oceanbase/unittest/libobcdc/test_ob_concurrent_seq_queue.cpp
2023-04-13 06:46:35 +00:00

199 lines
5.7 KiB
C++

/**
* Copyright (c) 2021 OceanBase
* OceanBase CE is licensed under Mulan PubL v2.
* You can use this software according to the terms and conditions of the Mulan PubL v2.
* You may obtain a copy of Mulan PubL v2 at:
* http://license.coscl.org.cn/MulanPubL-2.0
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PubL v2 for more details.
*/
#include <gtest/gtest.h>
#include "ob_concurrent_seq_queue.h"
#include "share/ob_define.h"
#include "lib/time/ob_time_utility.h"
#include "lib/atomic/ob_atomic.h"
namespace oceanbase
{
namespace common
{
class TestConSeqQueue : public ::testing::Test
{
public:
static const int64_t RUN_TIME = 1L * 60L * 60L * 1000L * 1000L;
static const int64_t THREAD_NUM = 20;
static const int64_t STAT_INTERVAL = 5 * 1000 * 1000;
public:
TestConSeqQueue() {}
~TestConSeqQueue() {}
virtual void SetUp()
{
ASSERT_EQ(0, queue_.init(1024, ObMemAttr(OB_SERVER_TENANT_ID, ObNewModIds::TEST)));
produce_seq_ = 0;
consume_seq_ = 0;
consume_thread_counter_ = 0;
consume_task_count_ = 0;
last_stat_time_ = 0;
last_consume_task_count_ = 0;
stop_flag_ = false;
}
virtual void TearDown()
{
queue_.destroy();
}
static void *produce_thread_func(void *args);
static void *consume_thread_func(void *args);
void run_produce();
void run_consume();
public:
pthread_t produce_threads_[THREAD_NUM];
pthread_t consume_threads_[THREAD_NUM];
int64_t consume_thread_counter_;
ObConcurrentSeqQueue queue_;
int64_t produce_seq_ CACHE_ALIGNED;
int64_t consume_seq_ CACHE_ALIGNED;
int64_t consume_task_count_ CACHE_ALIGNED;
int64_t last_consume_task_count_ CACHE_ALIGNED;
int64_t last_stat_time_ CACHE_ALIGNED;
volatile bool stop_flag_ CACHE_ALIGNED;
};
TEST_F(TestConSeqQueue, basic)
{
ObConcurrentSeqQueue queue;
void *data = 0;
EXPECT_EQ(0, queue.init(1024, ObMemAttr(OB_SERVER_TENANT_ID, ObNewModIds::TEST)));
EXPECT_EQ(0, queue.push((void*)0, 0, 0));
EXPECT_EQ(0, queue.push((void*)1, 1, 0));
EXPECT_EQ(0, queue.push((void*)2, 2, 0));
EXPECT_EQ(0, queue.pop(data, 0, 0));
EXPECT_EQ(0, (int64_t)data);
EXPECT_EQ(0, queue.pop(data, 1, 0));
EXPECT_EQ(1, (int64_t)data);
EXPECT_EQ(0, queue.pop(data, 2, 0));
EXPECT_EQ(2, (int64_t)data);
// Failed to push and pop elements with the same serial number again
EXPECT_NE(0, queue.push((void*)0, 0, 0));
EXPECT_NE(0, queue.push((void*)1, 1, 0));
EXPECT_NE(0, queue.push((void*)2, 2, 0));
EXPECT_NE(0, queue.pop(data, 0, 0));
EXPECT_NE(0, queue.pop(data, 1, 0));
EXPECT_NE(0, queue.pop(data, 2, 0));
}
void *TestConSeqQueue::produce_thread_func(void *args)
{
if (NULL != args) {
((TestConSeqQueue *)args)->run_produce();
}
return NULL;
}
void TestConSeqQueue::run_produce()
{
int ret = OB_SUCCESS;
int64_t batch_count = 1000;
while (OB_SUCCESS == ret && ! stop_flag_) {
for (int64_t index = 0; OB_SUCCESS == ret && index < batch_count; index++) {
int64_t seq = ATOMIC_FAA(&produce_seq_, 1);
while (! stop_flag_ && OB_TIMEOUT == (ret = queue_.push((void*)seq, seq, 1 * 1000 * 1000)));
if (! stop_flag_) {
EXPECT_EQ(OB_SUCCESS, ret);
}
}
}
}
void *TestConSeqQueue::consume_thread_func(void *args)
{
if (NULL != args) {
((TestConSeqQueue *)args)->run_consume();
}
return NULL;
}
void TestConSeqQueue::run_consume()
{
int ret = OB_SUCCESS;
int64_t batch_count = 1000;
int64_t end_time = ObTimeUtility::current_time();
int64_t thread_index = ATOMIC_FAA(&consume_thread_counter_, 0);
while (OB_SUCCESS == ret && !stop_flag_) {
for (int64_t index = 0; OB_SUCCESS == ret && index < batch_count; index++) {
int64_t seq = ATOMIC_FAA(&consume_seq_, 1);
void *data = NULL;
while (! stop_flag_ && OB_TIMEOUT == (ret = queue_.pop(data, seq, 1 * 1000 * 1000)));
if (! stop_flag_) {
EXPECT_EQ(OB_SUCCESS, ret);
EXPECT_EQ(seq, (int64_t)data);
ATOMIC_INC(&consume_task_count_);
}
}
int64_t cur_time = ObTimeUtility::current_time();
if (OB_UNLIKELY(0 == thread_index) && cur_time - last_stat_time_ > STAT_INTERVAL) {
int64_t task_count = ATOMIC_LOAD(&consume_task_count_);
int64_t consume_seq = ATOMIC_LOAD(&consume_seq_);
int64_t produce_seq = ATOMIC_LOAD(&produce_seq_);
if (0 != last_stat_time_) {
int64_t delta_task_count = task_count - last_consume_task_count_;
int64_t delta_time_sec = (cur_time - last_stat_time_)/1000000;
LIB_LOG(INFO, "STAT", "POP_TPS", delta_task_count/delta_time_sec, K(delta_task_count),
K(consume_seq), K(produce_seq), K(INT32_MAX));
}
last_stat_time_ = cur_time;
last_consume_task_count_ = task_count;
}
if (end_time - cur_time <= 0) {
stop_flag_ = true;
}
}
}
TEST_F(TestConSeqQueue, thread)
{
for (int64_t index = 0; index < THREAD_NUM; index++) {
ASSERT_EQ(0, pthread_create(produce_threads_ + index, NULL, produce_thread_func, this));
}
for (int64_t index = 0; index < THREAD_NUM; index++) {
ASSERT_EQ(0, pthread_create(consume_threads_ + index, NULL, consume_thread_func, this));
}
for (int64_t index = 0; index < THREAD_NUM; index++) {
pthread_join(produce_threads_[index], NULL);
produce_threads_[index] = 0;
}
for (int64_t index = 0; index < THREAD_NUM; index++) {
pthread_join(consume_threads_[index], NULL);
consume_threads_[index] = 0;
}
}
}
}
int main(int argc, char **argv)
{
oceanbase::common::ObLogger::get_logger().set_log_level("INFO");
OB_LOGGER.set_log_level("INFO");
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}