Files
oceanbase/deps/oblib/unittest/lib/container/test_concurrent_bitset.cpp
wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

480 lines
15 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <gtest/gtest.h>
#include "lib/container/ob_concurrent_bitset.h"
#include "lib/random/ob_random.h"
#include "lib/atomic/ob_atomic.h"
using namespace oceanbase::common;
class TestConcurrentBitset : public ::testing::Test
{
public:
virtual void SetUp()
{
}
virtual void TearDown()
{
}
template<typename bitset_type>
void test_set(bitset_type &bitset);
template<typename bitset_type>
void test_reset(bitset_type &bitset);
template<typename bitset_type>
void test_concurrent(bitset_type &bitset);
template<typename bitset_type>
void test_concurrent_set_if_not_exist(bitset_type &bitset);
template<typename bitset_type>
void test_set_if_not_exist(bitset_type &bitset);
template<typename bitset_type>
void test_set_find_first_zero_bit_no_reset(bitset_type &bitset);
template<typename bitset_type>
void test_set_find_first_zero_bit_with_reset(bitset_type &bitset);
template<typename bitset_type>
void concurrent_set_find_first_zero_bit_without_reset(bitset_type &bitset);
template<typename bitset_type>
void concurrent_set_find_first_zero_bit_with_reset(bitset_type &bitset);
template<typename bitset_type>
void concurrent_set_find_first_zero_bit(bitset_type &bitset);
protected:
ObConcurrentBitset<UINT16_MAX> bitset_;
ObConcurrentBitset<UINT16_MAX, true> bitset_lock_;
};
template<typename bitset_type>
void TestConcurrentBitset::test_set(bitset_type &bitset)
{
const uint64_t test_count = 10000;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset.set(i));
}
bool is_exist = false;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset.test(i, is_exist));
EXPECT_EQ(true, is_exist);
}
}
TEST_F(TestConcurrentBitset, test_set)
{
test_set(bitset_);
test_set(bitset_lock_);
}
template<typename bitset_type>
void TestConcurrentBitset::test_reset(bitset_type &bitset)
{
const uint64_t test_count = 10000;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset.set(i));
}
bool is_exist = false;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset.test(i, is_exist));
EXPECT_EQ(true, is_exist);
EXPECT_EQ(OB_SUCCESS, bitset.reset(i));
}
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset.test(i, is_exist));
EXPECT_EQ(true, false == is_exist);
}
}
TEST_F(TestConcurrentBitset, test_reset)
{
test_reset(bitset_);
test_reset(bitset_lock_);
}
template<typename bitset_type>
void TestConcurrentBitset::test_set_if_not_exist(bitset_type &bitset)
{
const uint64_t test_count = 10000;
for (uint64_t i = 0; i < test_count; ++i) {
if (i % 2) {
EXPECT_EQ(OB_SUCCESS, bitset.set(i));
}
}
for (uint64_t i = 0; i < test_count; ++i) {
if (i % 2) {
EXPECT_EQ(OB_ENTRY_EXIST, bitset.set_if_not_exist(i));
} else {
EXPECT_EQ(OB_SUCCESS, bitset.set_if_not_exist(i));
}
}
bool is_exist = false;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset.test(i, is_exist));
EXPECT_EQ(true, is_exist);
}
}
TEST_F(TestConcurrentBitset, test_set_if_not_exist)
{
test_set_if_not_exist(bitset_);
test_set_if_not_exist(bitset_lock_);
}
static uint16_t base_sessid = 0;
void *thread_func_test_bitset(void *args)
{
const uint test_count = 1000;
uint16_t id_array[test_count];
ObConcurrentBitset<UINT16_MAX> *bitset = static_cast<ObConcurrentBitset<UINT16_MAX> *>(args);
for (uint64_t i = 0; i < test_count; ++i) {
id_array[i] = static_cast<uint16_t>(ATOMIC_AAF(&base_sessid, 1));
EXPECT_EQ(OB_SUCCESS, bitset->set(id_array[i]));
}
bool is_exist = false;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset->test(id_array[i], is_exist));
EXPECT_EQ(true, is_exist);
EXPECT_EQ(OB_SUCCESS, bitset->reset(id_array[i]));
}
for (uint64_t i = 0; i < test_count; ++i) {
OB_ASSERT(false == bitset->reset(id_array[i]));
}
return NULL;
}
template<typename bitset_type>
void TestConcurrentBitset::test_concurrent(bitset_type &bitset)
{
const uint64_t THREAD_NUM = 64;
pthread_t thread_create_arr[THREAD_NUM];
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
OB_ASSERT(0 == pthread_create(&thread_create_arr[i], NULL, thread_func_test_bitset, &bitset));
}
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
OB_ASSERT(0 == pthread_join(thread_create_arr[i], NULL));
}
}
TEST_F(TestConcurrentBitset, concurrent)
{
base_sessid = 0;
test_concurrent(bitset_);
base_sessid = 0;
test_concurrent(bitset_lock_);
}
void *thread_func_test_set_if_not_exist(void *args)
{
const uint test_count = 1000;
uint16_t id_array[test_count];
ObConcurrentBitset<UINT16_MAX> *bitset = static_cast<ObConcurrentBitset<UINT16_MAX> *>(args);
for (uint64_t i = 0; i < test_count; ++i) {
int ret = OB_SUCCESS;
id_array[i] = static_cast<uint16_t>(ATOMIC_AAF(&base_sessid, 1));
ret = bitset->set_if_not_exist(id_array[i]);
(void) ret;
}
bool is_exist = false;
for (uint64_t i = 0; i < test_count; ++i) {
EXPECT_EQ(OB_SUCCESS, bitset->test(id_array[i], is_exist));
EXPECT_EQ(true, is_exist);
EXPECT_EQ(OB_SUCCESS, bitset->reset(id_array[i]));
}
for (uint64_t i = 0; i < test_count; ++i) {
OB_ASSERT(false == bitset->reset(id_array[i]));
}
return NULL;
}
template<typename bitset_type>
void TestConcurrentBitset::test_concurrent_set_if_not_exist(bitset_type &bitset)
{
const uint64_t THREAD_NUM = 64;
pthread_t thread_create_arr[THREAD_NUM];
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
OB_ASSERT(0 == pthread_create(&thread_create_arr[i], NULL, thread_func_test_set_if_not_exist, &bitset));
}
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
OB_ASSERT(0 == pthread_join(thread_create_arr[i], NULL));
}
}
TEST_F(TestConcurrentBitset, concurrent_set_if_not_exist)
{
base_sessid = 0;
test_concurrent_set_if_not_exist(bitset_);
base_sessid = 0;
test_concurrent_set_if_not_exist(bitset_lock_);
}
/**********************find zero pos test case************************************/
template<typename bitset_type>
void TestConcurrentBitset::test_set_find_first_zero_bit_no_reset(bitset_type &bitset)
{
const uint64_t test_count = UINT16_MAX;
uint64_t value = 0;
// start_pos starts from 0, increasing value is right.
bitset.set_start_pos(0);
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ(i, value);
}
EXPECT_EQ(OB_ENTRY_NOT_EXIST, bitset.find_and_set_first_zero(value));
//clear bitset
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.reset(i));
}
//start_pos starts from UINT16_MAX, increasing value is right.
bitset.set_start_pos(UINT16_MAX);
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ((i + UINT16_MAX) % (UINT16_MAX + 1), value);
}
EXPECT_EQ(OB_ENTRY_NOT_EXIST, bitset.find_and_set_first_zero(value));
}
TEST_F(TestConcurrentBitset, test_set_find_first_zero_bit_no_reset)
{
test_set_find_first_zero_bit_no_reset(bitset_);
test_set_find_first_zero_bit_no_reset(bitset_lock_);
}
template<typename bitset_type>
void TestConcurrentBitset::test_set_find_first_zero_bit_with_reset(bitset_type &bitset)
{
const uint64_t test_count = UINT16_MAX;
uint64_t value = 0;
// start_pos starts from 0, increasing value is right.
bitset.set_start_pos(0);
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ(OB_SUCCESS, bitset.reset(value));
EXPECT_EQ(i, value);
}
// start_pos starts from UINT16_MAX, increasing value is right.
bitset.set_start_pos(UINT16_MAX);
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ(OB_SUCCESS, bitset.reset(value));
EXPECT_EQ((i + UINT16_MAX) % (UINT16_MAX + 1), value);
}
}
// in single thread mode, value should increase when set and reset is continuous.
TEST_F(TestConcurrentBitset, test_set_find_first_zero_bit_with_reset)
{
test_set_find_first_zero_bit_with_reset(bitset_);
test_set_find_first_zero_bit_with_reset(bitset_lock_);
}
void *thread_func_find_first_bit_set_without_reset(void *args)
{
ObConcurrentBitset<UINT16_MAX> *bitset = static_cast<ObConcurrentBitset<UINT16_MAX> *>(args);
const uint64_t test_count = 1000;
uint64_t value = 0;
for (uint64_t i = 0; i < test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset->find_and_set_first_zero(value));
}
return NULL;
}
template<typename bitset_type>
void TestConcurrentBitset::concurrent_set_find_first_zero_bit_without_reset(bitset_type &bitset)
{
// test of parallel execution:
// 64 threads, every threads get 1000 values.
// after 64 threads end, value should start from 64000.
// verify the correctness of value from 64000, until 65000 and return OB_ENTRY_NOT_EXIST
const uint64_t THREAD_NUM = 64;
pthread_t thread_create_arr[THREAD_NUM];
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
EXPECT_EQ(0, pthread_create(&thread_create_arr[i], NULL, thread_func_find_first_bit_set_without_reset, &bitset));
}
const uint64_t test_count = UINT16_MAX - THREAD_NUM * 1000;
uint64_t value = 0;
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
OB_ASSERT(0 == pthread_join(thread_create_arr[i], NULL));
}
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ(i + THREAD_NUM * 1000, value);
}
EXPECT_EQ(OB_ENTRY_NOT_EXIST, bitset.find_and_set_first_zero(value));
}
TEST_F(TestConcurrentBitset, concurrent_set_find_first_zero_bit_without_reset)
{
concurrent_set_find_first_zero_bit_without_reset(bitset_);
concurrent_set_find_first_zero_bit_without_reset(bitset_lock_);
}
void *thread_func_find_first_bit_set_with_reset(void *args)
{
ObConcurrentBitset<UINT16_MAX> *bitset = static_cast<ObConcurrentBitset<UINT16_MAX> *>(args);
const uint64_t test_count = 1000;
uint64_t value = 0;
for (uint64_t i = 0; i < test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset->find_and_set_first_zero(value));
EXPECT_EQ(OB_SUCCESS, bitset->reset(value));
}
return NULL;
}
template<typename bitset_type>
void TestConcurrentBitset::concurrent_set_find_first_zero_bit_with_reset(bitset_type &bitset)
{
// test of parallel execution:
// 64 threads, every threads get 1000 values.
// after 64 threads end, value should start from 64000.
const uint64_t THREAD_NUM = 64;
pthread_t thread_create_arr[THREAD_NUM];
//start_pos starts from UINT16_MAX, increasing value is right.
bitset.set_start_pos(UINT16_MAX);
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
EXPECT_EQ(0, pthread_create(&thread_create_arr[i], NULL, thread_func_find_first_bit_set_with_reset, &bitset));
}
const uint64_t test_count = UINT16_MAX - THREAD_NUM * 1000;
uint64_t value = 0;
for (uint64_t i = 0; i < THREAD_NUM; ++i) {
OB_ASSERT(0 == pthread_join(thread_create_arr[i], NULL));
}
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ(i + THREAD_NUM * 1000 - 1, value);
}
}
TEST_F(TestConcurrentBitset, concurrent_set_find_first_zero_bit_with_reset)
{
concurrent_set_find_first_zero_bit_with_reset(bitset_);
concurrent_set_find_first_zero_bit_with_reset(bitset_lock_);
}
template<typename bitset_type>
void TestConcurrentBitset::concurrent_set_find_first_zero_bit(bitset_type &bitset)
{
// test of parallel execution:
// 64 threads, every threads get 1000 values.
// after 64 threads end, value should start from 64000.
const uint64_t THREAD_NUM = 64;
pthread_t thread_create_arr_1[THREAD_NUM];
pthread_t thread_create_arr_2[THREAD_NUM];
//start_pos starts from UINT16_MAX, increasing value is right.8
bitset.set_start_pos(UINT16_MAX);
for (uint64_t i = 0; i < THREAD_NUM / 2; ++i) {
EXPECT_EQ(0, pthread_create(&thread_create_arr_1[i], NULL, thread_func_find_first_bit_set_with_reset, &bitset));
EXPECT_EQ(0, pthread_create(&thread_create_arr_2[i], NULL, thread_func_find_first_bit_set_without_reset, &bitset));
}
const uint64_t test_count = UINT16_MAX - THREAD_NUM * 1000;
uint64_t value = 0;
for (uint64_t i = 0; i < THREAD_NUM / 2; ++i) {
OB_ASSERT(0 == pthread_join(thread_create_arr_1[i], NULL));
OB_ASSERT(0 == pthread_join(thread_create_arr_2[i], NULL));
}
for (uint64_t i = 0; i <= test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset.find_and_set_first_zero(value));
EXPECT_EQ(i + THREAD_NUM * 1000 - 1, value);
}
}
TEST_F(TestConcurrentBitset, concurrent_set_find_first_zero_bit)
{
concurrent_set_find_first_zero_bit(bitset_);
concurrent_set_find_first_zero_bit(bitset_lock_);
}
// find zero bit test
// after finding bit A, the next finding start from the position of A+1.
// 1. set first 64bit.
// 2. set start_pos_ = 0, and find_and_set_first_zero.
// 3. judge the correctness of zero bit found.
TEST_F(TestConcurrentBitset, test_increment)
{
uint64_t value = 0;
for (uint64_t i = 0; i < 64; i++) {
EXPECT_EQ(OB_SUCCESS, bitset_lock_.set(i));
}
for (uint64_t i = 0; i < 64; i++) {
EXPECT_EQ(OB_SUCCESS, bitset_lock_.find_and_set_first_zero(value));
EXPECT_EQ(i + 64, value);
EXPECT_EQ(OB_SUCCESS, bitset_lock_.reset(value));
}
}
TEST_F(TestConcurrentBitset, test_only_one_zero)
{
uint64_t value = 0;
const uint64_t test_count = UINT16_MAX;
bitset_lock_.set_start_pos(256);
for (uint64_t i = 0; i < test_count; i++) {
EXPECT_EQ(OB_SUCCESS, bitset_lock_.find_and_set_first_zero(value));
}
for (uint64_t i = 0; i < 100; i++) {
EXPECT_EQ(OB_SUCCESS, bitset_lock_.find_and_set_first_zero(value));
EXPECT_EQ(OB_SUCCESS, bitset_lock_.reset(value));
EXPECT_EQ(255, value);
}
}
// void *thread_func_only(void *args)
// {
// ObConcurrentBitset<UINT16_MAX> *bitset = static_cast<ObConcurrentBitset<UINT16_MAX> *>(args);
// uint64_t value = 0;
// EXPECT_EQ(OB_SUCCESS, bitset->find_and_set_first_zero(value));
// return NULL;
// }
// TEST_F(TestConcurrentBitset, DISABLED_test_only_one_zero2)
// {
// uint64_t value = 0;
// const uint64_t test_count = UINT16_MAX;
// pthread_t thread_create_arr[test_count];
// bitset_lock_.set_start_pos(256);
// for (uint64_t i = 0; i < test_count; i++) {
// EXPECT_EQ(0, pthread_create(&thread_create_arr[i], NULL, thread_func_only, &bitset_lock_));
// }
// for (uint64_t i = 0; i < 100; i++) {
// EXPECT_EQ(OB_SUCCESS, bitset_lock_.find_and_set_first_zero(value));
// EXPECT_EQ(OB_SUCCESS, bitset_lock_.reset(value));
// EXPECT_EQ(255, value);
// }
// for (uint64_t i = 0; i < test_count; i++) {
// EXPECT_EQ(0, pthread_join(thread_create_arr[i], NULL));
// }
// }
int main(int argc, char *argv[])
{
srand((unsigned)time(NULL));
OB_LOGGER.set_log_level("ERROR");
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}