156 lines
5.1 KiB
Python
Executable File
156 lines
5.1 KiB
Python
Executable File
from mylog.mylog import MyLogger
|
|
from op_generator import op_generator
|
|
from cost_test_conf import Config
|
|
import subprocess as sp
|
|
import os
|
|
from lmfit import Model
|
|
import numpy as np
|
|
|
|
hash_cls = op_generator.gen_operator("hash_join")
|
|
conf = Config()
|
|
conf.u_to_test_op_c = 'hash'
|
|
conf.is_not_running_as_unittest_c = True
|
|
conf.schema_file_c = 'c10k1x2.schema'
|
|
conf.left_row_count_c = 1000
|
|
conf.right_row_count_c = 1000
|
|
conf.left_min_c = 1
|
|
conf.right_min_c = 1
|
|
conf.is_random_c = True
|
|
conf.left_pj_c = 10
|
|
conf.right_pj_c = 10
|
|
hash_op = hash_cls(conf)
|
|
result_file_name = "hash_join_result"
|
|
if os.path.exists(result_file_name):
|
|
os.remove(result_file_name)
|
|
|
|
# step 2 do bench and gen data
|
|
|
|
case_run_time = 7
|
|
case_count = 0
|
|
row_count_max = 100000;
|
|
row_count_step = 2000;
|
|
total_case_count = row_count_max/row_count_step
|
|
total_case_count *= total_case_count
|
|
|
|
print "Total case count %s ..." % (total_case_count)
|
|
for left_row_count in xrange(1000, row_count_max + 1, row_count_step):
|
|
for right_row_count in xrange(1000, row_count_max + 1, row_count_step):
|
|
case_count+=1
|
|
hash_op.conf.left_row_count_c = left_row_count
|
|
hash_op.conf.right_row_count_c = right_row_count
|
|
hash_op.conf.left_max_c = max(left_row_count, right_row_count) * 3
|
|
hash_op.conf.right_max_c = hash_op.conf.left_max_c
|
|
sp.check_call("echo -n '%s,%s,' >> %s" % (left_row_count, right_row_count, result_file_name), shell=True)
|
|
print "Running case %s / %s ... : %s " % (case_count, total_case_count, hash_op.get_bench_cmd())
|
|
print "%s >> %s" % (hash_op.get_bench_cmd(), result_file_name)
|
|
sp.check_call("%s >> %s" % (hash_op.get_bench_cmd(), result_file_name), shell=True)
|
|
|
|
# step 3 process data
|
|
final_file_name = "hash_join_result_final"
|
|
if os.path.exists(final_file_name):
|
|
os.remove(final_file_name)
|
|
|
|
data_cmd = hash_op.get_data_preprocess_cmd()
|
|
sp.check_call(data_cmd, shell=True)
|
|
|
|
# step 4 fit and output
|
|
|
|
out_model_file_name = "hash_model"
|
|
if os.path.exists(out_model_file_name):
|
|
os.remove(out_model_file_name)
|
|
|
|
|
|
def hash_model_form(args,
|
|
Tstart_up,
|
|
Tbuild_htable,
|
|
Tright_row_once,
|
|
Tconvert_tuple,
|
|
#Tequal_cond,
|
|
#Tfilter_cond,
|
|
Tjoin_row
|
|
):
|
|
(
|
|
Nres_row,
|
|
Nleft_row,
|
|
Nright_row,
|
|
Nequal_cond,
|
|
) = args
|
|
total_cost = Tstart_up # Tstartup
|
|
total_cost += Nleft_row * Tbuild_htable
|
|
total_cost += Nright_row * Tright_row_once
|
|
total_cost += Nequal_cond * Tconvert_tuple
|
|
total_cost += Nres_row * Tjoin_row
|
|
return total_cost
|
|
|
|
|
|
def hash_model_arr(arg_sets,
|
|
Tstart_up,
|
|
Tbuild_htable,
|
|
Tright_row_once,
|
|
Tconvert_tuple,
|
|
#Tequal_cond,
|
|
#Tfilter_cond,
|
|
Tjoin_row):
|
|
res = []
|
|
for single_arg_set in arg_sets:
|
|
res.append(hash_model_form(single_arg_set,
|
|
Tstart_up,
|
|
Tbuild_htable,
|
|
Tright_row_once,
|
|
Tconvert_tuple,
|
|
#Tequal_cond,
|
|
#Tfilter_cond,
|
|
Tjoin_row))
|
|
return np.array(res)
|
|
|
|
|
|
def extract_info_from_line(line):
|
|
splited = line.split(",")
|
|
line_info = []
|
|
for item in splited:
|
|
line_info.append(float(item))
|
|
return line_info
|
|
|
|
hash_model = Model(hash_model_arr)
|
|
hash_model.set_param_hint("Tstart_up", min=0.0)
|
|
hash_model.set_param_hint("Tbuild_htable", min=0.0)
|
|
hash_model.set_param_hint("Tright_row_once", min=0.0)
|
|
hash_model.set_param_hint("Tconvert_tuple", min=0.0)
|
|
hash_model.set_param_hint("Tjoin_row", min=0.0)
|
|
file = open(final_file_name, "r")
|
|
arg_sets = []
|
|
times = []
|
|
case_params = []
|
|
for line in file:
|
|
if line.startswith('#'):
|
|
continue
|
|
case_param = extract_info_from_line(line)
|
|
case_params.append(case_param)
|
|
arg_sets.append((case_param[2], case_param[0], case_param[1], case_param[3]))
|
|
times.append(case_param[4])
|
|
file.close()
|
|
arg_sets_np = np.array(arg_sets)
|
|
times_np = np.array(times)
|
|
|
|
result = hash_model.fit(times_np, arg_sets=arg_sets_np,
|
|
Tstartup=0.0,
|
|
Tbuild_htable=0.0,
|
|
Tright_row_once=0.0,
|
|
Tconvert_tuple=0.0,
|
|
#Tequal_cond=0.0,
|
|
#Tfilter_cond=0.0,
|
|
Tjoin_row=0.0)
|
|
res_line = str(result.best_values["Tstart_up"]) + ","
|
|
res_line += str(result.best_values["Tbuild_htable"]) + ","
|
|
res_line += str(result.best_values["Tright_row_once"]) + ","
|
|
res_line += str(result.best_values["Tconvert_tuple"]) + ","
|
|
#res_line += str(result.best_values["Tequal_cond"]) + ","
|
|
#res_line += str(result.best_values["Tfilter_cond"]) + ","
|
|
res_line += str(result.best_values["Tjoin_row"])
|
|
print result.fit_report()
|
|
|
|
if out_model_file_name:
|
|
out_file = open(out_model_file_name, "w")
|
|
out_file.write(res_line)
|
|
out_file.close()
|