.begin();
for (int i = 0; iter != ei; ++iter, i++) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = num - 1; iter >= bi; --iter, i--) {
ASSERT_EQ(xv[i], iter->get<0>());
ASSERT_EQ(yv[i], iter->get<1>());
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
auto pi = pv.begin();
for (int i = 0; pi != pv.end(); ++pi, ++i) {
ASSERT_EQ(xv[i], pi->x);
ASSERT_EQ(yv[i], pi->y);
}
t2 = std::chrono::high_resolution_clock::now();
--pi;
for (int i = num - 1; pi >= pv.begin(); --pi, --i) {
ASSERT_EQ(xv[i], pi->x);
ASSERT_EQ(yv[i], pi->y);
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("vector:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
iter = line.begin();
for (int i = 0; iter != ei; ++iter, i++) {
}
t2 = std::chrono::high_resolution_clock::now();
--iter;
for (int i = num - 1; iter >= bi; --iter, i--) {
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("iter only move:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
pi = pv.begin();
auto pvb = pv.begin();
auto pve = pv.end();
for (int i = 0; pi != pve; ++pi, ++i) {
}
t2 = std::chrono::high_resolution_clock::now();
--pi;
for (int i = num - 1; pi >= pvb; --pi, --i) {
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("vector only move:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
iter = line.begin();
for (int i = 0; i < num; i++) {
ASSERT_EQ(xv[0], iter->get<0>());
ASSERT_EQ(yv[0], iter->get<1>());
}
t2 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
printf("iter only access: %lfms\n", b2e.count());
t1 = std::chrono::high_resolution_clock::now();
pi = pv.begin();
for (int i = 0; i < num; i++) {
ASSERT_EQ(xv[0], pi->x);
ASSERT_EQ(yv[0], pi->y);
}
t2 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
printf("vector only access: %lfms\n", b2e.count());
}
void check_test_lines(testLine& line, uint32_t& pc, common::ObVector<double>& xv, common::ObVector<double>& yv)
{
auto lei = line.points.end();
auto lbi = line.points.begin();
auto iter = lbi;
for (; iter != lei; ++iter, ++pc) {
ASSERT_EQ(xv[pc], iter->x);
ASSERT_EQ(yv[pc], iter->y);
}
uint32_t ii = pc;
--iter;
--ii;
for (; iter >= lbi; --iter, --ii) {
ASSERT_EQ(xv[ii], iter->x);
ASSERT_EQ(yv[ii], iter->y);
}
}
/*
TEST_F(TestGeoBin, cost_iter_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 100001;
common::ObVector<double> xv;
common::ObVector<double> yv;
testPolygon tp;
append_poly(data, lnum, pnum, xv, yv);
for (int i = 0; i < lnum - 1; i++) {
tp.inners.push_back(testLine());
}
for (int i = 0; i < xv.size(); i++) {
if (i < pnum) {
tp.exterior.points.push_back(testPoint(xv[i], yv[i]));
} else {
tp.inners[(i-pnum)/pnum].points.push_back(testPoint(xv[i], yv[i]));
}
}
ObWkbGeomPolygon& poly = *reinterpret_cast<ObWkbGeomPolygon*>(data.ptr());
ObWkbGeomLinearRing& exterior = poly.exterior_ring();
ObWkbGeomPolygonInnerRings& inner_rings = poly.inner_rings();
uint32_t pc = 0;
// check exterior
check_lines(exterior, pc, xv, yv);
// check inner rings
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
ObWkbGeomPolygonInnerRings::iterator iter = inner_rings.begin();
auto irei = inner_rings.end();
auto irbi = inner_rings.begin();
for (; iter != irei; iter++) {
check_lines(*iter, pc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
--iter;
pc -= pnum;
for (; iter >= irbi; iter--, pc -= pnum) {
uint32_t tpc = pc;
check_lines(*iter, tpc, xv, yv);
}
std::chrono::high_resolution_clock::time_point t3 = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::milli> b2e = t2-t1;
std::chrono::duration<double, std::milli> e2b = t3-t2;
printf("iter:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = pnum;
t1 = std::chrono::high_resolution_clock::now();
auto pi = tp.inners.begin();
for (; pi != tp.inners.end(); ++pi) {
check_test_lines(*pi, pc, xv, yv);
}
t2 = std::chrono::high_resolution_clock::now();
--pi;
pc -= pnum;
for (; pi >= tp.inners.begin(); pi--, pc -= pnum) {
uint32_t tpc = pc;
check_test_lines(*pi, tpc, xv, yv);
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("vector:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = pnum;
t1 = std::chrono::high_resolution_clock::now();
auto miterb = inner_rings.begin();
for (; miterb != irei; miterb++) {
auto lb = miterb->begin();
auto le = miterb->end();
for (auto li = lb; li != le; ++li) {}
}
t2 = std::chrono::high_resolution_clock::now();
auto mitere = inner_rings.end();
--mitere;
pc -= pnum;
for (; mitere >= irbi; mitere--, pc -= pnum) {
auto lb = mitere->begin();
auto le = mitere->end();
for (auto li = lb; li != le; ++li) {}
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("iter only move:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
pc = pnum;
t1 = std::chrono::high_resolution_clock::now();
pi = tp.inners.begin();
for (; pi != tp.inners.end(); ++pi) {
auto lb = pi->points.begin();
auto le = pi->points.end();
for (auto li = lb; li != le; ++li) {}
}
t2 = std::chrono::high_resolution_clock::now();
pi = tp.inners.end();
--pi;
pc -= pnum;
for (; pi >= tp.inners.begin(); pi--, pc -= pnum) {
auto lb = pi->points.begin();
auto le = pi->points.end();
for (auto li = lb; li != le; ++li) {}
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("vector only move:\nbegin to end : %lfms\nend to begin : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
auto aiterb = inner_rings.begin();
auto aiterbb = aiterb->begin();
for (int i = 0; i < lnum - 1; i++) {
for (int j = 0; j < pnum; j++) {
ASSERT_EQ(xv[pnum], aiterbb->get<0>());
ASSERT_EQ(yv[pnum], aiterbb->get<1>());
}
}
t2 = std::chrono::high_resolution_clock::now();
auto aitere = inner_rings.end();
--aitere;
auto aiteree = aitere->end();
--aiteree;
uint32_t last_idx = xv.size() - 1;
for (int i = 0; i < lnum - 1; i++) {
for (int j = 0; j < pnum; j++) {
ASSERT_EQ(xv[last_idx], aiteree->get<0>());
ASSERT_EQ(yv[last_idx], aiteree->get<1>());
}
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("iter only access:\nbegin : %lfms\nend : %lfms\n", b2e.count(), e2b.count());
t1 = std::chrono::high_resolution_clock::now();
auto tpb = tp.inners.begin();
auto tpbb = tpb->points.begin();
for (int i = 0; i < lnum - 1; i++) {
for (int j = 0; j < pnum; j++) {
ASSERT_EQ(xv[pnum], tpbb->x);
ASSERT_EQ(yv[pnum], tpbb->y);
}
}
t2 = std::chrono::high_resolution_clock::now();
auto tpe = tp.inners.end();
--tpe;
auto tpee = tpe->points.end();
--tpee;
last_idx = xv.size() - 1;
for (int i = 0; i < lnum - 1; i++) {
for (int j = 0; j < pnum; j++) {
ASSERT_EQ(xv[last_idx], tpee->x);
ASSERT_EQ(yv[last_idx], tpee->y);
}
}
t3 = std::chrono::high_resolution_clock::now();
b2e = t2-t1;
e2b = t3-t2;
printf("vector only access:\nbegin : %lfms\nend : %lfms\n", b2e.count(), e2b.count());
}
*/
TEST_F(TestGeoBin, traits_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 0));
ObWkbGeomPoint& p = *reinterpret_cast<ObWkbGeomPoint*>(data.ptr());
ObJsonBuffer data2(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data2));
ASSERT_EQ(OB_SUCCESS, append_type(data2, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 1));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 1));
ObWkbGeomPoint& p2 = *reinterpret_cast<ObWkbGeomPoint*>(data2.ptr());
double d = boost::geometry::distance(p, p2);
ASSERT_DOUBLE_EQ(sqrt(2), d);
}
TEST_F(TestGeoBin, traits_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 2));
ASSERT_EQ(OB_SUCCESS, append_double(data, 0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 99));
ASSERT_EQ(OB_SUCCESS, append_double(data, 99));
ObWkbGeomLineString& line = *reinterpret_cast<ObWkbGeomLineString*>(data.ptr());
ObJsonBuffer data2(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data2));
ASSERT_EQ(OB_SUCCESS, append_type(data2, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data2, -1));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 1));
ObWkbGeomPoint& p2 = *reinterpret_cast<ObWkbGeomPoint*>(data2.ptr());
double d = boost::geometry::distance(line, p2);
printf("d:%lf\n", d);
ASSERT_DOUBLE_EQ(sqrt(2), d);
}
TEST_F(TestGeoBin, intersection_ml)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 2));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1));
ASSERT_EQ(OB_SUCCESS, append_double(data, 3));
ASSERT_EQ(OB_SUCCESS, append_double(data, 3));
ObWkbGeomLineString& line1 = *reinterpret_cast<ObWkbGeomLineString*>(data.ptr());
ObJsonBuffer data2(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data2));
ASSERT_EQ(OB_SUCCESS, append_type(data2, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data2, 2));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 1));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 3));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 3));
ASSERT_EQ(OB_SUCCESS, append_double(data2, 1));
ObWkbGeomLineString& line2 = *reinterpret_cast<ObWkbGeomLineString*>(data2.ptr());
ObCartesianMultilinestring ml(0, allocator);
bool d = boost::geometry::intersection(line1, line2, ml);
for (int i = 0; i < ml.size(); i++) {
for (int j = 0; j < ml[i].size(); j++) {
ASSERT_EQ(2U, ml[i][j].get<0>());
ASSERT_EQ(2U, ml[i][j].get<1>());
}
}
}
TEST_F(TestGeoBin, wkb_size_visitor_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.323));
ASSERT_EQ(OB_SUCCESS, append_double(data, 999.5456));
ObIWkbGeomPoint iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
visitor.reset();
ObIWkbGeogPoint iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
TEST_F(TestGeoBin, wkb_size_visitor_linestring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(data, num, xv, yv);
ObIWkbGeomLineString iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
visitor.reset();
ObIWkbGeogLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
TEST_F(TestGeoBin, wkb_size_visitor_polygon)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
common::ObVector<double> xv;
common::ObVector<double> yv;
uint32_t rnum = 100;
uint32_t pnum = 100;
append_poly(data, rnum, pnum, xv, yv);
ObIWkbGeogPolygon iwkb_geog_poly;
iwkb_geog_poly.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog_poly.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
ObIWkbGeomPolygon iwkb_geom_poly;
iwkb_geom_poly.set_data(data.string());
visitor.reset();
ASSERT_EQ(OB_SUCCESS, iwkb_geom_poly.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
TEST_F(TestGeoBin, wkb_size_visitor_multi_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_point(data, num, xv, yv);
ObIWkbGeogMultiPoint iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
ObIWkbGeomMultiPoint iwkb_geom;
iwkb_geom.set_data(data.string());
visitor.reset();
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
TEST_F(TestGeoBin, wkb_size_visitor_multi_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(data, lnum, pnum, xv, yv);
ObIWkbGeogMultiLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
ObIWkbGeomMultiLineString iwkb_geom;
iwkb_geom.set_data(data.string());
visitor.reset();
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
TEST_F(TestGeoBin, wkb_size_visitor_multi_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 99 inner line, every line has 100 point
uint32_t polynum = 100;
uint32_t lnum = 100;
uint32_t pnum = 100;
common::ObVector<double> xv[polynum];
common::ObVector<double> yv[polynum];
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
append_poly(data, lnum, pnum, xv[i], yv[i]);
}
ObIWkbGeogMultiPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
ObIWkbGeomMultiPolygon iwkb_geom;
iwkb_geom.set_data(data.string());
visitor.reset();
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
TEST_F(TestGeoBin, wkb_size_visitor_geom_collection)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data, xv[0], yv[0]);
// line
append_line(data, 100, xv[1], yv[1]);
// polygon
append_poly(data, 100, 100, xv[2], yv[2]);
// multipoint
append_multi_point(data, 100, xv[3], yv[3]);
// multiline
append_multi_line(data, 1000, 10, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 10));
for (int i = 0; i < 10; i++) {
append_poly(data, 10, 100, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
ObIWkbGeogCollection iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoWkbSizeVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
ObIWkbGeomCollection iwkb_geom;
iwkb_geom.set_data(data.string());
visitor.reset();
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(data.length(), visitor.geo_size());
}
int mock_get_tenant_srs_item(ObIAllocator &allocator, uint64_t tenant_id, uint64_t srs_id, const ObSrsItem *&srs_item)
{
UNUSEDx( tenant_id);
int ret = OB_SUCCESS;
ObGeographicRs rs;
rs.rs_name.assign_ptr("ED50", strlen("ED50"));
rs.datum_info.name.assign_ptr("European Datum 1950", strlen("European Datum 1950"));
rs.datum_info.spheroid.name.assign_ptr("International 1924", strlen("International 1924"));
rs.datum_info.spheroid.inverse_flattening = 297;
rs.datum_info.spheroid.semi_major_axis = 6378388;
rs.primem.longtitude = 0;
rs.unit.conversion_factor = 0.017453292519943278;
rs.axis.x.direction = ObAxisDirection::NORTH;
rs.axis.y.direction = ObAxisDirection::EAST;
rs.datum_info.towgs84.value[0] = -157.89;
rs.datum_info.towgs84.value[1] = -17.16;
rs.datum_info.towgs84.value[2] = -78.41;
rs.datum_info.towgs84.value[3] = 2.118;
rs.datum_info.towgs84.value[4] = 2.697;
rs.datum_info.towgs84.value[5] = -1.434;
rs.datum_info.towgs84.value[6] = -5.38;
rs.authority.is_valid = false;
ObSpatialReferenceSystemBase *srs_info;
if (OB_FAIL(ObSpatialReferenceSystemBase::create_geographic_srs(&allocator, srs_id, &rs, srs_info))) {
printf("faild to create geographical srs, ret=%d", ret);
}
ObSrsItem *tmp_srs_item = NULL;
if (OB_ISNULL(tmp_srs_item = OB_NEWx(ObSrsItem, (&allocator_), srs_info))) {
ret = OB_ALLOCATE_MEMORY_FAILED;
printf("fail to alloc memory for srs item, ret=%d", ret);
} else {
srs_item = tmp_srs_item;
}
return ret;
}
void get_srs_item(ObIAllocator &allocator, uint64_t srs_id, const ObSrsItem *&srs_item)
{
ASSERT_EQ(OB_SUCCESS, mock_get_tenant_srs_item(allocator, OB_SYS_TENANT_ID, srs_id, srs_item));
}
TEST_F(TestGeoBin, coordinate_range_visitor_point)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 179 * srs_item->angular_unit()));
ASSERT_EQ(OB_SUCCESS, append_double(data, 89 * srs_item->angular_unit()));
ObGeoCoordinateRangeVisitor visitor(srs_item);
ObIWkbGeogPoint iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181 * srs_item->angular_unit()));
ASSERT_EQ(OB_SUCCESS, append_double(data, 89 * srs_item->angular_unit()));
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(visitor.value_out_of_range() - 181) < 0.001);
data.reset();
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 180 * srs_item->angular_unit()));
ASSERT_EQ(OB_SUCCESS, append_double(data, 91 * srs_item->angular_unit()));
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(true, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(visitor.value_out_of_range() - 91) < 0.001);
ObIWkbGeomPoint iwkb_geom;
visitor.reset();
iwkb_geom.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
}
TEST_F(TestGeoBin, coordinate_range_visitor_linestring)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t p_num = 20;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_ring(data, p_num, xv, yv, GeogValueValidType::IN_RANGE);
ObIWkbGeogLinearRing iwkb_geog;
ObGeoCoordinateRangeVisitor visitor(srs_item);
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
append_ring(data, p_num, xv, yv, GeogValueValidType::OUT_RANGE);
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, coordinate_range_visitor_lineString)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
uint32_t p_num = 2;
ASSERT_EQ(OB_SUCCESS, append_uint32(data, p_num));
ASSERT_EQ(OB_SUCCESS, append_double(data, 179 * srs_item->angular_unit()));
ASSERT_EQ(OB_SUCCESS, append_double(data, 89 * srs_item->angular_unit()));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1 * srs_item->angular_unit()));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1 * srs_item->angular_unit()));
ObIWkbGeogLineString iwkb_geog;
ObGeoCoordinateRangeVisitor visitor(srs_item);
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
p_num = 20;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(data, p_num, xv, yv, GeogValueValidType::OUT_RANGE);
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, coordinate_range_visitor_polygon)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
common::ObVector<double> xv;
common::ObVector<double> yv;
uint32_t rnum = 100;
uint32_t pnum = 100;
append_poly(data, rnum, pnum, xv, yv, GeogValueValidType::IN_RANGE);
ObIWkbGeogPolygon iwkb_geog;
ObGeoCoordinateRangeVisitor visitor(srs_item);
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
append_poly(data, rnum, pnum, xv, yv, GeogValueValidType::OUT_RANGE);
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, coordinate_range_visitor_multipoint)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
common::ObVector<double> xv;
common::ObVector<double> yv;
uint32_t pnum = 100;
append_multi_point(data, pnum, xv, yv, GeogValueValidType::IN_RANGE);
ObIWkbGeogMultiPoint iwkb_geog;
ObGeoCoordinateRangeVisitor visitor(srs_item);
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
append_multi_point(data, pnum, xv, yv, GeogValueValidType::OUT_RANGE);
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, coordinate_range_visitor_multi_line)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(data, lnum, pnum, xv, yv, GeogValueValidType::IN_RANGE);
ObIWkbGeogMultiLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoCoordinateRangeVisitor visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
append_multi_line(data, lnum, pnum, xv, yv, GeogValueValidType::OUT_RANGE);
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, coordinate_range_visitor_multi_poly)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 99 inner line, every line has 100 point
uint32_t polynum = 100;
uint32_t lnum = 100;
uint32_t pnum = 100;
common::ObVector<double> xv[polynum];
common::ObVector<double> yv[polynum];
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
append_poly(data, lnum, pnum, xv[i], yv[i], GeogValueValidType::IN_RANGE);
}
ObIWkbGeogMultiPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoCoordinateRangeVisitor visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
if (i < polynum - 1) {
append_poly(data, lnum, pnum, xv[i], yv[i], GeogValueValidType::IN_RANGE);
} else {
append_poly(data, lnum, pnum, xv[i], yv[i], GeogValueValidType::OUT_RANGE);
}
}
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, coordinate_range_visitor_geom_collection)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data, xv[0], yv[0], GeogValueValidType::IN_RANGE);
// line
append_line(data, 100, xv[1], yv[1], GeogValueValidType::IN_RANGE);
// polygon
append_poly(data, 100, 100, xv[2], yv[2], GeogValueValidType::IN_RANGE);
// multipoint
append_multi_point(data, 100, xv[3], yv[3], GeogValueValidType::IN_RANGE);
// multiline
append_multi_line(data, 1000, 10, xv[4], yv[4], GeogValueValidType::IN_RANGE);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 10));
for (int i = 0; i < 10; i++) {
append_poly(data, 10, 100, xv[5], yv[5], GeogValueValidType::IN_RANGE);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
ObIWkbGeogCollection iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoCoordinateRangeVisitor visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(false, visitor.is_longtitude_out_of_range());
ASSERT_TRUE(isnan(visitor.value_out_of_range()));
data.reset();
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
// point
append_random_point(data, xv[0], yv[0], GeogValueValidType::IN_RANGE);
// line
append_line(data, 100, xv[1], yv[1], GeogValueValidType::IN_RANGE);
// polygon
append_poly(data, 100, 100, xv[2], yv[2], GeogValueValidType::IN_RANGE);
// multipoint
append_multi_point(data, 100, xv[3], yv[3], GeogValueValidType::IN_RANGE);
// multiline
append_multi_line(data, 1000, 10, xv[4], yv[4], GeogValueValidType::OUT_RANGE);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 10));
for (int i = 0; i < 10; i++) {
append_poly(data, 10, 100, xv[5], yv[5], GeogValueValidType::IN_RANGE);
}
visitor.reset();
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(false, visitor.is_latitude_out_of_range());
ASSERT_EQ(true, visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, wkb_visitor_point)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ObGeographPoint p(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit());
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, p.do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
// coordinate range visitor for geograph tree
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, p.do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
ObGeoWkbSizeVisitor size_visitor;
ObIWkbGeogLineString iwkb_geog;
ASSERT_EQ(OB_SUCCESS, p.do_visit(size_visitor));
ASSERT_EQ(sizeof(uint8_t) + sizeof(uint32_t) + 2* sizeof(double), size_visitor.geo_size());
// cartesian test
ObCartesianPoint p_c(181 , 90);
size_visitor.reset();
// tree wkb size visitor test
ASSERT_EQ(OB_SUCCESS, p_c.do_visit(size_visitor));
ASSERT_EQ(sizeof(uint8_t) + sizeof(uint32_t) + 2* sizeof(double), size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree wkb visitor test
ASSERT_EQ(OB_SUCCESS, p_c.do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
// geograph longtitude correction for tree
ObGeoLongtitudeCorrectVisitor longti_correction_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, p.do_visit(longti_correction_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, p.do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
}
TEST_F(TestGeoBin, wkb_visitor_linestring)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ObGeoWkbSizeVisitor size_visitor;
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
uint32_t pnum = 3;
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 10));
ASSERT_EQ(OB_SUCCESS, append_double(data, 20));
ASSERT_EQ(OB_SUCCESS, append_double(data, 30));
ASSERT_EQ(OB_SUCCESS, append_double(data, 40));
ObIWkbGeogLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(size_visitor));
uint32_t wkb_size = size_visitor.geo_size();
size_visitor.reset();
ObLineString *l = NULL;
ASSERT_EQ(OB_SUCCESS, ObLineString::create_linestring(ObGeoCRS::Geographic, 0, allocator, l));
ObGeographLineString *line = static_cast<ObGeographLineString *>(l);
ASSERT_EQ(ObGeoType::LINESTRING, line->type());
ASSERT_EQ(1, line->dimension());
ASSERT_EQ(OB_SUCCESS, line->push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, line->push_back(ObWkbGeogInnerPoint(10 * srs_item->angular_unit(), 20 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, line->push_back(ObWkbGeogInnerPoint(30 * srs_item->angular_unit(), 40 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, line->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, line->do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, line->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
ObGeoLongtitudeCorrectVisitor long_correct_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, line->do_visit(long_correct_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, line->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
// cartesian test
ASSERT_EQ(OB_SUCCESS, ObLineString::create_linestring(ObGeoCRS::Cartesian, 0, allocator, l));
ObCartesianLineString *carte_line = static_cast<ObCartesianLineString *>(l);
ASSERT_EQ(ObGeoType::LINESTRING, carte_line->type());
ASSERT_EQ(1, carte_line->dimension());
ASSERT_EQ(OB_SUCCESS, carte_line->push_back(ObWkbGeomInnerPoint(181, 90)));
ASSERT_EQ(OB_SUCCESS, carte_line->push_back(ObWkbGeomInnerPoint(10, 20)));
ASSERT_EQ(OB_SUCCESS, carte_line->push_back(ObWkbGeomInnerPoint(30, 40)));
size_visitor.reset();
// tree cartesian wkb size visitor test
ASSERT_EQ(OB_SUCCESS, carte_line->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree cartesian wkb visitor test
ASSERT_EQ(OB_SUCCESS, carte_line->do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
}
TEST_F(TestGeoBin, wkb_visitor_polygon)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
uint32_t ring_num = 2;
ASSERT_EQ(OB_SUCCESS, append_uint32(data, ring_num));
for (uint32_t i = 0; i < ring_num; i++) {
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 3));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 10));
ASSERT_EQ(OB_SUCCESS, append_double(data, 20));
ASSERT_EQ(OB_SUCCESS, append_double(data, 30));
ASSERT_EQ(OB_SUCCESS, append_double(data, 40));
}
ObGeoWkbSizeVisitor size_visitor;
ObIWkbGeogPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(size_visitor));
uint32_t wkb_size = size_visitor.geo_size();
ObPolygon *l = NULL;
ASSERT_EQ(OB_SUCCESS, ObPolygon::create_polygon(ObGeoCRS::Geographic, 0, allocator, l));
ObGeographPolygon *pol = static_cast<ObGeographPolygon *>(l);
ASSERT_EQ(ObGeoType::POLYGON, pol->type());
ObGeographLinearring out_ring(0, allocator);
ASSERT_EQ(OB_SUCCESS, out_ring.push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, out_ring.push_back(ObWkbGeogInnerPoint(10 * srs_item->angular_unit(), 20 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, out_ring.push_back(ObWkbGeogInnerPoint(30 * srs_item->angular_unit(), 40 * srs_item->angular_unit())));
pol->push_back(out_ring);
ObGeographLinearring inner_ring(0, allocator);
ASSERT_EQ(OB_SUCCESS, inner_ring.push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, inner_ring.push_back(ObWkbGeogInnerPoint(10 * srs_item->angular_unit(), 20 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, inner_ring.push_back(ObWkbGeogInnerPoint(30 * srs_item->angular_unit(), 40 * srs_item->angular_unit())));
pol->push_back(inner_ring);
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, pol->do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
size_visitor.reset();
ASSERT_EQ(OB_SUCCESS, pol->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, pol->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
ObGeoLongtitudeCorrectVisitor long_correct_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, pol->do_visit(long_correct_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, pol->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
// cartesian test
ASSERT_EQ(OB_SUCCESS, ObPolygon::create_polygon(ObGeoCRS::Cartesian, 0, allocator, l));
ObCartesianPolygon *cartesian_pol = static_cast<ObCartesianPolygon *>(l);
ASSERT_EQ(ObGeoType::POLYGON, cartesian_pol->type());
ObCartesianLinearring cart_out_ring(0, allocator);
ASSERT_EQ(OB_SUCCESS, cart_out_ring.push_back(ObWkbGeomInnerPoint(181, 90)));
ASSERT_EQ(OB_SUCCESS, cart_out_ring.push_back(ObWkbGeomInnerPoint(10, 20)));
ASSERT_EQ(OB_SUCCESS, cart_out_ring.push_back(ObWkbGeomInnerPoint(30, 40)));
cartesian_pol->push_back(cart_out_ring);
ObCartesianLinearring cart_inner_ring(0, allocator);
ASSERT_EQ(OB_SUCCESS, cart_inner_ring.push_back(ObWkbGeomInnerPoint(181, 90)));
ASSERT_EQ(OB_SUCCESS, cart_inner_ring.push_back(ObWkbGeomInnerPoint(10, 20)));
ASSERT_EQ(OB_SUCCESS, cart_inner_ring.push_back(ObWkbGeomInnerPoint(30, 40)));
cartesian_pol->push_back(cart_inner_ring);
size_visitor.reset();
// tree cartesian wkb size visitor test
ASSERT_EQ(OB_SUCCESS, cartesian_pol->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree cartesian wkb visitor test
ASSERT_EQ(OB_SUCCESS, cartesian_pol->do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
}
TEST_F(TestGeoBin, wkb_visitor_multipoint)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOINT));
uint32_t pnum = 3;
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 10));
ASSERT_EQ(OB_SUCCESS, append_double(data, 20));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 30));
ASSERT_EQ(OB_SUCCESS, append_double(data, 40));
ObMultipoint *l = NULL;
ASSERT_EQ(OB_SUCCESS, ObMultipoint::create_multipoint(ObGeoCRS::Geographic, 0, allocator, l));
ObGeographMultipoint *line = static_cast<ObGeographMultipoint *>(l);
ASSERT_EQ(ObGeoType::MULTIPOINT, line->type());
ASSERT_EQ(OB_SUCCESS, line->push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, line->push_back(ObWkbGeogInnerPoint(10 * srs_item->angular_unit(), 20 * srs_item->angular_unit())));
ASSERT_EQ(OB_SUCCESS, line->push_back(ObWkbGeogInnerPoint(30 * srs_item->angular_unit(), 40 * srs_item->angular_unit())));
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, line->do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
ObGeoWkbSizeVisitor size_visitor;
ObIWkbGeogMultiPoint iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(size_visitor));
uint32_t wkb_size = size_visitor.geo_size();
size_visitor.reset();
ASSERT_EQ(OB_SUCCESS, line->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
// coordinate range visitor for geograph tree
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, line->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
// geograph longtitude correction for tree
ObGeoLongtitudeCorrectVisitor longti_correction_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, line->do_visit(longti_correction_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, line->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
// cartesian test
ASSERT_EQ(OB_SUCCESS, ObMultipoint::create_multipoint(ObGeoCRS::Cartesian, 0, allocator, l));
ObCartesianMultipoint *cartesian_multi_point = static_cast<ObCartesianMultipoint *>(l);
ASSERT_EQ(ObGeoType::MULTIPOINT, cartesian_multi_point->type());
ASSERT_EQ(OB_SUCCESS, cartesian_multi_point->push_back(ObWkbGeomInnerPoint(181, 90)));
ASSERT_EQ(OB_SUCCESS, cartesian_multi_point->push_back(ObWkbGeomInnerPoint(10, 20)));
ASSERT_EQ(OB_SUCCESS, cartesian_multi_point->push_back(ObWkbGeomInnerPoint(30, 40)));
size_visitor.reset();
// tree cartesian wkb size visitor test
ASSERT_EQ(OB_SUCCESS, cartesian_multi_point->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree cartesian wkb visitor test
ASSERT_EQ(OB_SUCCESS, cartesian_multi_point->do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
}
TEST_F(TestGeoBin, wkb_visitor_multiline)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTILINESTRING));
uint32_t lnum = 2;
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
uint32_t pnum = 3;
for (uint32_t i = 0; i < lnum; i++) {
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
ASSERT_EQ(OB_SUCCESS, append_double(data, 180));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 180));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
}
ObMultilinestring *mls_ptr = NULL;
ASSERT_EQ(OB_SUCCESS, ObMultilinestring::create_multilinestring(ObGeoCRS::Geographic, 0, allocator, mls_ptr));
ObGeographMultilinestring *mls = static_cast<ObGeographMultilinestring *>(mls_ptr);
ASSERT_EQ(ObGeoType::MULTILINESTRING, mls_ptr->type());
ObGeographLineString ls(0, allocator);
ls.push_back(ObWkbGeogInnerPoint(180 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
ls.push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
ls.push_back(ObWkbGeogInnerPoint(180 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
mls->push_back(ls);
ObGeographLineString ls2(0, allocator);
ls2.push_back(ObWkbGeogInnerPoint(180 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
ls2.push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
ls2.push_back(ObWkbGeogInnerPoint(180 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
mls->push_back(ls2);
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, mls->do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
ObGeoWkbSizeVisitor size_visitor;
ObIWkbGeogMultiLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(size_visitor));
uint32_t wkb_size = size_visitor.geo_size();
size_visitor.reset();
ASSERT_EQ(OB_SUCCESS, mls->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
// coordinate range visitor for geograph tree
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, mls->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
// geograph longtitude correction for tree
ObGeoLongtitudeCorrectVisitor longti_correction_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, mls->do_visit(longti_correction_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, mls->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
// cartesian tree test
ASSERT_EQ(OB_SUCCESS, ObMultilinestring::create_multilinestring(ObGeoCRS::Cartesian, 0, allocator, mls_ptr));
ObCartesianMultilinestring *cart_mls = static_cast<ObCartesianMultilinestring *>(mls_ptr);
ASSERT_EQ(ObGeoType::MULTILINESTRING, mls_ptr->type());
ObCartesianLineString cart_ls(0, allocator);
cart_ls.push_back(ObWkbGeomInnerPoint(180, 90));
cart_ls.push_back(ObWkbGeomInnerPoint(181, 90));
cart_ls.push_back(ObWkbGeomInnerPoint(180, 90));
cart_mls->push_back(cart_ls);
ObCartesianLineString cart_ls2(0, allocator);
cart_ls2.push_back(ObWkbGeomInnerPoint(180, 90));
cart_ls2.push_back(ObWkbGeomInnerPoint(181, 90));
cart_ls2.push_back(ObWkbGeomInnerPoint(180, 90));
cart_mls->push_back(cart_ls2);
size_visitor.reset();
// tree cartesian wkb size visitor test
ASSERT_EQ(OB_SUCCESS, cart_mls->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree cartesian wkb visitor test
ASSERT_EQ(OB_SUCCESS, cart_mls->do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
}
TEST_F(TestGeoBin, wkb_visitor_multi_poly)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t polynum = 2;
uint32_t lnum = 2;
uint32_t pnum = 3;
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
// push rings
for (int j = 0; j < lnum; j++) {
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
for (int k = 0; k < pnum; k++) {
ASSERT_EQ(OB_SUCCESS, append_double(data, 181.0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90.0));
}
}
}
ObMultipolygon *mpy_ptr = NULL;
ASSERT_EQ(OB_SUCCESS, ObMultipolygon::create_multipolygon(ObGeoCRS::Geographic, 0, allocator, mpy_ptr));
ObGeographMultipolygon *cartMpy = static_cast<ObGeographMultipolygon *>(mpy_ptr);
ASSERT_EQ(ObGeoType::MULTIPOLYGON, cartMpy->type());
ASSERT_EQ(ObGeoCRS::Geographic, cartMpy->crs());
ASSERT_TRUE(cartMpy->empty());
ASSERT_TRUE(cartMpy->is_empty());
ObGeographLinearring inner_ring(0, allocator);
inner_ring.push_back(ObWkbGeogInnerPoint(181.0 * srs_item->angular_unit(), 90.0 * srs_item->angular_unit()));
inner_ring.push_back(ObWkbGeogInnerPoint(181.0 * srs_item->angular_unit(), 90.0 * srs_item->angular_unit()));
inner_ring.push_back(ObWkbGeogInnerPoint(181.0 * srs_item->angular_unit(), 90.0 * srs_item->angular_unit()));
ObGeographLinearring outer_ring(0, allocator);
outer_ring.push_back(ObWkbGeogInnerPoint(181.0 * srs_item->angular_unit(), 90.0 * srs_item->angular_unit()));
outer_ring.push_back(ObWkbGeogInnerPoint(181.0 * srs_item->angular_unit(), 90.0 * srs_item->angular_unit()));
outer_ring.push_back(ObWkbGeogInnerPoint(181.0 * srs_item->angular_unit(), 90.0 * srs_item->angular_unit()));
ObGeographPolygon py(0, allocator);
py.push_back(outer_ring);
py.push_back(inner_ring);
cartMpy->push_back(py);
cartMpy->push_back(py);
ASSERT_EQ(2U, cartMpy->size());
ObGeoWkbSizeVisitor size_visitor;
ObIWkbGeogMultiPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(size_visitor));
uint32_t wkb_size = size_visitor.geo_size();
size_visitor.reset();
ASSERT_EQ(OB_SUCCESS, cartMpy->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, cartMpy->do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
// coordinate range visitor for geograph tree
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, cartMpy->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
// geograph longtitude correction for tree
ObGeoLongtitudeCorrectVisitor longti_correction_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, cartMpy->do_visit(longti_correction_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, cartMpy->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
// cartesian tree test
ASSERT_EQ(OB_SUCCESS, ObMultipolygon::create_multipolygon(ObGeoCRS::Cartesian, 0, allocator, mpy_ptr));
ObCartesianMultipolygon *cart_Mpy = static_cast<ObCartesianMultipolygon *>(mpy_ptr);
ASSERT_EQ(ObGeoType::MULTIPOLYGON, cart_Mpy->type());
ASSERT_EQ(ObGeoCRS::Cartesian, cart_Mpy->crs());
ASSERT_TRUE(cart_Mpy->empty());
ASSERT_TRUE(cart_Mpy->is_empty());
ObCartesianLinearring cart_inner_ring(0, allocator);
cart_inner_ring.push_back(ObWkbGeomInnerPoint(181.0, 90.0));
cart_inner_ring.push_back(ObWkbGeomInnerPoint(181.0, 90.0));
cart_inner_ring.push_back(ObWkbGeomInnerPoint(181.0, 90.0));
ObCartesianLinearring cart_outer_ring(0, allocator);
cart_outer_ring.push_back(ObWkbGeomInnerPoint(181.0, 90.0));
cart_outer_ring.push_back(ObWkbGeomInnerPoint(181.0, 90.0));
cart_outer_ring.push_back(ObWkbGeomInnerPoint(181.0, 90.0));
ObCartesianPolygon cart_py(0, allocator);
cart_py.push_back(cart_outer_ring);
cart_py.push_back(cart_inner_ring);
cart_Mpy->push_back(cart_py);
cart_Mpy->push_back(cart_py);
ASSERT_EQ(2U, cart_Mpy->size());
size_visitor.reset();
// tree cartesian wkb size visitor test
ASSERT_EQ(OB_SUCCESS, cart_Mpy->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree cartesian wkb visitor test
ASSERT_EQ(OB_SUCCESS, cart_Mpy->do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
}
TEST_F(TestGeoBin, visitor_Geometrycollection)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 6));
// point
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
append_double(data, 10.0);
append_double(data, 0.0);
// line
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 3));
ASSERT_EQ(OB_SUCCESS, append_double(data, 180));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 180));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 10));
ASSERT_EQ(OB_SUCCESS, append_double(data, 10));
// polygon
uint32_t lnum = 1;
uint32_t pnum = 2;
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
for (int j = 0; j < lnum; j++) {
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
for (int k = 0; k < pnum; k++) {
ASSERT_EQ(OB_SUCCESS, append_double(data, 55.0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 66.0));
}
}
// multipoint
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOINT));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 1));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 0.0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 0.0));
// multiline
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTILINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 1));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 2));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.0));
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
ObGeoWkbSizeVisitor size_visitor;
ObIWkbGeogCollection iwkb_gc;
iwkb_gc.set_data(data.string());
ASSERT_EQ(OB_SUCCESS, iwkb_gc.do_visit(size_visitor));
uint32_t wkb_size = size_visitor.geo_size();
ObGeometrycollection* gc = NULL;
ASSERT_EQ(OB_SUCCESS, ObGeometrycollection::create_collection(ObGeoCRS::Geographic, 0, allocator, gc));
ASSERT_EQ(ObGeoType::GEOMETRYCOLLECTION, gc->type());
ASSERT_EQ(ObGeoCRS::Geographic, gc->crs());
ObGeographGeometrycollection *GeographGc = static_cast<ObGeographGeometrycollection *>(gc);
// point
GeographGc->push_back(ObGeographPoint(10.0 * srs_item->angular_unit(), 0.0 * srs_item->angular_unit(), 0, &allocator));
// lineString
ObGeographLineString ls(0, allocator);
ls.push_back(ObWkbGeogInnerPoint(180 * srs_item->angular_unit(), 90 * srs_item->angular_unit() ));
ls.push_back(ObWkbGeogInnerPoint(180 * srs_item->angular_unit(), 90 * srs_item->angular_unit()));
ls.push_back(ObWkbGeogInnerPoint(10 * srs_item->angular_unit(), 10 * srs_item->angular_unit()));
GeographGc->push_back(ls);
// polygon
ObGeographLinearring outer_ring(0, allocator);
outer_ring.push_back(ObWkbGeogInnerPoint(55.0 * srs_item->angular_unit(), 66.0 * srs_item->angular_unit()));
outer_ring.push_back(ObWkbGeogInnerPoint(55.0 * srs_item->angular_unit(), 66.0 * srs_item->angular_unit()));
ObGeographPolygon py(0, allocator);
py.push_back(outer_ring);
GeographGc->push_back(py);
// multi point
ObGeographMultipoint mpt(0, allocator);
mpt.push_back(ObWkbGeogInnerPoint(0.0 * srs_item->angular_unit() , 0.0 * srs_item->angular_unit()));
GeographGc->push_back(mpt);
// multi line
ObGeographLineString ls2(0, allocator);
ls2.push_back(ObWkbGeogInnerPoint(181 * srs_item->angular_unit() , 90 * srs_item->angular_unit()));
ls2.push_back(ObWkbGeogInnerPoint(1.0 * srs_item->angular_unit() , 1.0 * srs_item->angular_unit()));
ObGeographMultilinestring mls;
mls.push_back(ls2);
GeographGc->push_back(mls);
// empty gc
ObGeographGeometrycollection inner_gc(0, allocator);
GeographGc->push_back(inner_gc);
size_visitor.reset();
ASSERT_EQ(OB_SUCCESS, GeographGc->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_SUCCESS, GeographGc->do_visit(visitor));
ASSERT_TRUE(data.string().compare(wkb) == 0);
// coordinate range visitor for geograph tree
ObGeoCoordinateRangeVisitor range_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, GeographGc->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(true, range_visitor.is_longtitude_out_of_range());
ASSERT_TRUE(std::abs(range_visitor.value_out_of_range() - 181) < 0.001);
// geograph longtitude correction for tree
ObGeoLongtitudeCorrectVisitor longti_correction_visitor(srs_item);
ASSERT_EQ(OB_SUCCESS, GeographGc->do_visit(longti_correction_visitor));
range_visitor.reset();
ASSERT_EQ(OB_SUCCESS, GeographGc->do_visit(range_visitor));
ASSERT_EQ(false, range_visitor.is_latitude_out_of_range());
ASSERT_EQ(false, range_visitor.is_longtitude_out_of_range());
// cartesian test
ASSERT_EQ(OB_SUCCESS, ObGeometrycollection::create_collection(ObGeoCRS::Cartesian, 0, allocator, gc));
ASSERT_EQ(ObGeoType::GEOMETRYCOLLECTION, gc->type());
ASSERT_EQ(ObGeoCRS::Cartesian, gc->crs());
ObCartesianGeometrycollection *CartesianGc = static_cast<ObCartesianGeometrycollection *>(gc);
// point
CartesianGc->push_back(ObCartesianPoint(10.0, 0.0, 0, &allocator));
// lineString
ObCartesianLineString cart_ls(0, allocator);
cart_ls.push_back(ObWkbGeomInnerPoint(180, 90 ));
cart_ls.push_back(ObWkbGeomInnerPoint(180, 90));
cart_ls.push_back(ObWkbGeomInnerPoint(10, 10));
CartesianGc->push_back(cart_ls);
// polygon
ObCartesianLinearring cart_outer_ring(0, allocator);
cart_outer_ring.push_back(ObWkbGeomInnerPoint(55.0, 66.0));
cart_outer_ring.push_back(ObWkbGeomInnerPoint(55.0, 66.0));
ObCartesianPolygon cart_py(0, allocator);
cart_py.push_back(cart_outer_ring);
CartesianGc->push_back(cart_py);
// multi point
ObCartesianMultipoint cart_mpt(0, allocator);
cart_mpt.push_back(ObWkbGeomInnerPoint(0.0 , 0.0));
CartesianGc->push_back(cart_mpt);
// multi line
ObCartesianLineString cart_ls2(0, allocator);
cart_ls2.push_back(ObWkbGeomInnerPoint(181 , 90));
cart_ls2.push_back(ObWkbGeomInnerPoint(1.0 , 1.0));
ObCartesianMultilinestring cart_mls;
cart_mls.push_back(cart_ls2);
CartesianGc->push_back(cart_mls);
// empty gc
ObCartesianGeometrycollection cart_inner_gc(0, allocator);
CartesianGc->push_back(cart_inner_gc);
size_visitor.reset();
// tree cartesian wkb size visitor test
ASSERT_EQ(OB_SUCCESS, CartesianGc->do_visit(size_visitor));
ASSERT_EQ(wkb_size, size_visitor.geo_size());
ObString cart_wkb(1024, 0, tmp);
visitor.set_wkb_buffer(&cart_wkb);
visitor.set_srs(mock_projected_srs_item);
// tree cartesian wkb visitor test
ASSERT_EQ(OB_SUCCESS, CartesianGc->do_visit(visitor));
ASSERT_TRUE(data.string().compare(cart_wkb) == 0);
}
TEST_F(TestGeoBin, wkb_invalid_visitor)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(data, lnum, pnum, xv, yv);
ObIWkbGeogMultiLineString iwkb_geog;
iwkb_geog.set_data(data.string());
char tmp[1024];
ObString wkb(1024, 0, tmp);
ObGeoWkbVisitor visitor(srs_item, &wkb);
ASSERT_EQ(OB_BUF_NOT_ENOUGH, iwkb_geog.do_visit(visitor));
}
TEST_F(TestGeoBin, longti_correct_invalid_visitor)
{
get_srs_item(allocator_, 4326, srs_item);
ASSERT_TRUE(srs_item != NULL);
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t polynum = 100;
uint32_t lnum = 100;
uint32_t pnum = 100;
common::ObVector<double> xv[polynum];
common::ObVector<double> yv[polynum];
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
append_poly(data, lnum, pnum, xv[i], yv[i]);
}
ObIWkbGeomMultiPolygon iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoLongtitudeCorrectVisitor correct_visitor(srs_item);
// not support wkb geo convert to wkb
ASSERT_EQ(OB_INVALID_ARGUMENT, iwkb_geom.do_visit(correct_visitor));
}
TEST_F(TestGeoBin, to_tree_visitor_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 1.323));
ASSERT_EQ(OB_SUCCESS, append_double(data, 999.5456));
ObIWkbGeomPoint p;
p.set_data(data.string());
ObGeoToTreeVisitor cart_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, p.do_visit(cart_visitor));
const ObCartesianPoint *point = static_cast<const ObCartesianPoint *>(cart_visitor.get_geometry());
ASSERT_EQ(point->x(), 1.323);
ASSERT_EQ(point->y(), 999.5456);
ObIWkbGeogPoint p1;
p1.set_data(data.string());
ObGeoToTreeVisitor geog_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, p1.do_visit(geog_visitor));
const ObGeographPoint *point1 = static_cast<const ObGeographPoint *>(geog_visitor.get_geometry());
ASSERT_EQ(point1->x(), 1.323);
ASSERT_EQ(point1->y(), 999.5456);
}
TEST_F(TestGeoBin, to_tree_visitor_linestring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t num = 1000000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(data, num, xv, yv);
ObWkbGeogLineString& line = *reinterpret_cast<ObWkbGeogLineString*>(data.ptr());
ObWkbGeogLineString::iterator iter = line.begin();
ObIWkbGeogLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoToTreeVisitor geog_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(geog_visitor));
const ObGeographLineString *line_tree = static_cast<const ObGeographLineString *>(geog_visitor.get_geometry());
ASSERT_EQ(num, line_tree->size());
for (int i = 0; iter != line.end(); ++iter, i++) {
ASSERT_EQ((*line_tree)[i].get<0>(), iter->get<0>());
ASSERT_EQ((*line_tree)[i].get<1>(), iter->get<1>());
}
ObIWkbGeomLineString iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoToTreeVisitor geom_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(geom_visitor));
const ObCartesianLineString *cart_line_tree = static_cast<const ObCartesianLineString *>(geom_visitor.get_geometry());
ASSERT_EQ(num, cart_line_tree->size());
for (int i = 0; iter != line.end(); ++iter, i++) {
ASSERT_EQ((*cart_line_tree)[i].get<0>(), iter->get<0>());
ASSERT_EQ((*cart_line_tree)[i].get<1>(), iter->get<1>());
}
}
template<typename T>
void check_tree_lines(T& line, uint32_t& pc, common::ObVector<double>& xv, common::ObVector<double>& yv)
{
for (uint32_t i = 0; i < line.size(); i++) {
ASSERT_EQ(xv[pc], line[i].template get<0>());
ASSERT_EQ(yv[pc], line[i].template get<1>());
pc++;
}
}
TEST_F(TestGeoBin, to_tree_visitor_multi_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(data, lnum, pnum, xv, yv);
ObIWkbGeogMultiLineString iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoToTreeVisitor geog_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(geog_visitor));
ObGeographMultilinestring *geog_multiline = static_cast<ObGeographMultilinestring *>(geog_visitor.get_geometry());
ASSERT_EQ(lnum, geog_multiline->size());
uint32_t index = 0;
for (uint32_t i = 0; i < lnum; i++) {
ObGeographLineString& line = (*geog_multiline)[i];
ASSERT_EQ(line.size(), pnum);
check_tree_lines(line, index, xv, yv);
}
ObIWkbGeomMultiLineString iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoToTreeVisitor geom_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(geom_visitor));
ObCartesianMultilinestring *geom_multiline = static_cast<ObCartesianMultilinestring *>(geom_visitor.get_geometry());
ASSERT_EQ(lnum, geom_multiline->size());
index = 0;
for (uint32_t i = 0; i < lnum; i++) {
ObCartesianLineString& line = (*geom_multiline)[i];
ASSERT_EQ(line.size(), pnum);
check_tree_lines(line, index, xv, yv);
}
}
TEST_F(TestGeoBin, to_tree_visitor_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t pnum = 100;
uint32_t lnum = 10001;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_poly(data, lnum, pnum, xv, yv);
ObIWkbGeogPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoToTreeVisitor geog_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(geog_visitor));
ObGeographPolygon *geog_polygon = static_cast<ObGeographPolygon *>(geog_visitor.get_geometry());
ASSERT_EQ(lnum, geog_polygon->size());
ObGeographLinearring& ext = geog_polygon->exterior_ring();
uint32_t index = 0;
ASSERT_EQ(ext.size(), pnum);
check_tree_lines(ext, index, xv, yv);
for (uint32_t i = 0; i < lnum - 1; i++) {
ObGeographLinearring& inner = geog_polygon->inner_ring(i);
ASSERT_EQ(inner.size(), pnum);
check_tree_lines(inner, index, xv, yv);
}
ObIWkbGeomPolygon iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoToTreeVisitor geom_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(geom_visitor));
ObCartesianPolygon *geom_polygon = static_cast<ObCartesianPolygon *>(geom_visitor.get_geometry());
ASSERT_EQ(lnum, geom_polygon->size());
ObCartesianLinearring& cart_ext = geom_polygon->exterior_ring();
index = 0;
ASSERT_EQ(cart_ext.size(), pnum);
check_tree_lines(cart_ext, index, xv, yv);
for (uint32_t i = 0; i < lnum - 1; i++) {
ObCartesianLinearring& inner = geom_polygon->inner_ring(i);
ASSERT_EQ(inner.size(), pnum);
check_tree_lines(inner, index, xv, yv);
}
}
TEST_F(TestGeoBin, to_tree_visitor_multipoint)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOINT));
uint32_t pnum = 3;
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 181));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 10));
ASSERT_EQ(OB_SUCCESS, append_double(data, 20));
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, 30));
ASSERT_EQ(OB_SUCCESS, append_double(data, 40));
ObIWkbGeogMultiPoint iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoToTreeVisitor visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ObGeographMultipoint *multi_point = static_cast<ObGeographMultipoint *>(visitor.get_geometry());
ASSERT_EQ(3, multi_point->size());
const ObWkbGeogInnerPoint &point1 = (*multi_point)[0];
ASSERT_EQ(181, point1.get<0>());
ASSERT_EQ(90, point1.get<1>());
const ObWkbGeogInnerPoint &point2 = (*multi_point)[1];
ASSERT_EQ(10, point2.get<0>());
ASSERT_EQ(20, point2.get<1>());
const ObWkbGeogInnerPoint &point3 = (*multi_point)[2];
ASSERT_EQ(30, point3.get<0>());
ASSERT_EQ(40, point3.get<1>());
}
TEST_F(TestGeoBin, to_tree_visitor_multi_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
uint32_t polynum = 2;
uint32_t lnum = 2;
uint32_t pnum = 3;
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, polynum));
for (int i = 0; i < polynum; i++) {
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
// push rings
for (int j = 0; j < lnum; j++) {
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
for (int k = 0; k < pnum; k++) {
ASSERT_EQ(OB_SUCCESS, append_double(data, 181.0));
ASSERT_EQ(OB_SUCCESS, append_double(data, 90.0));
}
}
}
ObIWkbGeogMultiPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoToTreeVisitor visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ObGeographMultipolygon *multi_polygon = static_cast<ObGeographMultipolygon *>(visitor.get_geometry());
ASSERT_EQ(2, multi_polygon->size());
for (uint32_t i = 0; i < multi_polygon->size(); i++) {
ObGeographPolygon &pol = (*multi_polygon)[i];
ASSERT_EQ(lnum, pol.size());
ObGeographLinearring &ext = pol.exterior_ring();
for (uint32_t j = 0; j < pnum; j++) {
const ObWkbGeogInnerPoint &point = ext[j];
ASSERT_EQ(181.0, point.get<0>());
ASSERT_EQ(90.0, point.get<1>());
}
ObGeographLinearring &inner = pol.inner_ring(0);
for (uint32_t j = 0; j < pnum; j++) {
const ObWkbGeogInnerPoint &point = inner[j];
ASSERT_EQ(181.0, point.get<0>());
ASSERT_EQ(90.0, point.get<1>());
}
}
ObIWkbGeogMultiPolygon iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoToTreeVisitor geom_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(geom_visitor));
ObCartesianMultipolygon *cart_multi_polygon = static_cast<ObCartesianMultipolygon *>(geom_visitor.get_geometry());
ASSERT_EQ(2, cart_multi_polygon->size());
for (uint32_t i = 0; i < cart_multi_polygon->size(); i++) {
ObCartesianPolygon &pol = (*cart_multi_polygon)[i];
ASSERT_EQ(lnum, pol.size());
ObCartesianLinearring &ext = pol.exterior_ring();
for (uint32_t j = 0; j < pnum; j++) {
const ObWkbGeomInnerPoint &point = ext[j];
ASSERT_EQ(181.0, point.get<0>());
ASSERT_EQ(90.0, point.get<1>());
}
ObCartesianLinearring &inner = pol.inner_ring(0);
for (uint32_t j = 0; j < pnum; j++) {
const ObWkbGeomInnerPoint &point = inner[j];
ASSERT_EQ(181.0, point.get<0>());
ASSERT_EQ(90.0, point.get<1>());
}
}
}
TEST_F(TestGeoBin, to_tree_visitor_geom_collection)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data, xv[0], yv[0]);
// line
append_line(data, 100, xv[1], yv[1]);
// polygon
append_poly(data, 100, 100, xv[2], yv[2]);
// multipoint
append_multi_point(data, 100, xv[3], yv[3]);
// multiline
append_multi_line(data, 1000, 10, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 10));
for (int i = 0; i < 10; i++) {
append_poly(data, 10, 100, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
ObIWkbGeogCollection iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeoToTreeVisitor visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ObGeographGeometrycollection *geog_coll = static_cast<ObGeographGeometrycollection *>(visitor.get_geometry());
ASSERT_EQ(7, geog_coll->size());
ASSERT_EQ(ObGeoType::GEOMETRYCOLLECTION, geog_coll->type());
ASSERT_EQ(ObGeoType::POINT, (*geog_coll)[0].type());
{
ObGeographPoint &point = static_cast<ObGeographPoint &>((*geog_coll)[0]);
ASSERT_EQ(xv[0][0], point.x());
ASSERT_EQ(yv[0][0], point.y());
}
ASSERT_EQ(ObGeoType::LINESTRING, (*geog_coll)[1].type());
{
ObGeographLineString &line = static_cast<ObGeographLineString &>((*geog_coll)[1]);
ASSERT_EQ(100, line.size());
uint32_t index = 0;
check_tree_lines(line, index, xv[1], yv[1]);
}
ASSERT_EQ(ObGeoType::POLYGON, (*geog_coll)[2].type());
{
ObGeographPolygon &polygon = static_cast<ObGeographPolygon &>((*geog_coll)[2]);
auto &exter_ring = polygon.exterior_ring();
uint32_t index = 0;
check_tree_lines(exter_ring, index, xv[2], yv[2]);
uint32_t ring_num = polygon.size();
ASSERT_EQ(100, ring_num);
for (uint32_t i = 0; i < ring_num - 1; i++) {
auto& inner = polygon.inner_ring(i);
ASSERT_EQ(inner.size(), 100);
check_tree_lines(inner, index, xv[2], yv[2]);
}
}
ASSERT_EQ(ObGeoType::MULTIPOINT, (*geog_coll)[3].type());
{
ObGeographMultipoint &multi_point = static_cast<ObGeographMultipoint &>((*geog_coll)[3]);
ASSERT_EQ(100, multi_point.size());
uint32_t index = 0;
check_tree_lines(multi_point, index, xv[3], yv[3]);
}
ASSERT_EQ(ObGeoType::MULTILINESTRING, (*geog_coll)[4].type());
{
ObGeographMultilinestring &multi_line = static_cast<ObGeographMultilinestring &>((*geog_coll)[4]);
ASSERT_EQ(1000, multi_line.size());
uint32_t index = 0;
for (uint32_t i = 0; i < multi_line.size(); i++) {
check_tree_lines(multi_line[i], index, xv[4], yv[4]);
}
}
ASSERT_EQ(ObGeoType::MULTIPOLYGON, (*geog_coll)[5].type());
{
ObGeographMultipolygon &multi_polygon = static_cast<ObGeographMultipolygon &>((*geog_coll)[5]);
ASSERT_EQ(10, multi_polygon.size());
uint32_t index = 0;
for (uint32_t i = 0; i < multi_polygon.size(); i++) {
auto &exter_ring = multi_polygon[i].exterior_ring();
check_tree_lines(exter_ring, index, xv[5], yv[5]);
uint32_t ring_num = multi_polygon[i].size();
ASSERT_EQ(10, ring_num);
for (uint32_t j = 0; j < ring_num - 1; j++) {
auto& inner = multi_polygon[i].inner_ring(j);
ASSERT_EQ(inner.size(), 100);
check_tree_lines(inner, index, xv[5], yv[5]);
}
}
}
ASSERT_EQ(ObGeoType::GEOMETRYCOLLECTION, (*geog_coll)[6].type());
{
ObGeographGeometrycollection &collection = static_cast<ObGeographGeometrycollection &>((*geog_coll)[6]);
ASSERT_EQ(0, collection.size());
}
ObIWkbGeomCollection iwkb_geom;
iwkb_geom.set_data(data.string());
ObGeoToTreeVisitor cart_visitor(&allocator);
ASSERT_EQ(OB_SUCCESS, iwkb_geom.do_visit(cart_visitor));
ObCartesianGeometrycollection *geom_coll = static_cast<ObCartesianGeometrycollection *>(cart_visitor.get_geometry());
ASSERT_EQ(7, geom_coll->size());
ASSERT_EQ(ObGeoType::GEOMETRYCOLLECTION, geom_coll->type());
ASSERT_EQ(ObGeoType::POINT, (*geom_coll)[0].type());
{
ObCartesianPoint &point = static_cast<ObCartesianPoint &>((*geom_coll)[0]);
ASSERT_EQ(xv[0][0], point.x());
ASSERT_EQ(yv[0][0], point.y());
}
ASSERT_EQ(ObGeoType::LINESTRING, (*geom_coll)[1].type());
{
ObCartesianLineString &line = static_cast<ObCartesianLineString &>((*geom_coll)[1]);
ASSERT_EQ(100, line.size());
uint32_t index = 0;
check_tree_lines(line, index, xv[1], yv[1]);
}
ASSERT_EQ(ObGeoType::POLYGON, (*geom_coll)[2].type());
{
ObCartesianPolygon &polygon = static_cast<ObCartesianPolygon &>((*geom_coll)[2]);
auto &exter_ring = polygon.exterior_ring();
uint32_t index = 0;
check_tree_lines(exter_ring, index, xv[2], yv[2]);
uint32_t ring_num = polygon.size();
ASSERT_EQ(100, ring_num);
for (uint32_t i = 0; i < ring_num - 1; i++) {
auto& inner = polygon.inner_ring(i);
ASSERT_EQ(inner.size(), 100);
check_tree_lines(inner, index, xv[2], yv[2]);
}
}
ASSERT_EQ(ObGeoType::MULTIPOINT, (*geom_coll)[3].type());
{
ObCartesianMultipoint &multi_point = static_cast<ObCartesianMultipoint &>((*geom_coll)[3]);
ASSERT_EQ(100, multi_point.size());
uint32_t index = 0;
check_tree_lines(multi_point, index, xv[3], yv[3]);
}
ASSERT_EQ(ObGeoType::MULTILINESTRING, (*geom_coll)[4].type());
{
ObCartesianMultilinestring &multi_line = static_cast<ObCartesianMultilinestring &>((*geom_coll)[4]);
ASSERT_EQ(1000, multi_line.size());
uint32_t index = 0;
for (uint32_t i = 0; i < multi_line.size(); i++) {
check_tree_lines(multi_line[i], index, xv[4], yv[4]);
}
}
ASSERT_EQ(ObGeoType::MULTIPOLYGON, (*geom_coll)[5].type());
{
ObCartesianMultipolygon &multi_polygon = static_cast<ObCartesianMultipolygon &>((*geom_coll)[5]);
ASSERT_EQ(10, multi_polygon.size());
uint32_t index = 0;
for (uint32_t i = 0; i < multi_polygon.size(); i++) {
auto &exter_ring = multi_polygon[i].exterior_ring();
check_tree_lines(exter_ring, index, xv[5], yv[5]);
uint32_t ring_num = multi_polygon[i].size();
ASSERT_EQ(10, ring_num);
for (uint32_t j = 0; j < ring_num - 1; j++) {
auto& inner = multi_polygon[i].inner_ring(j);
ASSERT_EQ(inner.size(), 100);
check_tree_lines(inner, index, xv[5], yv[5]);
}
}
}
ASSERT_EQ(ObGeoType::GEOMETRYCOLLECTION, (*geom_coll)[6].type());
{
ObCartesianGeometrycollection &collection = static_cast<ObCartesianGeometrycollection &>((*geom_coll)[6]);
ASSERT_EQ(0, collection.size());
}
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ObGeoReverseCoordinateVisitor visitor;
double x_val = 179.8;
double y_val = 89.2;
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data, x_val));
ASSERT_EQ(OB_SUCCESS, append_double(data, y_val));
// wkb geographical point
ObIWkbGeogPoint iwkb_geog;
iwkb_geog.set_data(data.string());
ASSERT_EQ(iwkb_geog.x(), x_val);
ASSERT_EQ(iwkb_geog.y(), y_val);
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(iwkb_geog.x(), y_val);
ASSERT_EQ(iwkb_geog.y(), x_val);
// wkb cartesian point
ObIWkbGeomPoint iwkb_geom;
iwkb_geom.set_data(data.string());
ASSERT_EQ(OB_INVALID_ARGUMENT, iwkb_geom.do_visit(visitor));
// tree geographical point
ObGeographPoint t_geog(x_val, y_val);
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geog.do_visit(visitor));
// tree cartesian point
ObCartesianPoint t_geom(x_val, y_val);
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geom.do_visit(visitor));
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_linestring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer buffer(&allocator);
uint32_t num = 100;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_line(buffer, num, xv, yv);
ObString data = buffer.string();
ObWkbGeogLineString& line = *reinterpret_cast<ObWkbGeogLineString*>(data.ptr());
// wkb geographical linestring
ObIWkbGeogLineString iwkb_geog;
iwkb_geog.set_data(data);
ObGeoReverseCoordinateVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ObWkbGeogLineString::iterator line_iter = line.begin();
ObWkbGeogLineString::iterator line_end = line.end();
ASSERT_EQ(line.size(), num);
for (int i = 0; line_iter != line_end; ++line_iter, ++i) {
ASSERT_EQ(line_iter->get<0>(), yv[i]);
ASSERT_EQ(line_iter->get<1>(), xv[i]);
}
// wkb cartesian linestring
ObIWkbGeomLineString iwkb_geom;
iwkb_geom.set_data(data);
ASSERT_EQ(OB_INVALID_ARGUMENT, iwkb_geom.do_visit(visitor));
// tree geographical linestring
ObGeographLineString t_geog;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geog.do_visit(visitor));
// tree cartesian linestring
ObCartesianLineString t_geom;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geom.do_visit(visitor));
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_poly)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer buffer(&allocator);
uint32_t pnum = 100;
uint32_t lnum = 10001;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_poly(buffer, lnum, pnum, xv, yv);
ObString data = buffer.string();
// wkb geographical polygon
ObWkbGeogPolygon& poly = *reinterpret_cast<ObWkbGeogPolygon*>(data.ptr());
ObIWkbGeogPolygon iwkb_geog;
iwkb_geog.set_data(data);
ObGeoReverseCoordinateVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(lnum, poly.size());
ObWkbGeogLinearRing& ext = poly.exterior_ring();
uint32_t index = 0;
ASSERT_EQ(ext.size(), pnum);
check_lines(ext, index, yv, xv);
ObWkbGeogPolygonInnerRings::iterator iring_iter = poly.inner_rings().begin();
ObWkbGeogPolygonInnerRings::iterator iring_end = poly.inner_rings().end();
for (; iring_iter != iring_end; ++iring_iter) {
ASSERT_EQ(iring_iter->size(), pnum);
check_lines(*iring_iter, index, yv, xv);
}
// wkb cartesian polygon
ObIWkbGeomPolygon iwkb_geom;
iwkb_geom.set_data(data);
ASSERT_EQ(OB_INVALID_ARGUMENT, iwkb_geom.do_visit(visitor));
// tree geographical polygon
ObGeographPolygon t_geog;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geog.do_visit(visitor));
// tree cartesian polygon
ObCartesianPolygon t_geom;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geom.do_visit(visitor));
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_multi_point)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer buffer(&allocator);
uint32_t num = 100;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_point(buffer, num, xv, yv);
ObString data = buffer.string();
ObWkbGeogMultiPoint& mpt = *reinterpret_cast<ObWkbGeogMultiPoint*>(data.ptr());
// wkb geographical linestring
ObIWkbGeogMultiPoint iwkb_geog;
iwkb_geog.set_data(data);
ObGeoReverseCoordinateVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ObWkbGeogMultiPoint::iterator mpt_iter = mpt.begin();
ObWkbGeogMultiPoint::iterator mpt_end = mpt.begin();
ASSERT_EQ(mpt.size(), num);
for (int i = 0; mpt_iter != mpt_end; ++mpt_iter, ++i) {
ASSERT_EQ(mpt_iter->get<0>(), yv[i]);
ASSERT_EQ(mpt_iter->get<1>(), xv[i]);
}
// wkb cartesian linestring
ObIWkbGeomMultiPoint iwkb_geom;
iwkb_geom.set_data(data);
ASSERT_EQ(OB_INVALID_ARGUMENT, iwkb_geom.do_visit(visitor));
// tree geographical linestring
ObGeographMultipoint t_geog;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geog.do_visit(visitor));
// tree cartesian linestring
ObCartesianMultipoint t_geom;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geom.do_visit(visitor));
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_multi_line)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer buffer(&allocator);
uint32_t pnum = 100;
uint32_t lnum = 10000;
common::ObVector<double> xv;
common::ObVector<double> yv;
append_multi_line(buffer, lnum, pnum, xv, yv);
ObString data = buffer.string();
ObWkbGeogMultiLineString& mline = *reinterpret_cast<ObWkbGeogMultiLineString*>(data.ptr());
ObIWkbGeogMultiLineString iwkb_geog;
iwkb_geog.set_data(data);
ObGeoReverseCoordinateVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(lnum, mline.size());
ObWkbGeogMultiLineString::iterator mline_iter = mline.begin();
ObWkbGeogMultiLineString::iterator mline_end = mline.begin();
uint32_t index = 0;
for (; mline_iter != mline_end; ++mline_iter) {
ASSERT_EQ(mline_iter->size(), pnum);
check_lines(*mline_iter, index, yv, xv);
}
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_multi_polygon)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer buffer(&allocator);
uint32_t polynum = 100;
uint32_t lnum = 100;
uint32_t pnum = 100;
common::ObVector<double> xv[polynum];
common::ObVector<double> yv[polynum];
ASSERT_EQ(OB_SUCCESS, append_bo(buffer));
ASSERT_EQ(OB_SUCCESS, append_type(buffer, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(buffer, polynum));
for (int i = 0; i < polynum; i++) {
append_poly(buffer, lnum, pnum, xv[i], yv[i]);
}
ObString data = buffer.string();
ObWkbGeogMultiPolygon& mp = *reinterpret_cast<ObWkbGeogMultiPolygon*>(data.ptr());
ObIWkbGeogMultiPolygon iwkb_geog;
iwkb_geog.set_data(data);
ObGeoReverseCoordinateVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(polynum, mp.size());
ObWkbGeogMultiPolygon::iterator iter = mp.begin();
for (int i = 0; iter != mp.end(); ++iter, i++) {
ASSERT_EQ(lnum, iter->size());
uint32_t pc = 0;
auto &ext_ring = iter->exterior_ring();
ASSERT_EQ(pnum, ext_ring.size());
check_lines(ext_ring, pc, yv[i], xv[i]);
auto& inner_rings = iter->inner_rings();
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
ASSERT_EQ(pnum, riter->size());
check_lines(*riter, pc, yv[i], xv[i]);
}
}
// wkb cartesian polygon
ObIWkbGeomMultiPolygon iwkb_geom;
iwkb_geom.set_data(data);
ASSERT_EQ(OB_INVALID_ARGUMENT, iwkb_geom.do_visit(visitor));
// tree geographical polygon
ObGeographMultipolygon t_geog;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geog.do_visit(visitor));
// tree cartesian polygon
ObCartesianMultipolygon t_geom;
ASSERT_EQ(OB_INVALID_ARGUMENT, t_geom.do_visit(visitor));
}
TEST_F(TestGeoBin, reverse_coordinate_visitor_gc)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer buffer(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(buffer));
ASSERT_EQ(OB_SUCCESS, append_type(buffer, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(buffer, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(buffer, xv[0], yv[0]);
// line
append_line(buffer, 100, xv[1], yv[1]);
// polygon
append_poly(buffer, 100, 100, xv[2], yv[2]);
// multipoint
append_multi_point(buffer, 100, xv[3], yv[3]);
// multiline
append_multi_line(buffer, 1000, 10, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(buffer));
ASSERT_EQ(OB_SUCCESS, append_type(buffer, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(buffer, 10));
for (int i = 0; i < 10; i++) {
append_poly(buffer, 10, 100, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(buffer));
ASSERT_EQ(OB_SUCCESS, append_type(buffer, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(buffer, 0));
ObString data = buffer.string();
ObWkbGeogCollection &gc = *reinterpret_cast<ObWkbGeogCollection*>(data.ptr());
ObIWkbGeogCollection iwkb_geog;
iwkb_geog.set_data(data);
ObGeoReverseCoordinateVisitor visitor;
ASSERT_EQ(OB_SUCCESS, iwkb_geog.do_visit(visitor));
ASSERT_EQ(7, gc.size());
ObWkbGeogCollection::iterator iter = gc.begin();
for (int i = 0; iter != gc.end(); ++iter, ++i) {
typename ObWkbGeogCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = gc.get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeogPoint* point = reinterpret_cast<const ObWkbGeogPoint*>(sub_ptr);
ASSERT_EQ(yv[0][0], point->get<0>());
ASSERT_EQ(xv[0][0], point->get<1>());
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeogLineString* line = reinterpret_cast<const ObWkbGeogLineString*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, line->size());
check_lines(*line, pc, yv[1], xv[1]);
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeogPolygon* poly = reinterpret_cast<const ObWkbGeogPolygon*>(sub_ptr);
uint32_t pc = 0;
check_lines(poly->exterior_ring(), pc, yv[2], xv[2]);
auto& inner_rings = poly->inner_rings();
ASSERT_EQ(99, inner_rings.size());
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, yv[2], xv[2]);
}
--riter;
pc -= 100;
for (; riter >= inner_rings.begin(); riter--, pc -= 100) {
uint32_t tpc = pc;
check_lines(*riter, tpc, yv[2], xv[2]);
}
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeogMultiPoint* mp = reinterpret_cast<const ObWkbGeogMultiPoint*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(100, mp->size());
check_lines(*mp, pc, yv[3], xv[3]);
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeogMultiLineString* ml = reinterpret_cast<const ObWkbGeogMultiLineString*>(sub_ptr);
ASSERT_EQ(1000, ml->size());
uint32_t pc = 0;
ObWkbGeogMultiLineString::iterator liter = ml->begin();
for (; liter != ml->end(); liter++) {
check_lines(*liter, pc, yv[4], xv[4]);
}
liter--;
pc -= 10;
for (; liter >= ml->begin(); liter--, pc -= 10) {
uint32_t tpc = pc;
check_lines(*liter, tpc, yv[4], xv[4]);
}
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeogMultiPolygon* mp = reinterpret_cast<const ObWkbGeogMultiPolygon*>(sub_ptr);
uint32_t pc = 0;
ASSERT_EQ(10, mp->size());
ObWkbGeogMultiPolygon::iterator mpiter = mp->begin();
for (; mpiter != mp->end(); ++mpiter) {
ASSERT_EQ(10, mpiter->size());
check_lines(mpiter->exterior_ring(), pc, yv[5], xv[5]);
auto& inner_rings = mpiter->inner_rings();
ASSERT_EQ(9, inner_rings.size());
ObWkbGeogPolygonInnerRings::iterator riter = inner_rings.begin();
for (; riter != inner_rings.end(); riter++) {
check_lines(*riter, pc, yv[5], xv[5]);
}
uint32_t rpc = pc;
--riter;
rpc -= 100;
for (; riter >= inner_rings.begin(); riter--, rpc -= 100) {
uint32_t tpc = rpc;
check_lines(*riter, tpc, yv[5], xv[5]);
}
}
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeogCollection* subgc = reinterpret_cast<const ObWkbGeogCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
}
void create_polygon(ObJsonBuffer &data, int lnum, int pnum, std::vector< std::pair<double, double> > &value)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, lnum));
int i = 0;
for (int l = 0; l < lnum; l++) {
ASSERT_EQ(OB_SUCCESS, append_uint32(data, pnum));
for (int p = 0; p < pnum; p++) {
ASSERT_EQ(OB_SUCCESS, append_double(data, value[i].first));
ASSERT_EQ(OB_SUCCESS, append_double(data, value[i].second));
i++;
}
}
}
TEST_F(TestGeoBin, geo_close_ring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// 1 exterior line 100 inner line, every line has 100 point
uint32_t pnum = 4;
uint32_t lnum = 2;
std::vector< std::pair<double, double> > val1;
val1.push_back(std::make_pair(1.0, 0.5));
val1.push_back(std::make_pair(3.0, 0.5));
val1.push_back(std::make_pair(3.0, 1.0));
val1.push_back(std::make_pair(1.0, 1.0));
val1.push_back(std::make_pair(1.0, 0.5));
val1.push_back(std::make_pair(3.0, 0.5));
val1.push_back(std::make_pair(3.0, 1.0));
val1.push_back(std::make_pair(1.0, 1.0));
create_polygon(data, lnum, pnum, val1);
ObWkbGeogPolygon& poly = *reinterpret_cast<ObWkbGeogPolygon*>(data.ptr());
ObIWkbGeogPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
std::cout << "poly: " << boost::geometry::dsv(poly) << std::endl;
ASSERT_EQ(OB_SUCCESS, ObGeoTypeUtil::geo_close_ring(iwkb_geog, allocator));
ObWkbGeogPolygon *res_poly = reinterpret_cast<ObWkbGeogPolygon*>(iwkb_geog.val());
std::cout << "after do close poly: " << boost::geometry::dsv(*res_poly) << std::endl;
ObJsonBuffer data1(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data1));
ASSERT_EQ(OB_SUCCESS, append_type(data1, ObGeoType::MULTIPOLYGON));
uint32_t polygon_num = 2;
ASSERT_EQ(OB_SUCCESS, append_uint32(data1, polygon_num));
for (uint32_t i = 0; i < polygon_num; i++) {
std::vector< std::pair<double, double> > val;
val.push_back(std::make_pair(0.0, 0.0 + 2 * i));
val.push_back(std::make_pair(2.0, 0.0 + 2 * i));
val.push_back(std::make_pair(2.0, 1.0 + 2 * i));
val.push_back(std::make_pair(0.0, 1.0 + 2 * i));
val.push_back(std::make_pair(0.0, 0.0 + 2 * i));
val.push_back(std::make_pair(2.0, 0.0 + 2 * i));
val.push_back(std::make_pair(2.0, 1.0 + 2 * i));
val.push_back(std::make_pair(0.0, 1.0 + 2 * i));
create_polygon(data1, 2, 4, val);
}
ObIWkbGeogMultiPolygon multi_poly;
multi_poly.set_data(data1.string());
const ObWkbGeogMultiPolygon *geo2 = reinterpret_cast<const ObWkbGeogMultiPolygon *>(multi_poly.val());
ASSERT_EQ(OB_SUCCESS, ObGeoTypeUtil::geo_close_ring(multi_poly, allocator));
std::cout << "after do close multipoly: " << multi_poly.size() << std::endl;
ObWkbGeogMultiPolygon *res_multipoly = reinterpret_cast<ObWkbGeogMultiPolygon*>(multi_poly.val());
std::cout << "after do close multipoly: " << boost::geometry::dsv(*res_multipoly) << std::endl;
}
TEST_F(TestGeoBin, collection_close_ring)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data, xv[0], yv[0]);
// line
append_line(data, 1, xv[1], yv[1]);
// polygon
append_poly(data, 2, 4, xv[2], yv[2]);
// multipoint
append_multi_point(data, 1, xv[3], yv[3]);
// multiline
append_multi_line(data, 1, 3, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 2));
for (int i = 0; i < 2; i++) {
append_poly(data, 2, 4, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 0));
ObIWkbGeogCollection iwkb_geog;
iwkb_geog.set_data(data.string());
const ObWkbGeogCollection *geo2 = reinterpret_cast<const ObWkbGeogCollection *>(iwkb_geog.val());
ObWkbGeogCollection::iterator iter = geo2->begin();
for (int i = 0; iter != geo2->end(); ++iter, ++i) {
typename ObWkbGeogCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = geo2->get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeogPoint* point = reinterpret_cast<const ObWkbGeogPoint*>(sub_ptr);
std::cout << "point: " << boost::geometry::dsv(*point) << std::endl;
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeogLineString* line = reinterpret_cast<const ObWkbGeogLineString*>(sub_ptr);
std::cout << "line: " << boost::geometry::dsv(*line) << std::endl;
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeogPolygon* poly = reinterpret_cast<const ObWkbGeogPolygon*>(sub_ptr);
std::cout << "poly: " << boost::geometry::dsv(*poly) << std::endl;
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeogMultiPoint* mp = reinterpret_cast<const ObWkbGeogMultiPoint*>(sub_ptr);
std::cout << "multipoint: " << boost::geometry::dsv(*mp) << std::endl;
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeogMultiLineString* ml = reinterpret_cast<const ObWkbGeogMultiLineString*>(sub_ptr);
std::cout << "multiline: " << boost::geometry::dsv(*ml) << std::endl;
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeogMultiPolygon* mp = reinterpret_cast<const ObWkbGeogMultiPolygon*>(sub_ptr);
std::cout << "multipoly: " << boost::geometry::dsv(*mp) << std::endl;
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeogCollection* subgc = reinterpret_cast<const ObWkbGeogCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
ASSERT_EQ(OB_SUCCESS, ObGeoTypeUtil::geo_close_ring(iwkb_geog, allocator));
geo2 = reinterpret_cast<const ObWkbGeogCollection *>(iwkb_geog.val());
iter = geo2->begin();
for (int i = 0; iter != geo2->end(); ++iter, ++i) {
typename ObWkbGeogCollection::const_pointer sub_ptr = iter.operator->();
ObGeoType sub_type = geo2->get_sub_type(sub_ptr);
ASSERT_EQ(i + 1, static_cast<int>(sub_type));
if (sub_type == ObGeoType::POINT) {
const ObWkbGeogPoint* point = reinterpret_cast<const ObWkbGeogPoint*>(sub_ptr);
std::cout << "point: " << boost::geometry::dsv(*point) << std::endl;
} else if (sub_type == ObGeoType::LINESTRING) {
const ObWkbGeogLineString* line = reinterpret_cast<const ObWkbGeogLineString*>(sub_ptr);
std::cout << "line: " << boost::geometry::dsv(*line) << std::endl;
} else if (sub_type == ObGeoType::POLYGON) {
const ObWkbGeogPolygon* poly = reinterpret_cast<const ObWkbGeogPolygon*>(sub_ptr);
std::cout << "poly: " << boost::geometry::dsv(*poly) << std::endl;
} else if (sub_type == ObGeoType::MULTIPOINT) {
const ObWkbGeogMultiPoint* mp = reinterpret_cast<const ObWkbGeogMultiPoint*>(sub_ptr);
std::cout << "multipoint: " << boost::geometry::dsv(*mp) << std::endl;
} else if (sub_type == ObGeoType::MULTILINESTRING) {
const ObWkbGeogMultiLineString* ml = reinterpret_cast<const ObWkbGeogMultiLineString*>(sub_ptr);
std::cout << "multiline: " << boost::geometry::dsv(*ml) << std::endl;
} else if (sub_type == ObGeoType::MULTIPOLYGON) {
const ObWkbGeogMultiPolygon* mp = reinterpret_cast<const ObWkbGeogMultiPolygon*>(sub_ptr);
std::cout << "multipoly: " << boost::geometry::dsv(*mp) << std::endl;
} else if (sub_type == ObGeoType::GEOMETRYCOLLECTION) {
const ObWkbGeogCollection* subgc = reinterpret_cast<const ObWkbGeogCollection*>(sub_ptr);
ASSERT_EQ(0, subgc->size());
ASSERT_EQ(subgc->begin(), subgc->end());
}
}
}
TEST_F(TestGeoBin, mbr_polygon_1)
{
ObSrsBoundsItem srsbound_max;
srsbound_max.minX_ = (double)-10000000;
srsbound_max.maxX_ = (double)10000000;
srsbound_max.minY_ = (double)-10000000;
srsbound_max.maxY_ = (double)10000000;
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// ------------------ test polygon
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 1));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 5));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)250000));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)2394090));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)355520));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)2394090));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)355520));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)2727385));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)250000));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)2727385));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)250000));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)2394090));
ObIWkbGeomPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ObGeometry *geo1 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog, geo1);
ObWkbGeomPolygon *mbr_polygon1 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo1->val()));
std::cout << "ob::poly" << boost::geometry::dsv(*mbr_polygon1) << std::endl;
// change point order invalid test
ObJsonBuffer data2(&allocator);
// ------------------ test invalid polygon
ASSERT_EQ(OB_SUCCESS, append_bo(data2));
ASSERT_EQ(OB_SUCCESS, append_type(data2, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data2, 1));
ASSERT_EQ(OB_SUCCESS, append_uint32(data2, 5));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)250000));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)2394090));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)355520));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)2394090));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)250000));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)2727385));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)355520));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)2727385));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)250000));
ASSERT_EQ(OB_SUCCESS, append_double(data2, (double)2394090));
ObIWkbGeomPolygon iwkb_geog2;
iwkb_geog2.set_data(data2.string());
ObGeometry *geo2 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog, geo2);
ObWkbGeomPolygon *mbr_polygon2 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo2->val()));
std::cout << "ob::invalid poly" << boost::geometry::dsv(*mbr_polygon2) << std::endl;
// line string test2
ObJsonBuffer data3b(&allocator);
// ------------------ test linestring
ASSERT_EQ(OB_SUCCESS, append_bo(data3b));
ASSERT_EQ(OB_SUCCESS, append_type(data3b, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data3b, 2));
ASSERT_EQ(OB_SUCCESS, append_double(data3b, (double)10));
ASSERT_EQ(OB_SUCCESS, append_double(data3b, (double)10));
ASSERT_EQ(OB_SUCCESS, append_double(data3b, (double)20));
ASSERT_EQ(OB_SUCCESS, append_double(data3b, (double)20));
ObIWkbGeomLineString iwkb_geog3b;
iwkb_geog3b.set_data(data3b.string());
ObGeometry *geo3b = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog3b, geo3b);
ObWkbGeomPolygon *mbr_polygon3b = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo3b->val()));
std::cout << "ob::linestring1" << boost::geometry::dsv(*mbr_polygon3b) << std::endl;
// line string test
ObJsonBuffer data3(&allocator);
// ------------------ test linestring
ASSERT_EQ(OB_SUCCESS, append_bo(data3));
ASSERT_EQ(OB_SUCCESS, append_type(data3, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(data3, 2));
ASSERT_EQ(OB_SUCCESS, append_double(data3, (double)10));
ASSERT_EQ(OB_SUCCESS, append_double(data3, (double)15));
ASSERT_EQ(OB_SUCCESS, append_double(data3, (double)20));
ASSERT_EQ(OB_SUCCESS, append_double(data3, (double)15));
ObIWkbGeomLineString iwkb_geog3;
iwkb_geog3.set_data(data3.string());
ObGeometry *geo3 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog3, geo3);
ASSERT_EQ(ObGeoType::LINESTRING, geo3->type());
ObWkbGeomLineString *mbr_polygon3 = reinterpret_cast<ObWkbGeomLineString *>(const_cast<char *>(geo3->val()));
std::cout << "ob::linestring2" << boost::geometry::dsv(*mbr_polygon3) << std::endl;
// test point
ObJsonBuffer data4(&allocator);
// ------------------ test point
ASSERT_EQ(OB_SUCCESS, append_bo(data4));
ASSERT_EQ(OB_SUCCESS, append_type(data4, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(data4, (double)-10));
ASSERT_EQ(OB_SUCCESS, append_double(data4, (double)-15));
ObIWkbGeomPoint iwkb_geog4;
iwkb_geog4.set_data(data4.string());
ObGeometry *geo4 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog4, geo4);
ASSERT_EQ(ObGeoType::POINT, geo4->type());
ObWkbGeomPoint *mbr_polygon4 = reinterpret_cast<ObWkbGeomPoint *>(const_cast<char *>(geo4->val()));
std::cout << "ob::point" << boost::geometry::dsv(*mbr_polygon4) << std::endl;
// test collection
ObJsonBuffer data5(&allocator);
// ------------------ test collection
ASSERT_EQ(OB_SUCCESS, append_bo(data5));
ASSERT_EQ(OB_SUCCESS, append_type(data5, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data5, 7));
common::ObVector<double> xv[7];
common::ObVector<double> yv[7];
// point
append_random_point(data5, xv[0], yv[0]);
// line
append_line(data5, 100, xv[1], yv[1]);
// polygon
append_poly(data5, 100, 100, xv[2], yv[2]);
// multipoint
append_multi_point(data5, 100, xv[3], yv[3]);
// multiline
append_multi_line(data5, 1000, 10, xv[4], yv[4]);
// multipolygon
ASSERT_EQ(OB_SUCCESS, append_bo(data5));
ASSERT_EQ(OB_SUCCESS, append_type(data5, ObGeoType::MULTIPOLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data5, 10));
for (int i = 0; i < 10; i++) {
append_poly(data5, 10, 100, xv[5], yv[5]);
}
// empty geometry
ASSERT_EQ(OB_SUCCESS, append_bo(data5));
ASSERT_EQ(OB_SUCCESS, append_type(data5, ObGeoType::GEOMETRYCOLLECTION));
ASSERT_EQ(OB_SUCCESS, append_uint32(data5, 0));
ObIWkbGeomCollection iwkb_geog5;
iwkb_geog5.set_data(data5.string());
ObGeometry *geo5 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog5, geo5);
ASSERT_EQ(ObGeoType::POLYGON, geo5->type());
ObWkbGeomPolygon *mbr_polygon5 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo5->val()));
std::cout << "ob::mpoly5" << boost::geometry::dsv(*mbr_polygon5) << std::endl;
}
static void test_geo_bin_make_rect(ObIAllocator &allocator, ObJsonBuffer &data, double minx, double maxx, double miny, double maxy)
{
ASSERT_EQ(OB_SUCCESS, append_bo(data));
ASSERT_EQ(OB_SUCCESS, append_type(data, ObGeoType::POLYGON));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 1));
ASSERT_EQ(OB_SUCCESS, append_uint32(data, 5));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)minx));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)miny));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)maxx));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)miny));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)maxx));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)maxy));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)minx));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)maxy));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)minx));
ASSERT_EQ(OB_SUCCESS, append_double(data, (double)miny));
}
TEST_F(TestGeoBin, mbr_polygon_2)
{
ObArenaAllocator allocator(ObModIds::TEST);
ObJsonBuffer data(&allocator);
// ------------------ test polygon
test_geo_bin_make_rect(allocator, data, (double)-1, (double)1, (double)-1, (double)1);
ObIWkbGeomPolygon iwkb_geog;
iwkb_geog.set_data(data.string());
ObSrsBoundsItem srsbound_max;
srsbound_max.minX_ = (double)0;
srsbound_max.maxX_ = (double)2;
srsbound_max.minY_ = (double)0;
srsbound_max.maxY_ = (double)2;
ObGeometry *geo1 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog, geo1);
ObWkbGeomPolygon *mbr_polygon1 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo1->val()));
std::cout << "ob::poly 1" << boost::geometry::dsv(*mbr_polygon1) << std::endl;
srsbound_max.minX_ = (double)-2;
srsbound_max.maxX_ = (double)0;
srsbound_max.minY_ = (double)0;
srsbound_max.maxY_ = (double)2;
ObGeometry *geo2 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog, geo2);
ObWkbGeomPolygon *mbr_polygon2 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo2->val()));
std::cout << "ob::poly 2" << boost::geometry::dsv(*mbr_polygon2) << std::endl;
srsbound_max.minX_ = (double)-2;
srsbound_max.maxX_ = (double)0;
srsbound_max.minY_ = (double)-2;
srsbound_max.maxY_ = (double)0;
ObGeometry *geo3 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog, geo3);
ObWkbGeomPolygon *mbr_polygon3 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo3->val()));
std::cout << "ob::poly 3" << boost::geometry::dsv(*mbr_polygon3) << std::endl;
srsbound_max.minX_ = (double)0;
srsbound_max.maxX_ = (double)2;
srsbound_max.minY_ = (double)-2;
srsbound_max.maxY_ = (double)0;
ObGeometry *geo4 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geog, geo4);
ObWkbGeomPolygon *mbr_polygon4 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geo4->val()));
std::cout << "ob::poly 4" << boost::geometry::dsv(*mbr_polygon4) << std::endl;
srsbound_max.minX_ = (double)-1;
srsbound_max.maxX_ = (double)1;
srsbound_max.minY_ = (double)-1;
srsbound_max.maxY_ = (double)1;
// ------------------ test linestring
ObJsonBuffer datal1(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(datal1));
ASSERT_EQ(OB_SUCCESS, append_type(datal1, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(datal1, 2));
ASSERT_EQ(OB_SUCCESS, append_double(datal1, (double)0));
ASSERT_EQ(OB_SUCCESS, append_double(datal1, (double)-2));
ASSERT_EQ(OB_SUCCESS, append_double(datal1, (double)0));
ASSERT_EQ(OB_SUCCESS, append_double(datal1, (double)2));
ObIWkbGeomLineString iwkb_geogl1;
iwkb_geogl1.set_data(datal1.string());
ObGeometry *geol1 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geogl1, geol1);
ASSERT_EQ(ObGeoType::LINESTRING, geol1->type());
ObWkbGeomLineString *mbr_polygonl1 = reinterpret_cast<ObWkbGeomLineString *>(const_cast<char *>(geol1->val()));
std::cout << "ob::linestring1" << boost::geometry::dsv(*mbr_polygonl1) << std::endl;
ObJsonBuffer datal2(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(datal2));
ASSERT_EQ(OB_SUCCESS, append_type(datal2, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(datal2, 2));
ASSERT_EQ(OB_SUCCESS, append_double(datal2, (double)-2));
ASSERT_EQ(OB_SUCCESS, append_double(datal2, (double)0));
ASSERT_EQ(OB_SUCCESS, append_double(datal2, (double)2));
ASSERT_EQ(OB_SUCCESS, append_double(datal2, (double)0));
ObIWkbGeomLineString iwkb_geogl2;
iwkb_geogl2.set_data(datal2.string());
ObGeometry *geol2 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geogl2, geol2);
ASSERT_EQ(ObGeoType::LINESTRING, geol2->type());
ObWkbGeomLineString *mbr_polygonl2 = reinterpret_cast<ObWkbGeomLineString *>(const_cast<char *>(geol2->val()));
std::cout << "ob::linestring2" << boost::geometry::dsv(*mbr_polygonl2) << std::endl;
ObJsonBuffer datal3(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(datal3));
ASSERT_EQ(OB_SUCCESS, append_type(datal3, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(datal3, 2));
ASSERT_EQ(OB_SUCCESS, append_double(datal3, (double)-10));
ASSERT_EQ(OB_SUCCESS, append_double(datal3, (double)-10));
ASSERT_EQ(OB_SUCCESS, append_double(datal3, (double)10));
ASSERT_EQ(OB_SUCCESS, append_double(datal3, (double)10));
ObIWkbGeomLineString iwkb_geogl3;
iwkb_geogl3.set_data(datal3.string());
ObGeometry *geol3 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geogl3, geol3);
ASSERT_EQ(ObGeoType::POLYGON, geol3->type());
ObWkbGeomPolygon *mbr_polygonl3 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geol3->val()));
std::cout << "ob::linestring3(poly)" << boost::geometry::dsv(*mbr_polygonl3) << std::endl;
ObJsonBuffer datal4(&allocator);
ASSERT_EQ(OB_SUCCESS, append_bo(datal4));
ASSERT_EQ(OB_SUCCESS, append_type(datal4, ObGeoType::LINESTRING));
ASSERT_EQ(OB_SUCCESS, append_uint32(datal4, 2));
ASSERT_EQ(OB_SUCCESS, append_double(datal4, (double)-2));
ASSERT_EQ(OB_SUCCESS, append_double(datal4, (double)1));
ASSERT_EQ(OB_SUCCESS, append_double(datal4, (double)2));
ASSERT_EQ(OB_SUCCESS, append_double(datal4, (double)1));
ObIWkbGeomLineString iwkb_geogl4;
iwkb_geogl4.set_data(datal4.string());
ObGeometry *geol4 = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geogl4, geol4);
ASSERT_EQ(ObGeoType::POLYGON, geol4->type());
ObWkbGeomPolygon *mbr_polygonl4 = reinterpret_cast<ObWkbGeomPolygon *>(const_cast<char *>(geol4->val()));
std::cout << "ob::linestring5(poly)" << boost::geometry::dsv(*mbr_polygonl4) << std::endl;
srsbound_max.minX_ = (double)0;
srsbound_max.maxX_ = (double)2;
srsbound_max.minY_ = (double)0;
srsbound_max.maxY_ = (double)2;
ObJsonBuffer datap(&allocator);
// ------------------ test point1
ASSERT_EQ(OB_SUCCESS, append_bo(datap));
ASSERT_EQ(OB_SUCCESS, append_type(datap, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(datap, (double)1));
ASSERT_EQ(OB_SUCCESS, append_double(datap, (double)1));
ObIWkbGeomPoint iwkb_geogp;
iwkb_geogp.set_data(datap.string());
ObGeometry *geop = NULL;
ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geogp, geop);
ASSERT_EQ(ObGeoType::POINT, geop->type());
ObWkbGeomPoint *mbr_polygonp = reinterpret_cast<ObWkbGeomPoint *>(const_cast<char *>(geop->val()));
std::cout << "ob::point1" << boost::geometry::dsv(*mbr_polygonp) << std::endl;
ObJsonBuffer datap2(&allocator);
// ------------------ test point2
ASSERT_EQ(OB_SUCCESS, append_bo(datap2));
ASSERT_EQ(OB_SUCCESS, append_type(datap2, ObGeoType::POINT));
ASSERT_EQ(OB_SUCCESS, append_double(datap2, (double)-1));
ASSERT_EQ(OB_SUCCESS, append_double(datap2, (double)-1));
ObIWkbGeomPoint iwkb_geogp2;
iwkb_geogp2.set_data(datap2.string());
ObGeometry *geop2 = NULL;
ASSERT_EQ(ObGeoTypeUtil::get_mbr_polygon(allocator, &srsbound_max, iwkb_geogp2, geop2), OB_EMPTY_RESULT);
}
} // namespace common
} // namespace oceanbase
int main(int argc, char** argv)
{
::testing::InitGoogleTest(&argc, argv);
// system("rm -f test_geo_bin.log");
// OB_LOGGER.set_file_name("test_geo_bin.log");
// OB_LOGGER.set_log_level("INFO");
return RUN_ALL_TESTS();
}