Files
oceanbase/src/sql/optimizer/ob_px_resource_analyzer.cpp

831 lines
32 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#define USING_LOG_PREFIX SQL_OPT
#include "sql/optimizer/ob_px_resource_analyzer.h"
#include "sql/optimizer/ob_logical_operator.h"
#include "sql/optimizer/ob_log_exchange.h"
#include "sql/optimizer/ob_log_table_scan.h"
#include "sql/optimizer/ob_log_del_upd.h"
#include "sql/optimizer/ob_log_join_filter.h"
#include "common/ob_smart_call.h"
using namespace oceanbase::common;
using namespace oceanbase::sql;
using namespace oceanbase::sql::log_op_def;
namespace oceanbase
{
namespace sql
{
class SchedOrderGenerator {
public:
SchedOrderGenerator() = default;
~SchedOrderGenerator() = default;
int generate(DfoInfo &root, ObIArray<DfoInfo *> &edges);
};
}
}
// 后序遍历 dfo tree 即为调度顺序
// 用 edges 数组表示这种顺序
// 注意:
// 1. root 节点本身不会记录到 edge 中
// 2. 不需要做 normalize,因为我们这个文件只负责估计线程数,不做也可以得到相同结果
int SchedOrderGenerator::generate(
DfoInfo &root,
ObIArray<DfoInfo *> &edges)
{
int ret = OB_SUCCESS;
for (int64_t i = 0; OB_SUCC(ret) && i < root.get_child_count(); ++i) {
DfoInfo *child = NULL;
if (OB_FAIL(root.get_child(i, child))) {
LOG_WARN("fail get child dfo", K(i), K(root), K(ret));
} else if (OB_ISNULL(child)) {
ret = OB_ERR_UNEXPECTED;
} else if (OB_FAIL(generate(*child, edges))) {
LOG_WARN("fail do generate edge", K(*child), K(ret));
}
}
if (OB_SUCC(ret)) {
if (OB_FAIL(edges.push_back(&root))) {
LOG_WARN("fail add edge to array", K(ret));
}
}
return ret;
}
// ===================================================================================
// ===================================================================================
// ===================================================================================
// ===================================================================================
int LogRuntimeFilterDependencyInfo::describe_dependency(DfoInfo *root_dfo)
{
int ret = OB_SUCCESS;
// for each rf create op, find its pair rf use op,
// then get the lowest common ancestor of them, mark force_bushy of the dfo which the ancestor belongs to.
for (int64_t i = 0; i < rf_create_ops_.count() && OB_SUCC(ret); ++i) {
const ObLogJoinFilter *create_op = static_cast<const ObLogJoinFilter *>(rf_create_ops_.at(i));
const ObLogicalOperator *use_op = create_op->get_paired_join_filter();
if (OB_ISNULL(use_op)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("use_op is null");
} else {
const ObLogicalOperator *ancestor_op = nullptr;
DfoInfo *op_dfo = nullptr;;
if (OB_FAIL(LogLowestCommonAncestorFinder::find_op_common_ancestor(create_op, use_op, ancestor_op))) {
LOG_WARN("failed to find op common ancestor");
} else if (OB_ISNULL(ancestor_op)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("op common ancestor not found");
} else if (OB_FAIL(LogLowestCommonAncestorFinder::get_op_dfo(ancestor_op, root_dfo, op_dfo))) {
LOG_WARN("failed to find op common ancestor");
} else if (OB_ISNULL(op_dfo)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("the dfo of ancestor_op not found");
} else {
// Once the DFO which the ancestor belongs to has set the flag "force_bushy",
// the DfoTreeNormalizer will not attempt to transform a right-deep DFO tree
// into a left-deep DFO tree. Consequently, the "join filter create" operator
// can be scheduled earlier than the "join filter use" operator.
op_dfo->set_force_bushy(true);
}
}
}
return ret;
}
int DfoInfo::add_child(DfoInfo *child)
{
int ret = OB_SUCCESS;
if (OB_ISNULL(child)) {
ret = OB_ERR_UNEXPECTED;
} else if (OB_FAIL(child_dfos_.push_back(child))) {
LOG_WARN("fail push back child to array", K(ret));
}
return ret;
}
int DfoInfo::get_child(int64_t idx, DfoInfo *&child)
{
int ret = OB_SUCCESS;
if (idx < 0 || idx >= child_dfos_.count()) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("child idx unexpected", K(idx), "cnt", child_dfos_.count(), K(ret));
} else if (OB_FAIL(child_dfos_.at(idx, child))) {
LOG_WARN("fail get element", K(idx), "cnt", child_dfos_.count(), K(ret));
}
return ret;
}
// ===================================================================================
// ===================================================================================
// ===================================================================================
// ===================================================================================
ObPxResourceAnalyzer::ObPxResourceAnalyzer()
: dfo_allocator_(CURRENT_CONTEXT->get_malloc_allocator())
{
dfo_allocator_.set_label("PxResourceAnaly");
}
// entry function
int ObPxResourceAnalyzer::analyze(
ObLogicalOperator &root_op,
int64_t &max_parallel_thread_count,
int64_t &max_parallel_group_count,
ObHashMap<ObAddr, int64_t> &max_parallel_thread_map,
ObHashMap<ObAddr, int64_t> &max_parallel_group_map)
{
int ret = OB_SUCCESS;
// 本函数用于分析一个 PX 计划至少需要预留多少组线程才能被调度成功
//
// 需要考虑如下场景:
// 1. multiple px
// 2. subplan filter rescan (所有被标记为 rescanable 的 exchange 节点都是 QC)
// 3. bushy tree scheduling
//
// 算法:
// 1. 按照 dfo 调度算法生成调度顺序
// 2. 然后模拟调度,每调度一对 dfo,就将 child 设置为 done,然后统计当前时刻多少个未完成 dfo
// 3. 如此继续调度,直至所有 dfo 调度完成
//
// ref:
ObArray<PxInfo> px_trees;
if (OB_FAIL(convert_log_plan_to_nested_px_tree(px_trees, root_op))) {
LOG_WARN("fail convert log plan to nested px tree", K(ret));
} else if (OB_FAIL(walk_through_px_trees(px_trees,
max_parallel_thread_count,
max_parallel_group_count,
max_parallel_thread_map,
max_parallel_group_map))) {
LOG_WARN("fail calc max parallel thread group count for resource reservation", K(ret));
}
reset_px_tree(px_trees);
return ret;
}
void ObPxResourceAnalyzer::reset_px_tree(ObIArray<PxInfo> &px_trees)
{
for (int i = 0; i < px_trees.count(); ++i) {
px_trees.at(i).reset_dfo();
}
}
int ObPxResourceAnalyzer::convert_log_plan_to_nested_px_tree(
ObIArray<PxInfo> &px_trees,
ObLogicalOperator &root_op)
{
int ret = OB_SUCCESS;
// 算法逻辑上分为两步走:
// 1. qc 切分:顶层 qc ,subplan filter 右侧 qc
// 2. 各个 qc 分别算并行度(zigzag, left-deep, right-deep, bushy)
//
// 具体实现上,两件事情并在一个流程里做,更简单些
bool is_stack_overflow = false;
if (OB_FAIL(check_stack_overflow(is_stack_overflow))) {
LOG_WARN("failed to check stack overflow", K(ret));
} else if (is_stack_overflow) {
ret = OB_SIZE_OVERFLOW;
LOG_WARN("stack overflow, maybe too deep recursive", K(ret));
} else if (log_op_def::LOG_EXCHANGE == root_op.get_type() &&
static_cast<const ObLogExchange *>(&root_op)->is_px_consumer()) {
// 当前 exchange 是一个 QC,将下面的所有子计划抽象成一个 dfo tree
if (OB_FAIL(create_dfo_tree(px_trees, static_cast<ObLogExchange &>(root_op)))) {
LOG_WARN("fail create dfo tree", K(ret));
}
} else {
int64_t num = root_op.get_num_of_child();
for (int64_t child_idx = 0; OB_SUCC(ret) && child_idx < num; ++child_idx) {
if (nullptr == root_op.get_child(child_idx)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("unexpected null ptr", K(child_idx), K(num), K(ret));
} else if (OB_FAIL(SMART_CALL(convert_log_plan_to_nested_px_tree(
px_trees, *root_op.get_child(child_idx))))) {
LOG_WARN("fail split px tree", K(child_idx), K(num), K(ret));
}
}
}
return ret;
}
int ObPxResourceAnalyzer::create_dfo_tree(
ObIArray<PxInfo> &px_trees,
ObLogExchange &root_op)
{
int ret = OB_SUCCESS;
// 以 root_op 为根节点创建一个 dfo tree
// root_op 的类型一定是 EXCHANGE OUT DIST
// 在向下遍历构造 dfo tree 时,如果遇到 subplan filter 右侧的 exchange,
// 则将其也转化成一个独立的 dfo tree
PxInfo px_info;
DfoInfo *root_dfo = nullptr;
px_info.root_op_ = &root_op;
ObLogicalOperator *child = root_op.get_child(ObLogicalOperator::first_child);
if (OB_ISNULL(child)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("exchange out op should always has a child",
"type", root_op.get_type(), KP(child), K(ret));
} else if (log_op_def::LOG_EXCHANGE != child->get_type() ||
static_cast<const ObLogExchange *>(child)->is_px_consumer()) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("expect a px producer below qc op", "type", root_op.get_type(), K(ret));
} else if (OB_FAIL(do_split(px_trees, px_info, *child, root_dfo))) {
LOG_WARN("fail split dfo for current dfo tree", K(ret));
} else if (OB_FAIL(px_trees.push_back(px_info))) { // 先遇到的 px 后进入 px_tree,无妨
LOG_WARN("fail push back root dfo to dfo tree collector", K(ret));
px_info.reset_dfo();
}
return ret;
}
int ObPxResourceAnalyzer::do_split(
ObIArray<PxInfo> &px_trees,
PxInfo &px_info,
ObLogicalOperator &root_op,
DfoInfo *parent_dfo)
{
int ret = OB_SUCCESS;
// 遇到 subplan filter 右边的 exchange,都将它转成独立的 px tree,并终止向下遍历
// 算法:
// 1. 如果当前节点不是 TRANSMIT 算子,则递归遍历它的每一个 child
// 2. 如果当前是 TRANSMIT 算子,则建立一个 dfo,同时记录它的父 dfo,并继续向下遍历
// 如果没有父 dfo,说明它是 px root,记录到 px trees 中
// 3. TODO: 对于 subplan filter rescan 的考虑
// 算法分为两步走:
// 1. qc 切分:顶层 qc ,subplan filter 右侧 qc
// 2. 各个 qc 分别算并行度(zigzag, left-deep, right-deep, bushy)
bool is_stack_overflow = false;
if (OB_FAIL(check_stack_overflow(is_stack_overflow))) {
LOG_WARN("failed to check stack overflow", K(ret));
} else if (is_stack_overflow) {
ret = OB_SIZE_OVERFLOW;
LOG_WARN("stack overflow, maybe too deep recursive", K(ret));
} else if (log_op_def::LOG_EXCHANGE == root_op.get_type() &&
static_cast<const ObLogExchange&>(root_op).is_px_consumer() &&
static_cast<const ObLogExchange&>(root_op).is_rescanable()) {
if (OB_FAIL(convert_log_plan_to_nested_px_tree(px_trees,root_op))) {
LOG_WARN("fail create qc for rescan op", K(ret));
}
} else {
if (OB_FAIL(ret)) {
} else if (log_op_def::LOG_JOIN_FILTER == root_op.get_type()) {
ObLogJoinFilter &log_join_filter = static_cast<ObLogJoinFilter &>(root_op);
if (log_join_filter.is_create_filter()
&& OB_FAIL(px_info.rf_dpd_info_.rf_create_ops_.push_back(&root_op))) {
LOG_WARN("failed to push_back log join filter create", K(ret));
}
} else if (log_op_def::LOG_EXCHANGE == root_op.get_type()
&& static_cast<const ObLogExchange &>(root_op).is_px_producer()) {
DfoInfo *dfo = nullptr;
if (OB_FAIL(create_dfo(dfo, root_op))) {
LOG_WARN("fail create dfo", K(ret));
} else {
if (OB_FAIL(dfo->location_addr_.create(hash::cal_next_prime(10), "PxResourceBucket", "PxResourceNode"))) {
LOG_WARN("fail to create hash set", K(ret));
} else if (OB_FAIL(get_dfo_addr_set(root_op, dfo->location_addr_))) {
LOG_WARN("get addr_set failed", K(ret));
dfo->reset();
} else {
if (nullptr == parent_dfo) {
px_info.root_dfo_ = dfo;
} else {
parent_dfo->add_child(dfo);
}
dfo->set_parent(parent_dfo);
parent_dfo = dfo;
}
}
}
if (OB_SUCC(ret)) {
int64_t num = root_op.get_num_of_child();
for (int64_t child_idx = 0; OB_SUCC(ret) && child_idx < num; ++child_idx) {
if (OB_ISNULL(root_op.get_child(child_idx))) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("unexpected null ptr", K(child_idx), K(num), K(ret));
} else if (OB_FAIL(SMART_CALL(do_split(
px_trees,
px_info,
*root_op.get_child(child_idx),
parent_dfo)))) {
LOG_WARN("fail split px tree", K(child_idx), K(num), K(ret));
}
}
if (parent_dfo->location_addr_.size() == 0) {
if (parent_dfo->has_child()) {
DfoInfo *child_dfo = nullptr;
if (OB_FAIL(parent_dfo->get_child(0, child_dfo))) {
LOG_WARN("get child dfo failed", K(ret));
} else {
for (ObHashSet<ObAddr>::const_iterator it = child_dfo->location_addr_.begin();
OB_SUCC(ret) && it != child_dfo->location_addr_.end(); ++it) {
if (OB_FAIL(parent_dfo->location_addr_.set_refactored(it->first))){
LOG_WARN("set refactored failed", K(ret), K(it->first));
}
}
}
} else if (OB_FAIL(parent_dfo->location_addr_.set_refactored(GCTX.self_addr()))){
LOG_WARN("set refactored failed", K(ret), K(GCTX.self_addr()));
}
}
}
}
return ret;
}
int ObPxResourceAnalyzer::create_dfo(DfoInfo *&dfo, ObLogicalOperator &root_op)
{
int ret = OB_SUCCESS;
int64_t dop = static_cast<const ObLogExchange&>(root_op).get_parallel();
void *mem_ptr = dfo_allocator_.alloc(sizeof(DfoInfo));
if (OB_ISNULL(mem_ptr)) {
ret = OB_ALLOCATE_MEMORY_FAILED;
LOG_WARN("fail allocate memory", K(ret));
} else if (nullptr == (dfo = new(mem_ptr) DfoInfo())) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("Null ptr unexpected", KP(mem_ptr), K(ret));
} else {
dfo->set_root_op(&root_op);
dfo->set_dop(dop);
}
return ret;
}
int ObPxResourceAnalyzer::get_dfo_addr_set(const ObLogicalOperator &root_op, ObHashSet<ObAddr> &addr_set)
{
int ret = OB_SUCCESS;
if ((root_op.is_table_scan() && !root_op.get_contains_fake_cte()) ||
(root_op.is_dml_operator() && (static_cast<const ObLogDelUpd&>(root_op)).is_pdml())) {
const ObTablePartitionInfo *tbl_part_info = nullptr;
if (root_op.is_table_scan()) {
const ObLogTableScan &tsc = static_cast<const ObLogTableScan&>(root_op);
tbl_part_info = tsc.get_table_partition_info();
} else {
const ObLogDelUpd &dml_op = static_cast<const ObLogDelUpd&>(root_op);
tbl_part_info = dml_op.get_table_partition_info();
}
if (OB_ISNULL(tbl_part_info)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("get table partition info failed", K(ret),
K(root_op.get_type()),
K(root_op.get_operator_id()));
} else {
const ObCandiTableLoc &phy_tbl_loc_info = tbl_part_info->get_phy_tbl_location_info();
const ObCandiTabletLocIArray &phy_part_loc_info_arr = phy_tbl_loc_info.get_phy_part_loc_info_list();
for (int64_t i = 0; i < phy_part_loc_info_arr.count(); ++i) {
share::ObLSReplicaLocation replica_loc;
if (OB_FAIL(phy_part_loc_info_arr.at(i).get_selected_replica(replica_loc))) {
LOG_WARN("get selected replica failed", K(ret));
} else if (OB_FAIL(addr_set.set_refactored(replica_loc.get_server(), 1))) {
LOG_WARN("addr set refactored failed");
} else {
LOG_DEBUG("resource analyzer", K(root_op.get_type()),
K(root_op.get_operator_id()),
K(replica_loc.get_server()));
}
}
}
} else {
int64_t num = root_op.get_num_of_child();
for (int64_t child_idx = 0; OB_SUCC(ret) && child_idx < num; ++child_idx) {
ObLogicalOperator *child_op = nullptr;
if (OB_ISNULL(child_op = root_op.get_child(child_idx))) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("unexpected null ptr", K(child_idx), K(num), K(ret));
} else if (log_op_def::LOG_EXCHANGE == child_op->get_type() &&
static_cast<const ObLogExchange*>(child_op)->is_px_consumer()) {
// do nothing
} else if (OB_FAIL(SMART_CALL(get_dfo_addr_set(*child_op, addr_set)))) {
LOG_WARN("get addr_set failed", K(ret));
}
}
}
return ret;
}
int ObPxResourceAnalyzer::walk_through_px_trees(
ObIArray<PxInfo> &px_trees,
int64_t &max_parallel_thread_count,
int64_t &max_parallel_group_count,
ObHashMap<ObAddr, int64_t> &max_parallel_thread_map,
ObHashMap<ObAddr, int64_t> &max_parallel_group_map)
{
int ret = OB_SUCCESS;
int64_t bucket_size = cal_next_prime(10);
max_parallel_thread_count = 0;
max_parallel_group_count = 0;
ObHashMap<ObAddr, int64_t> thread_map;
ObHashMap<ObAddr, int64_t> group_map;
if (max_parallel_thread_map.created()) {
max_parallel_thread_map.clear();
max_parallel_group_map.clear();
} else if (OB_FAIL(max_parallel_thread_map.create(bucket_size,
ObModIds::OB_SQL_PX,
ObModIds::OB_SQL_PX))){
LOG_WARN("create hash map failed", K(ret));
} else if (OB_FAIL(max_parallel_group_map.create(bucket_size,
ObModIds::OB_SQL_PX,
ObModIds::OB_SQL_PX))){
LOG_WARN("create hash map failed", K(ret));
} else if (OB_FAIL(thread_map.create(bucket_size, ObModIds::OB_SQL_PX, ObModIds::OB_SQL_PX))){
LOG_WARN("create hash map failed", K(ret));
} else if (OB_FAIL(group_map.create(bucket_size, ObModIds::OB_SQL_PX, ObModIds::OB_SQL_PX))){
LOG_WARN("create hash map failed", K(ret));
}
for (int64_t i = 0; OB_SUCC(ret) && i < px_trees.count(); ++i) {
PxInfo &px_info = px_trees.at(i);
int64_t thread_count = 0;
int64_t group_count = 0;
thread_map.clear();
group_map.clear();
if (OB_FAIL(px_info.rf_dpd_info_.describe_dependency(px_info.root_dfo_))) {
LOG_WARN("failed to describe dependency");
} else if (OB_FAIL(walk_through_dfo_tree(px_info, thread_count, group_count, thread_map, group_map))) {
LOG_WARN("fail calc px thread group count", K(i), "total", px_trees.count(), K(ret));
} else if (OB_ISNULL(px_info.root_op_)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("QC op not set in px_info struct", K(ret));
} else {
px_info.threads_ = thread_count;
// 将当前 px 的 expected 线程数设置到 QC 算子中
px_info.root_op_->set_expected_worker_count(thread_count);
max_parallel_thread_count += thread_count;
max_parallel_group_count += group_count;
if (OB_FAIL(px_tree_append(max_parallel_thread_map, thread_map))) {
LOG_WARN("px tree dop append failed", K(ret));
} else if (OB_FAIL(px_tree_append(max_parallel_group_map, group_map))) {
LOG_WARN("px tree dop append failed", K(ret));
}
}
}
thread_map.destroy();
group_map.destroy();
return ret;
}
/* A dfo tree is scheduled in post order generally.
* First, we traversal the tree in post order and generate edges.
* Then for each edge:
* 1. Schedule this edge if not scheduled.
* 2. Schedule parent of this edge if not scheduled.
* 3. Schedule depend siblings of this edge one by one. One by one means finish (i-1)th sibling before schedule i-th sibling.
* 4. Finish this edge if it is a leaf node or all children are finished.
*/
/* This function also generate a ObHashMap<ObAddr, int64_t> max_parallel_thread_map.
* Key is observer. Value is max sum of dops of dfos that are scheduled at same time on this observer.
* Value means expected thread number on this server.
* Once a dfo is scheduled or finished, we update(increase or decrease) the current_thread_map.
* Then compare current thead count with max thread count, and update max_parallel_thread_map if necessary.
*/
int ObPxResourceAnalyzer::walk_through_dfo_tree(
PxInfo &px_root,
int64_t &max_parallel_thread_count,
int64_t &max_parallel_group_count,
ObHashMap<ObAddr, int64_t> &max_parallel_thread_map,
ObHashMap<ObAddr, int64_t> &max_parallel_group_map)
{
int ret = OB_SUCCESS;
// 模拟调度过程
ObArray<DfoInfo *> edges;
SchedOrderGenerator sched_order_gen;
int64_t bucket_size = cal_next_prime(10);
ObHashMap<ObAddr, int64_t> current_thread_map;
ObHashMap<ObAddr, int64_t> current_group_map;
if (OB_ISNULL(px_root.root_dfo_)) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("NULL ptr", K(ret));
} else if (OB_FAIL(DfoTreeNormalizer<DfoInfo>::normalize(*px_root.root_dfo_))) {
LOG_WARN("fail normalize px tree", K(ret));
} else if (OB_FAIL(sched_order_gen.generate(*px_root.root_dfo_, edges))) {
LOG_WARN("fail generate sched order", K(ret));
} else if (OB_FAIL(current_thread_map.create(bucket_size,
ObModIds::OB_SQL_PX,
ObModIds::OB_SQL_PX))){
LOG_WARN("create hash map failed", K(ret));
} else if (OB_FAIL(current_group_map.create(bucket_size,
ObModIds::OB_SQL_PX,
ObModIds::OB_SQL_PX))){
}
#ifndef NDEBUG
for (int x = 0; x < edges.count(); ++x) {
LOG_DEBUG("dump dfo", K(x), K(*edges.at(x)));
}
#endif
int64_t threads = 0;
int64_t groups = 0;
int64_t max_threads = 0;
int64_t max_groups = 0;
for (int64_t i = 0; OB_SUCC(ret) && i < edges.count(); ++i) {
DfoInfo &child = *edges.at(i);
// schedule child if not scheduled.
if (OB_FAIL(schedule_dfo(child, threads, groups, current_thread_map, current_group_map))) {
LOG_WARN("schedule dfo failed", K(ret));
} else if (child.has_parent() && OB_FAIL(schedule_dfo(*child.parent_, threads, groups,
current_thread_map, current_group_map))) {
LOG_WARN("schedule parent dfo failed", K(ret));
} else if (child.has_sibling() && child.depend_sibling_->not_scheduled()) {
DfoInfo *sibling = child.depend_sibling_;
while (NULL != sibling && OB_SUCC(ret)) {
if (OB_UNLIKELY(!sibling->is_leaf_node())) {
ret = OB_ERR_UNEXPECTED;
LOG_WARN("sibling must be leaf node", K(ret));
} else if (OB_FAIL(schedule_dfo(*sibling, threads, groups, current_thread_map,
current_group_map))) {
LOG_WARN("schedule sibling failed", K(ret));
} else if (OB_FAIL(update_max_thead_group_info(threads, groups,
current_thread_map, current_group_map,
max_threads, max_groups,
max_parallel_thread_map, max_parallel_group_map))) {
LOG_WARN("update max_thead group info failed", K(ret));
} else if (OB_FAIL(finish_dfo(*sibling, threads, groups, current_thread_map,
current_group_map))) {
LOG_WARN("finish sibling failed", K(ret));
} else {
sibling = sibling->depend_sibling_;
}
}
} else {
if (OB_FAIL(update_max_thead_group_info(threads, groups,
current_thread_map, current_group_map,
max_threads, max_groups,
max_parallel_thread_map, max_parallel_group_map))) {
LOG_WARN("update max_thead group info failed", K(ret));
}
}
if (OB_SUCC(ret)) {
if (OB_FAIL(finish_dfo(child, threads, groups, current_thread_map,
current_group_map))) {
LOG_WARN("finish sibling failed", K(ret));
}
}
#ifndef NDEBUG
for (int x = 0; x < edges.count(); ++x) {
LOG_DEBUG("dump dfo step.finish",
K(i), K(x), K(*edges.at(x)), K(threads), K(max_threads), K(groups), K(max_groups));
}
#endif
}
max_parallel_thread_count = max_threads;
max_parallel_group_count = max_groups;
LOG_TRACE("end walk_through_dfo_tree", K(max_parallel_thread_count), K(max_parallel_group_count));
return ret;
}
int ObPxResourceAnalyzer::px_tree_append(ObHashMap<ObAddr, int64_t> &max_parallel_count,
ObHashMap<ObAddr, int64_t> &parallel_count)
{
int ret = OB_SUCCESS;
for (ObHashMap<ObAddr, int64_t>::const_iterator it = parallel_count.begin();
OB_SUCC(ret) && it != parallel_count.end(); ++it) {
bool is_exist = true;
int64_t dop = 0;
if (OB_FAIL(max_parallel_count.get_refactored(it->first, dop))) {
if (ret != OB_HASH_NOT_EXIST) {
LOG_WARN("get refactored failed", K(ret), K(it->first));
} else {
is_exist = false;
ret = OB_SUCCESS;
}
}
if (OB_SUCC(ret)) {
dop += it->second;
if (OB_FAIL(max_parallel_count.set_refactored(it->first, dop, is_exist))){
LOG_WARN("set refactored failed", K(ret), K(it->first), K(dop), K(is_exist));
}
}
}
return ret;
}
int ObPxResourceAnalyzer::schedule_dfo(
DfoInfo &dfo,
int64_t &threads,
int64_t &groups,
ObHashMap<ObAddr, int64_t> &current_thread_map,
ObHashMap<ObAddr, int64_t> &current_group_map)
{
int ret = OB_SUCCESS;
if (dfo.not_scheduled()) {
dfo.set_scheduled();
threads += dfo.get_dop();
const int64_t group = 1;
groups += group;
ObHashSet<ObAddr> &addr_set = dfo.location_addr_;
// we assume that should allocate same thread count for each sqc in the dfo.
// this may not true. but we can't decide the real count for each sqc. just let it be for now
const int64_t dop_per_addr = 0 == addr_set.size() ? dfo.get_dop() : (dfo.get_dop() + addr_set.size() - 1) / addr_set.size();
if (OB_FAIL(update_parallel_map(current_thread_map, addr_set, dop_per_addr))) {
LOG_WARN("increase current thread map failed", K(ret));
} else if (OB_FAIL(update_parallel_map(current_group_map, addr_set, group))) {
LOG_WARN("increase current group map failed", K(ret));
}
}
return ret;
}
int ObPxResourceAnalyzer::finish_dfo(
DfoInfo &dfo,
int64_t &threads,
int64_t &groups,
ObHashMap<ObAddr, int64_t> &current_thread_map,
ObHashMap<ObAddr, int64_t> &current_group_map)
{
int ret = OB_SUCCESS;
if (dfo.is_scheduling() && (dfo.is_leaf_node() || dfo.is_all_child_finish())) {
dfo.set_finished();
threads -= dfo.get_dop();
const int64_t group = 1;
groups -= group;
ObHashSet<ObAddr> &addr_set = dfo.location_addr_;
const int64_t dop_per_addr = 0 == addr_set.size() ? dfo.get_dop() : (dfo.get_dop() + addr_set.size() - 1) / addr_set.size();
if (OB_FAIL(update_parallel_map(current_thread_map, addr_set, -dop_per_addr))) {
LOG_WARN("decrease current thread map failed", K(ret));
} else if (OB_FAIL(update_parallel_map(current_group_map, addr_set, -group))) {
LOG_WARN("decrease current group map failed", K(ret));
}
}
return ret;
}
int ObPxResourceAnalyzer::update_parallel_map(
ObHashMap<ObAddr, int64_t> &parallel_map,
const ObHashSet<ObAddr> &addr_set,
int64_t count)
{
int ret = OB_SUCCESS;
for (hash::ObHashSet<ObAddr>::const_iterator it = addr_set.begin();
OB_SUCC(ret) && it != addr_set.end(); it++) {
if (OB_FAIL(update_parallel_map_one_addr(parallel_map, it->first, count, true))) {
LOG_WARN("update parallel map one addr failed", K(ret));
}
}
return ret;
}
// Update current_parallel_map or max_parallel_map.
// When update current_parallel_map, append is true, because we are increasing or decreasing count.
// When update max_parallel_map, append is false.
int ObPxResourceAnalyzer::update_parallel_map_one_addr(
ObHashMap<ObAddr, int64_t> &parallel_map,
const ObAddr &addr,
int64_t count,
bool append)
{
int ret = OB_SUCCESS;
bool is_exist = true;
int64_t origin_count = 0;
if (OB_FAIL(parallel_map.get_refactored(addr, origin_count))) {
if (ret != OB_HASH_NOT_EXIST) {
LOG_WARN("get refactored failed", K(ret), K(addr));
} else {
is_exist = false;
ret = OB_SUCCESS;
}
}
if (OB_SUCC(ret)) {
if (append) {
origin_count += count;
} else {
origin_count = max(origin_count, count);
}
if (OB_FAIL(parallel_map.set_refactored(addr, origin_count, is_exist))){
LOG_WARN("set refactored failed", K(ret), K(addr), K(origin_count), K(is_exist));
}
}
return ret;
}
int ObPxResourceAnalyzer::update_max_thead_group_info(
const int64_t threads,
const int64_t groups,
const ObHashMap<ObAddr, int64_t> &current_thread_map,
const ObHashMap<ObAddr, int64_t> &current_group_map,
int64_t &max_threads,
int64_t &max_groups,
ObHashMap<ObAddr, int64_t> &max_parallel_thread_map,
ObHashMap<ObAddr, int64_t> &max_parallel_group_map)
{
int ret = OB_SUCCESS;
max_threads = max(threads, max_threads);
max_groups = max(groups, max_groups);
for (ObHashMap<ObAddr, int64_t>::const_iterator it = current_thread_map.begin();
OB_SUCC(ret) && it != current_thread_map.end(); ++it) {
if (OB_FAIL(update_parallel_map_one_addr(max_parallel_thread_map, it->first, it->second, false))) {
LOG_WARN("update parallel map one addr failed", K(ret));
}
}
for (ObHashMap<ObAddr, int64_t>::const_iterator it = current_group_map.begin();
OB_SUCC(ret) && it != current_group_map.end(); ++it) {
if (OB_FAIL(update_parallel_map_one_addr(max_parallel_group_map, it->first, it->second, false))) {
LOG_WARN("update parallel map one addr failed", K(ret));
}
}
return ret;
}
int LogLowestCommonAncestorFinder::find_op_common_ancestor(
const ObLogicalOperator *left, const ObLogicalOperator *right, const ObLogicalOperator *&ancestor)
{
int ret = OB_SUCCESS;
ObSEArray<const ObLogicalOperator *, 32> ancestors;
const ObLogicalOperator *parent = left;
while (OB_NOT_NULL(parent) && OB_SUCC(ret)) {
if (OB_FAIL(ancestors.push_back(parent))) {
LOG_WARN("failed to push back");
} else {
parent = parent->get_parent();
}
}
parent = right;
bool find = false;
while (OB_NOT_NULL(parent) && OB_SUCC(ret) && !find) {
for (int64_t i = 0; i < ancestors.count() && OB_SUCC(ret); ++i) {
if (parent == ancestors.at(i)) {
find = true;
ancestor = parent;
break;
}
}
parent = parent->get_parent();
}
return ret;
}
int LogLowestCommonAncestorFinder::get_op_dfo(const ObLogicalOperator *op, DfoInfo *root_dfo, DfoInfo *&op_dfo)
{
int ret = OB_SUCCESS;
const ObLogicalOperator *parent = op;
const ObLogicalOperator *dfo_root_op = nullptr;
while (OB_NOT_NULL(parent) && OB_SUCC(ret)) {
if (log_op_def::LOG_EXCHANGE == parent->get_type() &&
static_cast<const ObLogExchange&>(*parent).is_px_producer()) {
dfo_root_op = parent;
break;
} else {
parent = parent->get_parent();
}
}
DfoInfo *dfo = nullptr;
bool find = false;
ObSEArray<DfoInfo *, 16> dfo_queue;
int64_t cur_que_front = 0;
if (OB_FAIL(dfo_queue.push_back(root_dfo))) {
LOG_WARN("failed to push back");
}
while (cur_que_front < dfo_queue.count() && !find && OB_SUCC(ret)) {
int64_t cur_que_size = dfo_queue.count() - cur_que_front;
for (int64_t i = 0; i < cur_que_size && OB_SUCC(ret); ++i) {
dfo = dfo_queue.at(cur_que_front);
if (dfo->get_root_op() == dfo_root_op) {
op_dfo = dfo;
find = true;
break;
} else {
// push child into the queue
for (int64_t child_idx = 0; OB_SUCC(ret) && child_idx < dfo->get_child_count(); ++child_idx) {
if (OB_FAIL(dfo_queue.push_back(dfo->child_dfos_.at(child_idx)))) {
LOG_WARN("failed to push back child dfo");
}
}
}
if (OB_SUCC(ret)) {
cur_que_front++;
}
}
}
return ret;
}