wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

165 lines
4.5 KiB
Python
Executable File

#!/bin/env python
__author__ = 'dongyun.zdy'
import math
import numpy as np
from scipy.optimize import leastsq
from scipy.optimize import curve_fit
import sys
from lmfit import Model
import getopt
def mg_model_form(args,
#Tstartup,
Trow_once,
Tres_once,
Taggr_prepare_result,
Taggr_process,
Tgroup_cmp_col,
Tcopy_col
):
(
Nrow_input,
Nrow_res,
Ncol_input,
Ncol_aggr,
Ncol_group
) = args
total_cost = Nrow_res * Tres_once + Nrow_input * Trow_once
#cost for judge group
total_cost += Nrow_res * Tgroup_cmp_col
total_cost += (Nrow_input - Nrow_res) * Ncol_group * Tgroup_cmp_col
#cost for group related operation
total_cost += Nrow_res * (Ncol_input * Tcopy_col)
total_cost += Nrow_res * (Ncol_aggr * Taggr_prepare_result)
#cost for input row process
total_cost += Nrow_input * (Ncol_aggr * Taggr_process)
return total_cost
eval_count = 0
def mg_model_arr(arg_sets,
#Tstartup,
Trow_once,
Tres_once,
Taggr_prepare_result,
Taggr_process,
Tgroup_cmp_col,
Tcopy_col
) :
res = [mg_model_form(single_arg_set,
#Tstartup,
Trow_once,
Tres_once,
Taggr_prepare_result,
Taggr_process,
Tgroup_cmp_col,
Tcopy_col
) for single_arg_set in arg_sets]
global eval_count
eval_count += 1
print "eval "+ str(eval_count)
return np.array(res)
mg_model = Model(mg_model_arr)
#mg_model.set_param_hint("Tstartup", min=0.0)
mg_model.set_param_hint("Trow_once", min=0.0)
mg_model.set_param_hint("Tres_once", min=0.0)
mg_model.set_param_hint("Taggr_prepare_result", min=0.0)
mg_model.set_param_hint("Taggr_process", min=0.0)
mg_model.set_param_hint("Tgroup_cmp_col", min=0.0)
mg_model.set_param_hint("Tcopy_col", min=0.0)
def extract_info_from_line(line):
splited = line.split(",")
line_info = []
for item in splited:
line_info.append(float(item))
return line_info
if __name__ == '__main__':
#file_name = "scan_model.res.formal.prep"
#out_file_name = "scan_model.fit"
file_name = "mergegroupby_result_final"
out_file_name = "mergegroupby_model"
output_fit_res = True
wrong_arg = False
opts,args = getopt.getopt(sys.argv[1:],"i:o:")
for op, value in opts:
if "-i" == op:
file_name = value
elif "-o" == op:
output_fit_res = True
out_file_name = value
else:
wrong_arg = True
if wrong_arg:
print "wrong arg"
sys.exit(1)
file = open(file_name, "r")
arg_sets = []
times = []
case_params = []
for line in file:
case_param = extract_info_from_line(line)
case_params.append(case_param)
# Nrow_input,
# Nrow_res,
# Ncol_input,
# Ncol_aggr,
# Ncol_group
arg_sets.append((case_param[0],
case_param[5],
case_param[4],
case_param[2],
case_param[3]
))
times.append(case_param[6])
file.close()
arg_sets_np = np.array(arg_sets)
times_np = np.array(times)
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
result = mg_model.fit(times_np, arg_sets=arg_sets_np,
#Tstartup = 0.1,
Trow_once = 0.1,
Tres_once = 0.1,
Taggr_prepare_result = 0.1,
Taggr_process = 0.1,
Tgroup_cmp_col = 0.1,
Tcopy_col = 0.1
)
res_line = str(result.best_values["Trow_once"]) + ","
res_line += str(result.best_values["Tres_once"]) + ","
res_line += str(result.best_values["Taggr_prepare_result"]) + ","
res_line += str(result.best_values["Taggr_process"]) + ","
res_line += str(result.best_values["Tgroup_cmp_col"]) + ","
res_line += str(result.best_values["Tcopy_col"])
print result.fit_report()
if output_fit_res:
out_file = open(out_file_name, "w")
out_file.write(res_line)
out_file.close()