148 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/bin/env python
 | 
						|
__author__ = 'dongyun.zdy'
 | 
						|
 | 
						|
 | 
						|
import math
 | 
						|
import numpy as np
 | 
						|
from scipy.optimize import leastsq
 | 
						|
from scipy.optimize import curve_fit
 | 
						|
import sys
 | 
						|
from lmfit import Model
 | 
						|
import getopt
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def nl_model_form(args,
 | 
						|
                  Tstartup,
 | 
						|
                  #Tqual,
 | 
						|
                  Tres,
 | 
						|
                  Tfail,
 | 
						|
                  Tleft_row,
 | 
						|
                  Tright_row
 | 
						|
                  ):
 | 
						|
    (
 | 
						|
        Nrow_res,
 | 
						|
        Nrow_left,
 | 
						|
        Nrow_right,
 | 
						|
        Nright_cache_in,
 | 
						|
        Nright_cache_out,
 | 
						|
        Nright_cache_clear,
 | 
						|
        Nequal_cond
 | 
						|
    ) = args
 | 
						|
 | 
						|
    total_cost = Tstartup
 | 
						|
    total_cost += Nrow_res * Tres
 | 
						|
    #total_cost += Nequal_cond * Tqual
 | 
						|
    total_cost += (Nequal_cond - Nrow_res) * Tfail
 | 
						|
    total_cost += Nrow_left * Tleft_row
 | 
						|
    total_cost += Nrow_right * Tright_row
 | 
						|
 | 
						|
    return total_cost
 | 
						|
 | 
						|
eval_count = 0
 | 
						|
 | 
						|
def nl_model_arr(arg_sets,
 | 
						|
                 Tstartup,
 | 
						|
                 #Tqual,
 | 
						|
                 Tres,
 | 
						|
                 Tfail,
 | 
						|
                 Tleft_row,
 | 
						|
                 Tright_row
 | 
						|
                 ):
 | 
						|
    res = [nl_model_form(single_arg_set,
 | 
						|
                         Tstartup,
 | 
						|
                         #Tqual,
 | 
						|
                         Tres,
 | 
						|
                         Tfail,
 | 
						|
                         Tleft_row,
 | 
						|
                         Tright_row
 | 
						|
                         ) for single_arg_set in arg_sets]
 | 
						|
    global eval_count
 | 
						|
    eval_count += 1
 | 
						|
    return np.array(res)
 | 
						|
 | 
						|
 | 
						|
nl_model = Model(nl_model_arr)
 | 
						|
nl_model.set_param_hint("Tstartup", min=0.0, max = 50)
 | 
						|
#nl_model.set_param_hint("Tqual", min=0.0)
 | 
						|
nl_model.set_param_hint("Tres", min=0.0)
 | 
						|
nl_model.set_param_hint("Tfail", min=0.0)
 | 
						|
nl_model.set_param_hint("Tleft_row", min=0.0)
 | 
						|
nl_model.set_param_hint("Tright_row", min=0.0)
 | 
						|
 | 
						|
 | 
						|
def extract_info_from_line(line):
 | 
						|
    splited = line.split(",")
 | 
						|
    line_info = []
 | 
						|
    for item in splited:
 | 
						|
        line_info.append(float(item))
 | 
						|
    return line_info
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    file_name = "scan_model.res.formal.prep"
 | 
						|
    out_file_name = "scan_model.fit"
 | 
						|
 | 
						|
    sys.argv.extend("-i nl.prep -o nl.model".split(" "))
 | 
						|
 | 
						|
    output_fit_res = False
 | 
						|
    wrong_arg = False
 | 
						|
    opts,args = getopt.getopt(sys.argv[1:],"i:o:")
 | 
						|
    for op, value in opts:
 | 
						|
        if "-i" == op:
 | 
						|
            file_name = value
 | 
						|
        elif "-o" == op:
 | 
						|
            output_fit_res = True
 | 
						|
            out_file_name = value
 | 
						|
        else:
 | 
						|
            wrong_arg = True
 | 
						|
 | 
						|
    if wrong_arg:
 | 
						|
        print "wrong arg"
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    file = open(file_name, "r")
 | 
						|
    arg_sets = []
 | 
						|
    times = []
 | 
						|
    case_params = []
 | 
						|
    for line in file:
 | 
						|
        case_param = extract_info_from_line(line)
 | 
						|
        case_params.append(case_param)
 | 
						|
        arg_sets.append((case_param[6],     #Nrow_res
 | 
						|
                         case_param[0],     #Nrow_left
 | 
						|
                         case_param[1],     #Nrow_right
 | 
						|
                         case_param[-3],    #Nright_cache_in
 | 
						|
                         case_param[-2],    #Nright_cache_out
 | 
						|
                         case_param[-1],    #Nright_cache_clear
 | 
						|
                         case_param[8]      #Nequal_cond
 | 
						|
                         ))
 | 
						|
        times.append(case_param[7])
 | 
						|
    file.close()
 | 
						|
    arg_sets_np = np.array(arg_sets)
 | 
						|
    times_np = np.array(times)
 | 
						|
    #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | 
						|
    result = nl_model.fit(times_np, arg_sets=arg_sets_np,
 | 
						|
                             Tstartup=50.0,
 | 
						|
                             #Tqual=0.1,
 | 
						|
                             Tres=0.3,
 | 
						|
                             Tfail=0.3,
 | 
						|
                             Tleft_row=0.3,
 | 
						|
                             Tright_row=0.3
 | 
						|
                            )
 | 
						|
 | 
						|
 | 
						|
    res_line = str(result.best_values["Tstartup"]) + ","
 | 
						|
    #res_line += str(result.best_values["Tqual"]) + ","
 | 
						|
    res_line += str(result.best_values["Tres"]) + ","
 | 
						|
    res_line += str(result.best_values["Tfail"]) + ","
 | 
						|
    res_line += str(result.best_values["Tleft_row"]) + ","
 | 
						|
    res_line += str(result.best_values["Tright_row"])
 | 
						|
 | 
						|
 | 
						|
    print result.fit_report()
 | 
						|
 | 
						|
    if output_fit_res:
 | 
						|
        out_file = open(out_file_name, "w")
 | 
						|
        out_file.write(res_line)
 | 
						|
        out_file.close()
 |