164 lines
5.2 KiB
Python
Executable File
164 lines
5.2 KiB
Python
Executable File
#!/bin/env python
|
|
__author__ = 'dongyun.zdy'
|
|
|
|
|
|
import math
|
|
import numpy as np
|
|
from scipy.optimize import leastsq
|
|
from scipy.optimize import curve_fit
|
|
import sys
|
|
from lmfit import Model
|
|
import getopt
|
|
|
|
|
|
|
|
def scan_io_model_form(args,
|
|
#Tstartup,
|
|
# Trow_once,
|
|
Tper_col,
|
|
Tper_row,
|
|
# Tio_col_desc,
|
|
# Tper_row_pipline_factor,
|
|
):
|
|
(
|
|
Nrow,
|
|
Ncol,
|
|
Nsize_factor
|
|
) = args
|
|
#
|
|
# Tper_row_pipline_factor = 0.02933630
|
|
# Tper_row = 0.56897932
|
|
|
|
total_cost = 0#Tstartup
|
|
total_cost += Nrow * (Ncol * Tper_col)
|
|
io_cost = Nrow * Tper_row * Nsize_factor
|
|
total_cost += io_cost
|
|
return total_cost
|
|
|
|
def scan_io_model_arr(arg_sets,
|
|
# Tstartup,
|
|
# Trow_once,
|
|
Tper_col,
|
|
Tper_row,
|
|
# Tio_col_desc,
|
|
# Tper_row_pipline_factor
|
|
):
|
|
res = []
|
|
for single_arg_set in arg_sets:
|
|
res.append(scan_io_model_form(single_arg_set,
|
|
# Tstartup,
|
|
# Trow_once,
|
|
Tper_col,
|
|
Tper_row,
|
|
# Tio_col_desc,
|
|
# Tper_row_pipline_factor
|
|
))
|
|
return np.array(res)
|
|
|
|
scan_io_model = Model(scan_io_model_arr)
|
|
# scan_io_model.set_param_hint("Tstartup", min=0.0)
|
|
# scan_io_model.set_param_hint("Trow_once", min=0.0)
|
|
scan_io_model.set_param_hint("Tper_col", min=0.0)
|
|
scan_io_model.set_param_hint("Tper_row", min=0.0)
|
|
# scan_io_model.set_param_hint("Tio_col_desc", min=0.0)
|
|
# scan_io_model.set_param_hint("Tper_row_pipline_factor", min=0.0)
|
|
|
|
def extract_info_from_line(line):
|
|
splited = line.split(",")
|
|
line_info = []
|
|
for item in splited:
|
|
line_info.append(float(item))
|
|
return line_info
|
|
|
|
|
|
if __name__ == '__main__':
|
|
file_name = "scan_model.res.formal.prep"
|
|
out_file_name = "scan_model.fit"
|
|
model_file = None
|
|
|
|
|
|
# sys.argv.extend("-i scan.W.small.prep -o scan.io.fit".split(" "))
|
|
|
|
output_fit_res = False
|
|
wrong_arg = False
|
|
opts,args = getopt.getopt(sys.argv[1:],"i:o:m:")
|
|
for op, value in opts:
|
|
if "-i" == op:
|
|
file_name = value
|
|
elif "-o" == op:
|
|
output_fit_res = True
|
|
out_file_name = value
|
|
elif "-m" == op:
|
|
model_file = value
|
|
else:
|
|
wrong_arg = True
|
|
|
|
if wrong_arg:
|
|
print "wrong arg"
|
|
sys.exit(1)
|
|
|
|
file = open(file_name, "r")
|
|
arg_sets = []
|
|
times = []
|
|
case_params = []
|
|
for line in file:
|
|
if line.startswith('#'):
|
|
continue
|
|
case_param = extract_info_from_line(line)
|
|
case_params.append(case_param)
|
|
arg_sets.append((case_param[0], case_param[1], case_param[2]))
|
|
times.append(case_param[4])
|
|
file.close()
|
|
arg_sets_np = np.array(arg_sets)
|
|
times_np = np.array(times)
|
|
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
|
|
result = scan_io_model.fit(times_np, arg_sets=arg_sets_np,
|
|
# Tstartup=10.0,
|
|
# Trow_once=10.0,
|
|
Tper_col=1.0,
|
|
Tper_row=1.0,
|
|
# Tio_col_desc=1.0,
|
|
# Tper_row_pipline_factor=1.0
|
|
)
|
|
|
|
# Tstartup = result.best_values["Tstartup"]
|
|
# Trow_once = result.best_values["Trow_once"]
|
|
Tper_col = result.best_values["Tper_col"]
|
|
Tper_row = result.best_values["Tper_row"]
|
|
# Tio_col_desc = result.best_values["Tio_col_desc"]
|
|
# Tper_row_pipline_factor = result.best_values["Tper_row_pipline_factor"]
|
|
|
|
print result.fit_report()
|
|
|
|
fit_res = scan_io_model_arr(arg_sets_np,
|
|
# Tstartup,
|
|
# Trow_once,
|
|
Tper_col,
|
|
Tper_row,
|
|
# Tio_col_desc,
|
|
# Tper_row_pipline_factor
|
|
)
|
|
|
|
if output_fit_res:
|
|
out_file = open(out_file_name, "w")
|
|
for i in xrange(len(arg_sets_np)):
|
|
a = list(arg_sets_np[i])
|
|
b = [times_np[i]]
|
|
c = [fit_res[i]]
|
|
d = [(fit_res[i] - times_np[i]) * 100 / times_np[i]]
|
|
out_file.write(','.join([str(i) for i in a + b + c + d]) + "\n")
|
|
out_file.close()
|
|
|
|
if model_file is not None:
|
|
mf = open(model_file, 'w')
|
|
mf.write(','.join([str(i) for i in [
|
|
#Tstartup,
|
|
# Trow_once,
|
|
Tper_col,
|
|
Tper_row,
|
|
# Tio_col_desc,
|
|
# Tper_row_pipline_factor
|
|
]]))
|
|
mf.close()
|
|
|