wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

164 lines
5.2 KiB
Python
Executable File

#!/bin/env python
__author__ = 'dongyun.zdy'
import math
import numpy as np
from scipy.optimize import leastsq
from scipy.optimize import curve_fit
import sys
from lmfit import Model
import getopt
def scan_io_model_form(args,
#Tstartup,
# Trow_once,
Tper_col,
Tper_row,
# Tio_col_desc,
# Tper_row_pipline_factor,
):
(
Nrow,
Ncol,
Nsize_factor
) = args
#
# Tper_row_pipline_factor = 0.02933630
# Tper_row = 0.56897932
total_cost = 0#Tstartup
total_cost += Nrow * (Ncol * Tper_col)
io_cost = Nrow * Tper_row * Nsize_factor
total_cost += io_cost
return total_cost
def scan_io_model_arr(arg_sets,
# Tstartup,
# Trow_once,
Tper_col,
Tper_row,
# Tio_col_desc,
# Tper_row_pipline_factor
):
res = []
for single_arg_set in arg_sets:
res.append(scan_io_model_form(single_arg_set,
# Tstartup,
# Trow_once,
Tper_col,
Tper_row,
# Tio_col_desc,
# Tper_row_pipline_factor
))
return np.array(res)
scan_io_model = Model(scan_io_model_arr)
# scan_io_model.set_param_hint("Tstartup", min=0.0)
# scan_io_model.set_param_hint("Trow_once", min=0.0)
scan_io_model.set_param_hint("Tper_col", min=0.0)
scan_io_model.set_param_hint("Tper_row", min=0.0)
# scan_io_model.set_param_hint("Tio_col_desc", min=0.0)
# scan_io_model.set_param_hint("Tper_row_pipline_factor", min=0.0)
def extract_info_from_line(line):
splited = line.split(",")
line_info = []
for item in splited:
line_info.append(float(item))
return line_info
if __name__ == '__main__':
file_name = "scan_model.res.formal.prep"
out_file_name = "scan_model.fit"
model_file = None
# sys.argv.extend("-i scan.W.small.prep -o scan.io.fit".split(" "))
output_fit_res = False
wrong_arg = False
opts,args = getopt.getopt(sys.argv[1:],"i:o:m:")
for op, value in opts:
if "-i" == op:
file_name = value
elif "-o" == op:
output_fit_res = True
out_file_name = value
elif "-m" == op:
model_file = value
else:
wrong_arg = True
if wrong_arg:
print "wrong arg"
sys.exit(1)
file = open(file_name, "r")
arg_sets = []
times = []
case_params = []
for line in file:
if line.startswith('#'):
continue
case_param = extract_info_from_line(line)
case_params.append(case_param)
arg_sets.append((case_param[0], case_param[1], case_param[2]))
times.append(case_param[4])
file.close()
arg_sets_np = np.array(arg_sets)
times_np = np.array(times)
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
result = scan_io_model.fit(times_np, arg_sets=arg_sets_np,
# Tstartup=10.0,
# Trow_once=10.0,
Tper_col=1.0,
Tper_row=1.0,
# Tio_col_desc=1.0,
# Tper_row_pipline_factor=1.0
)
# Tstartup = result.best_values["Tstartup"]
# Trow_once = result.best_values["Trow_once"]
Tper_col = result.best_values["Tper_col"]
Tper_row = result.best_values["Tper_row"]
# Tio_col_desc = result.best_values["Tio_col_desc"]
# Tper_row_pipline_factor = result.best_values["Tper_row_pipline_factor"]
print result.fit_report()
fit_res = scan_io_model_arr(arg_sets_np,
# Tstartup,
# Trow_once,
Tper_col,
Tper_row,
# Tio_col_desc,
# Tper_row_pipline_factor
)
if output_fit_res:
out_file = open(out_file_name, "w")
for i in xrange(len(arg_sets_np)):
a = list(arg_sets_np[i])
b = [times_np[i]]
c = [fit_res[i]]
d = [(fit_res[i] - times_np[i]) * 100 / times_np[i]]
out_file.write(','.join([str(i) for i in a + b + c + d]) + "\n")
out_file.close()
if model_file is not None:
mf = open(model_file, 'w')
mf.write(','.join([str(i) for i in [
#Tstartup,
# Trow_once,
Tper_col,
Tper_row,
# Tio_col_desc,
# Tper_row_pipline_factor
]]))
mf.close()