133 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
from mylog.mylog import MyLogger
 | 
						|
from op_generator import op_generator
 | 
						|
from cost_test_conf import Config
 | 
						|
import subprocess as sp
 | 
						|
import os
 | 
						|
from lmfit import Model
 | 
						|
import numpy as np
 | 
						|
 | 
						|
# step 1 gen op and conf
 | 
						|
material_cls = op_generator.gen_operator("material")
 | 
						|
conf = Config()
 | 
						|
conf.u_to_test_op_c = 'material'
 | 
						|
conf.is_not_running_as_unittest_c = True
 | 
						|
conf.schema_file_c = 'c10k1.schema'
 | 
						|
conf.row_count_c = 1000
 | 
						|
conf.input_projector_count_c = 1
 | 
						|
 | 
						|
material_op = material_cls(conf)
 | 
						|
result_file_name = 'material_result'
 | 
						|
if os.path.exists(result_file_name):
 | 
						|
    os.remove(result_file_name)
 | 
						|
 | 
						|
# step 2 do_bench and gen data
 | 
						|
row_count_max = 1001
 | 
						|
row_count_step = 100
 | 
						|
 | 
						|
column_counts = [3, 5, 8]
 | 
						|
 | 
						|
case_run_time = 7
 | 
						|
 | 
						|
total_case_count = (row_count_max / row_count_step + 1) * len(column_counts) * case_run_time
 | 
						|
case_count = 0
 | 
						|
 | 
						|
print "Total case count %s ..." % (total_case_count)
 | 
						|
for row_count in xrange(1, row_count_max + 1, row_count_step):
 | 
						|
    for column_count in column_counts:
 | 
						|
        for time in xrange(case_run_time):
 | 
						|
            case_count += 1
 | 
						|
            material_op.conf.row_count_c = row_count
 | 
						|
            material_op.conf.input_projector_count_c = column_count
 | 
						|
            sp.check_call("echo -n '%s,' >> %s" % (row_count, result_file_name), shell=True)
 | 
						|
            sp.check_call("echo -n '%s,' >> %s" % (column_count, result_file_name), shell=True)
 | 
						|
            print "Running case %s / %s ... : %s " % (case_count, total_case_count, material_op.get_bench_cmd())
 | 
						|
            print "%s >> %s" % (material_op.get_bench_cmd(), result_file_name)
 | 
						|
            sp.check_call("%s >> %s" % (material_op.get_bench_cmd(), result_file_name), shell=True)
 | 
						|
 | 
						|
# step 3 preprocess data
 | 
						|
final_file_name = "material_result_final"
 | 
						|
if os.path.exists("material_final_result"):
 | 
						|
    os.remove("material_final_result")
 | 
						|
data_cmd = material_op.get_data_preprocess_cmd()
 | 
						|
sp.check_call(data_cmd, shell=True)
 | 
						|
 | 
						|
# step 4 fit and output
 | 
						|
# given model form, do fit using previous result data
 | 
						|
# case param should be considered with cost_model_util.cpp output format
 | 
						|
# eg: material_test() in cost_model_util.cpp
 | 
						|
#     output row_count, cost_time
 | 
						|
out_model_file_name = "material_model"
 | 
						|
if os.path.exists(out_model_file_name):
 | 
						|
    os.remove(out_model_file_name)
 | 
						|
 | 
						|
 | 
						|
def material_model_form(args,
 | 
						|
                        # Tstartup,
 | 
						|
                        Trow_once,
 | 
						|
                        Trow_col):
 | 
						|
    (
 | 
						|
        Nrow,
 | 
						|
        Ncol,
 | 
						|
    ) = args
 | 
						|
 | 
						|
    total_cost = 0  # Tstartup
 | 
						|
    total_cost += Nrow * (Trow_once + Ncol * Trow_col)
 | 
						|
    return total_cost
 | 
						|
 | 
						|
 | 
						|
def material_model_arr(arg_sets,
 | 
						|
                       # Tstartup,
 | 
						|
                       Trow_once,
 | 
						|
                       Trow_col):
 | 
						|
    res = []
 | 
						|
    for single_arg_set in arg_sets:
 | 
						|
        res.append(material_model_form(single_arg_set,
 | 
						|
                                       # Tstartup,
 | 
						|
                                       Trow_once,
 | 
						|
                                       Trow_col))
 | 
						|
    return np.array(res)
 | 
						|
 | 
						|
 | 
						|
def extract_info_from_line(line):
 | 
						|
    splited = line.split(",")
 | 
						|
    line_info = []
 | 
						|
    for item in splited:
 | 
						|
        line_info.append(float(item))
 | 
						|
    return line_info
 | 
						|
 | 
						|
 | 
						|
material_model = Model(material_model_arr)
 | 
						|
material_model.set_param_hint("Trow_once", min=0.0)
 | 
						|
material_model.set_param_hint("Trow_col", min=0.0)
 | 
						|
file = open(final_file_name, "r")
 | 
						|
arg_sets = []
 | 
						|
times = []
 | 
						|
case_params = []
 | 
						|
for line in file:
 | 
						|
    if line.startswith('#'):
 | 
						|
        continue
 | 
						|
    case_param = extract_info_from_line(line)
 | 
						|
    case_params.append(case_param)
 | 
						|
    arg_sets.append((case_param[0], case_param[1]))
 | 
						|
    times.append(case_param[3])
 | 
						|
file.close()
 | 
						|
arg_sets_np = np.array(arg_sets)
 | 
						|
times_np = np.array(times)
 | 
						|
# result is the fitting result model
 | 
						|
result = material_model.fit(times_np, arg_sets=arg_sets_np,
 | 
						|
                            # Tstartup=10.0,
 | 
						|
                            Trow_once=10.0,
 | 
						|
                            Trow_col=1.0
 | 
						|
                            )
 | 
						|
 | 
						|
# res_line = str(result.best_values["Tstartup"]) + ","
 | 
						|
res_line = str(result.best_values["Trow_once"]) + ","
 | 
						|
res_line += str(result.best_values["Trow_col"])
 | 
						|
 | 
						|
print result.fit_report()
 | 
						|
 | 
						|
if out_model_file_name:
 | 
						|
    out_file = open(out_model_file_name, "w")
 | 
						|
    out_file.write(res_line)
 | 
						|
    out_file.close()
 |