177 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/bin/env python
 | 
						|
__author__ = 'dongyun.zdy'
 | 
						|
 | 
						|
 | 
						|
import math
 | 
						|
import numpy as np
 | 
						|
from scipy.optimize import leastsq
 | 
						|
from scipy.optimize import curve_fit
 | 
						|
import sys
 | 
						|
from lmfit import Model
 | 
						|
import getopt
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def scan_io_model_form(args,
 | 
						|
                       #Tstartup,
 | 
						|
                       # Trow_once,
 | 
						|
                       Tper_col,
 | 
						|
                       Tper_row,
 | 
						|
                       # Tio_col_desc,
 | 
						|
                       Tper_row_io_wait,
 | 
						|
                       Tper_row_pipline_factor,
 | 
						|
                       ):
 | 
						|
    (
 | 
						|
        Nrow,
 | 
						|
        Ncol,
 | 
						|
        Nsize_factor
 | 
						|
    ) = args
 | 
						|
    #
 | 
						|
    # Tper_row_pipline_factor = 0.02933630
 | 
						|
    # Tper_row = 0.56897932
 | 
						|
 | 
						|
    total_cost = 0#Tstartup
 | 
						|
    total_cost += Nrow * (Tper_row * Nsize_factor + Ncol * Tper_col)
 | 
						|
 | 
						|
    io_cost = Nrow * Tper_row_io_wait * Nsize_factor
 | 
						|
    io_cost -= Nrow * Ncol * Tper_row_pipline_factor
 | 
						|
    if io_cost < 0:
 | 
						|
        io_cost = 0
 | 
						|
 | 
						|
    total_cost += io_cost
 | 
						|
    return total_cost
 | 
						|
 | 
						|
def scan_io_model_arr(arg_sets,
 | 
						|
                      # Tstartup,
 | 
						|
                      # Trow_once,
 | 
						|
                      Tper_col,
 | 
						|
                      Tper_row,
 | 
						|
                      # Tio_col_desc,
 | 
						|
                      Tper_row_io_wait,
 | 
						|
                      Tper_row_pipline_factor
 | 
						|
                      ):
 | 
						|
    res = []
 | 
						|
    for single_arg_set in arg_sets:
 | 
						|
        res.append(scan_io_model_form(single_arg_set,
 | 
						|
                                      # Tstartup,
 | 
						|
                                      # Trow_once,
 | 
						|
                                      Tper_col,
 | 
						|
                                      Tper_row,
 | 
						|
                                      # Tio_col_desc,
 | 
						|
                                      Tper_row_io_wait,
 | 
						|
                                      Tper_row_pipline_factor
 | 
						|
                                      ))
 | 
						|
    return np.array(res)
 | 
						|
 | 
						|
scan_io_model = Model(scan_io_model_arr)
 | 
						|
# scan_io_model.set_param_hint("Tstartup", min=0.0)
 | 
						|
# scan_io_model.set_param_hint("Trow_once", min=0.0)
 | 
						|
scan_io_model.set_param_hint("Tper_col", min=0.0)
 | 
						|
scan_io_model.set_param_hint("Tper_row", min=0.0)
 | 
						|
# scan_io_model.set_param_hint("Tio_col_desc", min=0.0)
 | 
						|
scan_io_model.set_param_hint("Tper_row_io_wait", min=0.0)
 | 
						|
scan_io_model.set_param_hint("Tper_row_pipline_factor", min=0.0, max=0.1)
 | 
						|
 | 
						|
def extract_info_from_line(line):
 | 
						|
    splited = line.split(",")
 | 
						|
    line_info = []
 | 
						|
    for item in splited:
 | 
						|
        line_info.append(float(item))
 | 
						|
    return line_info
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    file_name = "scan_model.res.formal.prep"
 | 
						|
    out_file_name = "scan_model.fit"
 | 
						|
    model_file = None
 | 
						|
 | 
						|
 | 
						|
    # sys.argv.extend("-i scan.W.small.prep -o scan.io.fit".split(" "))
 | 
						|
 | 
						|
    output_fit_res = False
 | 
						|
    wrong_arg = False
 | 
						|
    opts,args = getopt.getopt(sys.argv[1:],"i:o:m:")
 | 
						|
    for op, value in opts:
 | 
						|
        if "-i" == op:
 | 
						|
            file_name = value
 | 
						|
        elif "-o" == op:
 | 
						|
            output_fit_res = True
 | 
						|
            out_file_name = value
 | 
						|
        elif "-m" == op:
 | 
						|
            model_file = value
 | 
						|
        else:
 | 
						|
            wrong_arg = True
 | 
						|
 | 
						|
    if wrong_arg:
 | 
						|
        print "wrong arg"
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    file = open(file_name, "r")
 | 
						|
    arg_sets = []
 | 
						|
    times = []
 | 
						|
    case_params = []
 | 
						|
    for line in file:
 | 
						|
        if line.startswith('#'):
 | 
						|
            continue
 | 
						|
        case_param = extract_info_from_line(line)
 | 
						|
        case_params.append(case_param)
 | 
						|
        arg_sets.append((case_param[0], case_param[1], case_param[2]))
 | 
						|
        times.append(case_param[4])
 | 
						|
    file.close()
 | 
						|
    arg_sets_np = np.array(arg_sets)
 | 
						|
    times_np = np.array(times)
 | 
						|
    #10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
 | 
						|
    result = scan_io_model.fit(times_np, arg_sets=arg_sets_np,
 | 
						|
                               # Tstartup=10.0,
 | 
						|
                               # Trow_once=10.0,
 | 
						|
                               Tper_col=1.0,
 | 
						|
                               Tper_row=1.0,
 | 
						|
                               # Tio_col_desc=1.0,
 | 
						|
                               Tper_row_io_wait=1.0,
 | 
						|
                               Tper_row_pipline_factor=1.0
 | 
						|
                               )
 | 
						|
 | 
						|
    # Tstartup = result.best_values["Tstartup"]
 | 
						|
    # Trow_once = result.best_values["Trow_once"]
 | 
						|
    Tper_col = result.best_values["Tper_col"]
 | 
						|
    Tper_row = result.best_values["Tper_row"]
 | 
						|
    # Tio_col_desc = result.best_values["Tio_col_desc"]
 | 
						|
    Tper_row_io_wait = result.best_values["Tper_row_io_wait"]
 | 
						|
    Tper_row_pipline_factor = result.best_values["Tper_row_pipline_factor"]
 | 
						|
 | 
						|
    print result.fit_report()
 | 
						|
 | 
						|
    fit_res = scan_io_model_arr(arg_sets_np,
 | 
						|
                                # Tstartup,
 | 
						|
                                # Trow_once,
 | 
						|
                                Tper_col,
 | 
						|
                                Tper_row,
 | 
						|
                                # Tio_col_desc,
 | 
						|
                                Tper_row_io_wait,
 | 
						|
                                Tper_row_pipline_factor
 | 
						|
                                )
 | 
						|
 | 
						|
    if output_fit_res:
 | 
						|
        out_file = open(out_file_name, "w")
 | 
						|
        for i in xrange(len(arg_sets_np)):
 | 
						|
            a = list(arg_sets_np[i])
 | 
						|
            b = [times_np[i]]
 | 
						|
            c = [fit_res[i]]
 | 
						|
            d = [(fit_res[i] - times_np[i]) * 100 / times_np[i]]
 | 
						|
            out_file.write(','.join([str(i) for i in  a + b + c + d]) + "\n")
 | 
						|
        out_file.close()
 | 
						|
 | 
						|
    if model_file is not None:
 | 
						|
        mf = open(model_file, 'w')
 | 
						|
        mf.write(','.join([str(i) for i in [
 | 
						|
                                            #Tstartup,
 | 
						|
                                            # Trow_once,
 | 
						|
                                            Tper_col,
 | 
						|
                                            Tper_row,
 | 
						|
                                            # Tio_col_desc,
 | 
						|
                                            Tper_row_io_wait,
 | 
						|
                                            Tper_row_pipline_factor
 | 
						|
                                            ]]))
 | 
						|
        mf.close()
 | 
						|
 |