3412 lines
114 KiB
C++
3412 lines
114 KiB
C++
/* -------------------------------------------------------------------------
|
|
*
|
|
* deparse.c
|
|
* Query deparser for postgres_fdw
|
|
*
|
|
* This file includes functions that examine query WHERE clauses to see
|
|
* whether they're safe to send to the remote server for execution, as
|
|
* well as functions to construct the query text to be sent. The latter
|
|
* functionality is annoyingly duplicative of ruleutils.c, but there are
|
|
* enough special considerations that it seems best to keep this separate.
|
|
* One saving grace is that we only need deparse logic for node types that
|
|
* we consider safe to send.
|
|
*
|
|
* We assume that the remote session's search_path is exactly "pg_catalog",
|
|
* and thus we need schema-qualify all and only names outside pg_catalog.
|
|
*
|
|
* We do not consider that it is ever safe to send COLLATE expressions to
|
|
* the remote server: it might not have the same collation names we do.
|
|
* (Later we might consider it safe to send COLLATE "C", but even that would
|
|
* fail on old remote servers.) An expression is considered safe to send
|
|
* only if all operator/function input collations used in it are traceable to
|
|
* Var(s) of the foreign table. That implies that if the remote server gets
|
|
* a different answer than we do, the foreign table's columns are not marked
|
|
* with collations that match the remote table's columns, which we can
|
|
* consider to be user error.
|
|
*
|
|
* Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd.
|
|
* Portions Copyright (c) 2012-2014, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* contrib/postgres_fdw/deparse.c
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "postgres_fdw.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/htup.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/transam.h"
|
|
#include "catalog/pg_collation.h"
|
|
#include "catalog/pg_namespace.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/defrem.h"
|
|
#include "libpq/pqexpbuffer.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/typcache.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "optimizer/prep.h"
|
|
#include "catalog/pg_aggregate.h"
|
|
#include "internal_interface.h"
|
|
|
|
|
|
/*
|
|
* Global context for foreign_expr_walker's search of an expression tree.
|
|
*/
|
|
typedef struct foreign_glob_cxt {
|
|
PlannerInfo *root; /* global planner state */
|
|
RelOptInfo *foreignrel; /* the foreign relation we are planning for */
|
|
Relids relids; /* relids of base relations in the underlying scan */
|
|
} foreign_glob_cxt;
|
|
|
|
/*
|
|
* Local (per-tree-level) context for foreign_expr_walker's search.
|
|
* This is concerned with identifying collations used in the expression.
|
|
*/
|
|
typedef enum {
|
|
FDW_COLLATE_NONE, /* expression is of a noncollatable type, or
|
|
* it has default collation that is not
|
|
* traceable to a foreign Var */
|
|
FDW_COLLATE_SAFE, /* collation derives from a foreign Var */
|
|
FDW_COLLATE_UNSAFE /* collation is non-default and derives from
|
|
* something other than a foreign Var */
|
|
} FDWCollateState;
|
|
|
|
typedef struct foreign_loc_cxt {
|
|
Oid collation; /* OID of current collation, if any */
|
|
FDWCollateState state; /* state of current collation choice */
|
|
} foreign_loc_cxt;
|
|
|
|
/*
|
|
* Context for deparseExpr
|
|
*/
|
|
typedef struct deparse_expr_cxt {
|
|
PlannerInfo *root; /* global planner state */
|
|
RelOptInfo *foreignrel; /* the foreign relation we are planning for */
|
|
RelOptInfo *scanrel; /* the underlying scan relation. Same as
|
|
* foreignrel, when that represents a join or
|
|
* a base relation. */
|
|
StringInfo buf; /* output buffer to append to */
|
|
List **params_list; /* exprs that will become remote Params */
|
|
} deparse_expr_cxt;
|
|
|
|
#define REL_ALIAS_PREFIX "r"
|
|
/* Handy macro to add relation name qualification */
|
|
#define ADD_REL_QUALIFIER(buf, varno) \
|
|
appendStringInfo((buf), "%s%d.", REL_ALIAS_PREFIX, (varno))
|
|
#define SUBQUERY_REL_ALIAS_PREFIX "s"
|
|
#define SUBQUERY_COL_ALIAS_PREFIX "c"
|
|
|
|
/*
|
|
* Functions to determine whether an expression can be evaluated safely on
|
|
* remote server.
|
|
*/
|
|
static bool foreign_expr_walker(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *outer_cxt,
|
|
foreign_loc_cxt *case_arg_cxt);
|
|
|
|
/*
|
|
* Functions to construct string representation of a node tree.
|
|
*/
|
|
static void deparseTargetList(StringInfo buf, RangeTblEntry *rte, Index rtindex, Relation rel, bool is_returning,
|
|
Bitmapset *attrs_used, bool qualify_col, List **retrieved_attrs);
|
|
static void deparseReturningList(StringInfo buf, RangeTblEntry *root, Index rtindex, Relation rel, bool trig_after_row,
|
|
List *withCheckOptionList, List *returningList, List **retrieved_attrs);
|
|
static void deparseColumnRef(StringInfo buf, int varno, int varattno, RangeTblEntry *rte, bool qualify_col);
|
|
static void deparseRelation(StringInfo buf, Relation rel);
|
|
static void deparseStringLiteral(StringInfo buf, const char *val);
|
|
static void deparseExpr(Expr *expr, deparse_expr_cxt *context);
|
|
static void deparseVar(Var *node, deparse_expr_cxt *context);
|
|
static void deparseConst(Const *node, deparse_expr_cxt *context, int showtype);
|
|
static void deparseParam(Param *node, deparse_expr_cxt *context);
|
|
static void deparseArrayRef(ArrayRef *node, deparse_expr_cxt *context);
|
|
static void deparseFuncExpr(FuncExpr *node, deparse_expr_cxt *context);
|
|
static void deparseOpExpr(OpExpr *node, deparse_expr_cxt *context);
|
|
static void deparseOperatorName(StringInfo buf, Form_pg_operator opform);
|
|
static void deparseDistinctExpr(DistinctExpr *node, deparse_expr_cxt *context);
|
|
static void deparseScalarArrayOpExpr(ScalarArrayOpExpr *node, deparse_expr_cxt *context);
|
|
static void deparseRelabelType(RelabelType *node, deparse_expr_cxt *context);
|
|
static void deparseBoolExpr(BoolExpr *node, deparse_expr_cxt *context);
|
|
static void deparseNullTest(NullTest *node, deparse_expr_cxt *context);
|
|
static void deparseCaseExpr(CaseExpr *node, deparse_expr_cxt *context);
|
|
static void deparseArrayExpr(ArrayExpr *node, deparse_expr_cxt *context);
|
|
static void deparseAggref(Aggref *node, deparse_expr_cxt *context);
|
|
static void appendAggOrderBy(List *orderList, List *targetList, deparse_expr_cxt *context);
|
|
static void printRemoteParam(int paramindex, Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context);
|
|
static void printRemotePlaceholder(Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context);
|
|
static void deparseSelectSql(List *tlist, bool is_subquery, List **retrieved_attrs, deparse_expr_cxt *context);
|
|
static void deparseLockingClause(deparse_expr_cxt *context);
|
|
static void appendFunctionName(Oid funcid, deparse_expr_cxt *context);
|
|
static void deparseFromExpr(List *quals, deparse_expr_cxt *context);
|
|
static void deparseSubqueryTargetList(deparse_expr_cxt *context);
|
|
static void deparseExplicitTargetList(List *tlist, bool is_returning, List **retrieved_attrs, deparse_expr_cxt *context);
|
|
static void appendConditions(List *exprs, deparse_expr_cxt *context);
|
|
static void deparseFromExprForRel(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool use_alias,
|
|
Index ignore_rel, List **ignore_conds, List **params_list);
|
|
static void deparseRangeTblRef(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool make_subquery,
|
|
Index ignore_rel, List **ignore_conds, List **params_list);
|
|
|
|
static void appendOrderBySuffix(Oid sortop, Oid sortcoltype, bool nulls_first, deparse_expr_cxt *context);
|
|
static void appendAggOrderBy(List *orderList, List *targetList, deparse_expr_cxt *context);
|
|
static void appendLimitClause(deparse_expr_cxt *context);
|
|
static void appendOrderByClause(List *pathkeys, bool has_final_sort, deparse_expr_cxt *context);
|
|
static void appendGroupByClause(List *tlist, deparse_expr_cxt *context);
|
|
static Node *deparseSortGroupClause(Index ref, List *tlist, bool force_colno, deparse_expr_cxt *context);
|
|
|
|
static bool is_subquery_var(Var *node, RelOptInfo *foreignrel, int *relno, int *colno);
|
|
static void get_relation_column_alias_ids(Var *node, RelOptInfo *foreignrel, int *relno, int *colno);
|
|
/*
|
|
* Examine each qual clause in input_conds, and classify them into two groups,
|
|
* which are returned as two lists:
|
|
* - remote_conds contains expressions that can be evaluated remotely
|
|
* - local_conds contains expressions that can't be evaluated remotely
|
|
*/
|
|
void classifyConditions(PlannerInfo *root, RelOptInfo *baserel, List *input_conds, List **remote_conds,
|
|
List **local_conds)
|
|
{
|
|
ListCell *lc = NULL;
|
|
|
|
*remote_conds = NIL;
|
|
*local_conds = NIL;
|
|
|
|
foreach (lc, input_conds) {
|
|
RestrictInfo *ri = (RestrictInfo *)lfirst(lc);
|
|
|
|
if (is_foreign_expr(root, baserel, ri->clause)) {
|
|
*remote_conds = lappend(*remote_conds, ri);
|
|
} else {
|
|
*local_conds = lappend(*local_conds, ri);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if given expr is safe to evaluate on the foreign server.
|
|
*/
|
|
bool is_foreign_expr(PlannerInfo *root, RelOptInfo *baserel, Expr *expr)
|
|
{
|
|
foreign_glob_cxt glob_cxt;
|
|
foreign_loc_cxt loc_cxt;
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)(baserel->fdw_private);
|
|
|
|
/*
|
|
* Check that the expression consists of nodes that are safe to execute
|
|
* remotely.
|
|
*/
|
|
glob_cxt.root = root;
|
|
glob_cxt.foreignrel = baserel;
|
|
|
|
/*
|
|
* For an upper relation, use relids from its underneath scan relation,
|
|
* because the upperrel's own relids currently aren't set to anything
|
|
* meaningful by the core code. For other relation, use their own relids.
|
|
*/
|
|
if (IS_UPPER_REL(baserel)) {
|
|
glob_cxt.relids = fpinfo->outerrel->relids;
|
|
} else {
|
|
glob_cxt.relids = baserel->relids;
|
|
}
|
|
loc_cxt.collation = InvalidOid;
|
|
loc_cxt.state = FDW_COLLATE_NONE;
|
|
if (!foreign_expr_walker((Node *)expr, &glob_cxt, &loc_cxt, NULL)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If the expression has a valid collation that does not arise from a
|
|
* foreign var, the expression can not be sent over.
|
|
*/
|
|
if (loc_cxt.state == FDW_COLLATE_UNSAFE) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* An expression which includes any mutable functions can't be sent over
|
|
* because its result is not stable. For example, sending now() remote
|
|
* side could cause confusion from clock offsets. Future versions might
|
|
* be able to make this choice with more granularity. (We check this last
|
|
* because it requires a lot of expensive catalog lookups.)
|
|
*/
|
|
if (contain_mutable_functions((Node *)expr)) {
|
|
return false;
|
|
}
|
|
|
|
/* OK to evaluate on the remote server */
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_var(Node *node, foreign_glob_cxt *glob_cxt, Oid *collation,FDWCollateState * state)
|
|
{
|
|
Var *var = (Var *)node;
|
|
|
|
/*
|
|
* If the Var is from the foreign table, we consider its
|
|
* collation (if any) safe to use. If it is from another
|
|
* table, we treat its collation the same way as we would a
|
|
* Param's collation, ie it's not safe for it to have a
|
|
* non-default collation.
|
|
*/
|
|
if (bms_is_member(var->varno, glob_cxt->relids) && var->varlevelsup == 0) {
|
|
/* Var belongs to foreign table
|
|
* System columns other than ctid should not be sent to
|
|
* the remote, since we don't make any effort to ensure
|
|
* that local and remote values match (tableoid, in
|
|
* particular, almost certainly doesn't match).
|
|
*/
|
|
if (var->varattno < 0 && var->varattno != SelfItemPointerAttributeNumber) {
|
|
return false;
|
|
}
|
|
|
|
/* Else check the collation */
|
|
*collation = var->varcollid;
|
|
*state = OidIsValid(*collation) ? FDW_COLLATE_SAFE : FDW_COLLATE_NONE;
|
|
} else {
|
|
/* Var belongs to some other table */
|
|
*collation = var->varcollid;
|
|
if (*collation == InvalidOid || *collation == DEFAULT_COLLATION_OID) {
|
|
/*
|
|
* It's noncollatable, or it's safe to combine with a
|
|
* collatable foreign Var, so set state to NONE.
|
|
*/
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
/*
|
|
* Do not fail right away, since the Var might appear
|
|
* in a collation-insensitive context.
|
|
*/
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_const(Node *node, Oid *collation,FDWCollateState * state)
|
|
{
|
|
Const *c = (Const *)node;
|
|
|
|
/*
|
|
* If the constant has nondefault collation, either it's of a
|
|
* non-builtin type, or it reflects folding of a CollateExpr.
|
|
* It's unsafe to send to the remote unless it's used in a
|
|
* non-collation-sensitive context.
|
|
*/
|
|
*collation = c->constcollid;
|
|
if (*collation == InvalidOid || *collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_param(Node *node, Oid *collation,FDWCollateState * state)
|
|
{
|
|
Param *p = (Param *)node;
|
|
|
|
/*
|
|
* Collation rule is same as for Consts and non-foreign Vars.
|
|
*/
|
|
*collation = p->paramcollid;
|
|
if (*collation == InvalidOid || *collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_arrayref(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
ArrayRef *ar = (ArrayRef *)node;
|
|
|
|
/* Assignment should not be in restrictions. */
|
|
if (ar->refassgnexpr != NULL) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Recurse to remaining subexpressions. Since the array
|
|
* subscripts must yield (noncollatable) integers, they won't
|
|
* affect the inner_cxt state.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)ar->refupperindexpr, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
if (!foreign_expr_walker((Node *)ar->reflowerindexpr, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
if (!foreign_expr_walker((Node *)ar->refexpr, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* Array subscripting should yield same collation as input,
|
|
* but for safety use same logic as for function nodes.
|
|
*/
|
|
*collation = ar->refcollid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool foreign_expr_walker_funcexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
FuncExpr *fe = (FuncExpr *)node;
|
|
|
|
/*
|
|
* If function used by the expression is not built-in, it
|
|
* can't be sent to remote because it might have incompatible
|
|
* semantics on remote side.
|
|
*/
|
|
if (!is_builtin(fe->funcid)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)fe->args, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If function's input collation is not derived from a foreign
|
|
* Var, it can't be sent to remote.
|
|
*/
|
|
if (fe->inputcollid == InvalidOid) {
|
|
/* OK, inputs are all noncollatable */;
|
|
} else if (inner_cxt->state != FDW_COLLATE_SAFE || fe->inputcollid != inner_cxt->collation) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Detect whether node is introducing a collation not derived
|
|
* from a foreign Var. (If so, we just mark it unsafe for now
|
|
* rather than immediately returning false, since the parent
|
|
* node might not care.)
|
|
*/
|
|
*collation = fe->funccollid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_opexpr_distinctexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
OpExpr *oe = (OpExpr *)node;
|
|
|
|
/*
|
|
* Similarly, only built-in operators can be sent to remote.
|
|
* (If the operator is, surely its underlying function is
|
|
* too.)
|
|
*/
|
|
if (!is_builtin(oe->opno)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)oe->args, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If operator's input collation is not derived from a foreign
|
|
* Var, it can't be sent to remote.
|
|
*/
|
|
if (oe->inputcollid == InvalidOid) {
|
|
/* OK, inputs are all noncollatable */;
|
|
} else if (inner_cxt->state != FDW_COLLATE_SAFE || oe->inputcollid != inner_cxt->collation) {
|
|
return false;
|
|
}
|
|
|
|
/* Result-collation handling is same as for functions */
|
|
*collation = oe->opcollid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_scalararray_opexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
ScalarArrayOpExpr *oe = (ScalarArrayOpExpr *)node;
|
|
/*
|
|
* Again, only built-in operators can be sent to remote.
|
|
*/
|
|
if (!is_builtin(oe->opno)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)oe->args, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If operator's input collation is not derived from a foreign
|
|
* Var, it can't be sent to remote.
|
|
*/
|
|
if (oe->inputcollid == InvalidOid) {
|
|
/* OK, inputs are all noncollatable */;
|
|
} else if (inner_cxt->state != FDW_COLLATE_SAFE || oe->inputcollid != inner_cxt->collation) {
|
|
return false;
|
|
}
|
|
|
|
/* Output is always boolean and so noncollatable. */
|
|
*collation = InvalidOid;
|
|
*state = FDW_COLLATE_NONE;
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_relabeltype(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
RelabelType *r = (RelabelType *)node;
|
|
|
|
/*
|
|
* Recurse to input subexpression.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)r->arg, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* RelabelType must not introduce a collation not derived from
|
|
* an input foreign Var (same logic as for a real function).
|
|
*/
|
|
*collation = r->resultcollid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_boolexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
BoolExpr *b = (BoolExpr *)node;
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)b->args, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/* Output is always boolean and so noncollatable. */
|
|
*collation = InvalidOid;
|
|
*state = FDW_COLLATE_NONE;
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_nulltest(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation, FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
NullTest *nt = (NullTest *)node;
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)nt->arg, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/* Output is always boolean and so noncollatable. */
|
|
*collation = InvalidOid;
|
|
*state = FDW_COLLATE_NONE;
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_caseexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation, FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
CaseExpr *ce = (CaseExpr *)node;
|
|
foreign_loc_cxt arg_cxt;
|
|
foreign_loc_cxt tmp_cxt;
|
|
ListCell *lc = NULL;
|
|
|
|
/*
|
|
* Recurse to CASE's arg expression, if any. Its collation
|
|
* has to be saved aside for use while examining CaseTestExprs
|
|
* within the WHEN expressions.
|
|
*/
|
|
arg_cxt.collation = InvalidOid;
|
|
arg_cxt.state = FDW_COLLATE_NONE;
|
|
if (ce->arg) {
|
|
if (!foreign_expr_walker((Node *)ce->arg, glob_cxt, &arg_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Examine the CaseWhen subexpressions. */
|
|
foreach (lc, ce->args) {
|
|
CaseWhen *cw = lfirst_node(CaseWhen, lc);
|
|
|
|
if (ce->arg) {
|
|
/*
|
|
* In a CASE-with-arg, the parser should have produced
|
|
* WHEN clauses of the form "CaseTestExpr = RHS",
|
|
* possibly with an implicit coercion inserted above
|
|
* the CaseTestExpr. However in an expression that's
|
|
* been through the optimizer, the WHEN clause could
|
|
* be almost anything (since the equality operator
|
|
* could have been expanded into an inline function).
|
|
* In such cases forbid pushdown, because
|
|
* deparseCaseExpr can't handle it.
|
|
*/
|
|
Node *whenExpr = (Node *)cw->expr;
|
|
List *opArgs = NULL;
|
|
|
|
if (!IsA(whenExpr, OpExpr)) {
|
|
return false;
|
|
}
|
|
|
|
opArgs = ((OpExpr *)whenExpr)->args;
|
|
if (list_length(opArgs) != 2 || !IsA(strip_implicit_coercions((Node*)linitial(opArgs)), CaseTestExpr)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recurse to WHEN expression, passing down the arg info.
|
|
* Its collation doesn't affect the result (really, it
|
|
* should be boolean and thus not have a collation).
|
|
*/
|
|
tmp_cxt.collation = InvalidOid;
|
|
tmp_cxt.state = FDW_COLLATE_NONE;
|
|
if (!foreign_expr_walker((Node *)cw->expr, glob_cxt, &tmp_cxt, &arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/* Recurse to THEN expression. */
|
|
if (!foreign_expr_walker((Node *)cw->result, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Recurse to ELSE expression. */
|
|
if (!foreign_expr_walker((Node *)ce->defresult, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Detect whether node is introducing a collation not derived
|
|
* from a foreign Var. (If so, we just mark it unsafe for now
|
|
* rather than immediately returning false, since the parent
|
|
* node might not care.) This is the same as for function
|
|
* nodes, except that the input collation is derived from only
|
|
* the THEN and ELSE subexpressions.
|
|
*/
|
|
*collation = ce->casecollid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_casetestexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation, FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
CaseTestExpr *c = (CaseTestExpr *)node;
|
|
|
|
/* Punt if we seem not to be inside a CASE arg WHEN. */
|
|
if (!case_arg_cxt) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, any nondefault collation attached to the
|
|
* CaseTestExpr node must be derived from foreign Var(s) in
|
|
* the CASE arg.
|
|
*/
|
|
*collation = c->collation;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (case_arg_cxt->state == FDW_COLLATE_SAFE && *collation == case_arg_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_arrayexpr(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation, FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
ArrayExpr *a = (ArrayExpr *)node;
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)a->elements, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ArrayExpr must not introduce a collation not derived from
|
|
* an input foreign Var (same logic as for a function).
|
|
*/
|
|
*collation = a->array_collid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_list(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
List *l = (List *)node;
|
|
ListCell *lc = NULL;
|
|
|
|
/*
|
|
* Recurse to component subexpressions.
|
|
*/
|
|
foreach (lc, l) {
|
|
if (!foreign_expr_walker((Node *)lfirst(lc), glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When processing a list, collation state just bubbles up
|
|
* from the list elements.
|
|
*/
|
|
*collation = inner_cxt->collation;
|
|
*state = inner_cxt->state;
|
|
return true;
|
|
}
|
|
|
|
static bool foreign_expr_walker_aggref(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
Aggref *agg = (Aggref *)node;
|
|
ListCell *lc = NULL;
|
|
|
|
/* Not safe to pushdown when not in grouping context */
|
|
if (!IS_UPPER_REL(glob_cxt->foreignrel)) {
|
|
return false;
|
|
}
|
|
|
|
/* As usual, it must be shippable. */
|
|
if (!is_builtin(agg->aggfnoid)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Recurse to input args. aggdirectargs, aggorder and
|
|
* aggdistinct are all present in args, so no need to check
|
|
* their shippability explicitly.
|
|
*/
|
|
foreach (lc, agg->args) {
|
|
Node *n = (Node *)lfirst(lc);
|
|
|
|
/* If TargetEntry, extract the expression from it */
|
|
if (IsA(n, TargetEntry)) {
|
|
TargetEntry *tle = (TargetEntry *)n;
|
|
n = (Node *)tle->expr;
|
|
}
|
|
|
|
if (!foreign_expr_walker(n, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For aggorder elements, check whether the sort operator, if
|
|
* specified, is shippable or not.
|
|
*/
|
|
if (agg->aggorder) {
|
|
ListCell *lc = NULL;
|
|
foreach (lc, agg->aggorder) {
|
|
SortGroupClause *srt = (SortGroupClause *)lfirst(lc);
|
|
Oid sortcoltype;
|
|
TypeCacheEntry *typentry = NULL;
|
|
TargetEntry *tle = NULL;
|
|
|
|
tle = get_sortgroupref_tle(srt->tleSortGroupRef, agg->args);
|
|
sortcoltype = exprType((Node *)tle->expr);
|
|
typentry = lookup_type_cache(sortcoltype, TYPECACHE_LT_OPR | TYPECACHE_GT_OPR);
|
|
|
|
/* Check shippability of non-default sort operator. */
|
|
if (srt->sortop != typentry->lt_opr && srt->sortop != typentry->gt_opr && !is_builtin(srt->sortop)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check aggregate filter, but openGauss not support it, so do nothing here. */
|
|
/*
|
|
* If aggregate's input collation is not derived from a
|
|
* foreign Var, it can't be sent to remote.
|
|
*/
|
|
if (agg->inputcollid == InvalidOid) {
|
|
/* OK, inputs are all noncollatable */;
|
|
} else if (inner_cxt->state != FDW_COLLATE_SAFE || agg->inputcollid != inner_cxt->collation) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Detect whether node is introducing a collation not derived
|
|
* from a foreign Var. (If so, we just mark it unsafe for now
|
|
* rather than immediately returning false, since the parent
|
|
* node might not care.)
|
|
*/
|
|
*collation = agg->aggcollid;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void foreign_expr_walker_outer_cxt(Oid collation,FDWCollateState state,foreign_loc_cxt *outer_cxt)
|
|
{
|
|
if (state > outer_cxt->state) {
|
|
/* Override previous parent state */
|
|
outer_cxt->collation = collation;
|
|
outer_cxt->state = state;
|
|
} else if (state == outer_cxt->state) {
|
|
/* Merge, or detect error if there's a collation conflict */
|
|
switch (state) {
|
|
case FDW_COLLATE_NONE:
|
|
/* Nothing + nothing is still nothing */
|
|
break;
|
|
case FDW_COLLATE_SAFE:
|
|
if (collation != outer_cxt->collation) {
|
|
/*
|
|
* Non-default collation always beats default.
|
|
*/
|
|
if (outer_cxt->collation == DEFAULT_COLLATION_OID) {
|
|
/* Override previous parent state */
|
|
outer_cxt->collation = collation;
|
|
} else if (collation != DEFAULT_COLLATION_OID) {
|
|
/*
|
|
* Conflict; show state as indeterminate. We don't
|
|
* want to "return false" right away, since parent
|
|
* node might not care about collation.
|
|
*/
|
|
outer_cxt->state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
}
|
|
break;
|
|
case FDW_COLLATE_UNSAFE:
|
|
/* We're still conflicted ... */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
static bool foreign_expr_walker_targetentry(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *inner_cxt,
|
|
Oid *collation,FDWCollateState *state, foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
TargetEntry* tentry = (TargetEntry*)node;
|
|
|
|
/*
|
|
* Recurse to input subexpressions.
|
|
*/
|
|
if (!foreign_expr_walker((Node *)tentry->expr, glob_cxt, inner_cxt, case_arg_cxt)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ArrayExpr must not introduce a collation not derived from
|
|
* an input foreign Var (same logic as for a function).
|
|
*/
|
|
*collation = inner_cxt->collation;
|
|
if (*collation == InvalidOid) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else if (inner_cxt->state == FDW_COLLATE_SAFE && *collation == inner_cxt->collation) {
|
|
*state = FDW_COLLATE_SAFE;
|
|
} else if (*collation == DEFAULT_COLLATION_OID) {
|
|
*state = FDW_COLLATE_NONE;
|
|
} else {
|
|
*state = FDW_COLLATE_UNSAFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* Check if expression is safe to execute remotely, and return true if so.
|
|
*
|
|
* In addition, *outer_cxt is updated with collation information.
|
|
*
|
|
* We must check that the expression contains only node types we can deparse,
|
|
* that all types/functions/operators are safe to send (which we approximate
|
|
* as being built-in), and that all collations used in the expression derive
|
|
* from Vars of the foreign table. Because of the latter, the logic is
|
|
* pretty close to assign_collations_walker() in parse_collate.c, though we
|
|
* can assume here that the given expression is valid.
|
|
*/
|
|
static bool foreign_expr_walker(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *outer_cxt,
|
|
foreign_loc_cxt *case_arg_cxt)
|
|
{
|
|
bool check_type = true;
|
|
PgFdwRelationInfo *fpinfo = NULL;
|
|
foreign_loc_cxt inner_cxt;
|
|
Oid collation = InvalidOid;
|
|
FDWCollateState state = FDW_COLLATE_NONE;
|
|
bool walker_result = false;
|
|
|
|
/* Need do nothing for empty subexpressions */
|
|
if (node == NULL) {
|
|
return true;
|
|
}
|
|
|
|
/* May need server info from baserel's fdw_private struct */
|
|
fpinfo = (PgFdwRelationInfo *)(glob_cxt->foreignrel->fdw_private);
|
|
|
|
/* Set up inner_cxt for possible recursion to child nodes */
|
|
inner_cxt.collation = InvalidOid;
|
|
inner_cxt.state = FDW_COLLATE_NONE;
|
|
|
|
switch (nodeTag(node)) {
|
|
case T_Var: {
|
|
walker_result = foreign_expr_walker_var(node, glob_cxt, &collation, &state);
|
|
} break;
|
|
case T_Const: {
|
|
walker_result = foreign_expr_walker_const(node, &collation, &state);
|
|
} break;
|
|
case T_Param: {
|
|
walker_result = foreign_expr_walker_param(node, &collation, &state);
|
|
} break;
|
|
case T_ArrayRef: {
|
|
walker_result = foreign_expr_walker_arrayref(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_FuncExpr: {
|
|
walker_result = foreign_expr_walker_funcexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_OpExpr:
|
|
case T_DistinctExpr: /* struct-equivalent to OpExpr */
|
|
{
|
|
walker_result =
|
|
foreign_expr_walker_opexpr_distinctexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_ScalarArrayOpExpr: {
|
|
walker_result =
|
|
foreign_expr_walker_scalararray_opexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_RelabelType: {
|
|
walker_result =
|
|
foreign_expr_walker_relabeltype(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_BoolExpr: {
|
|
walker_result = foreign_expr_walker_boolexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_NullTest: {
|
|
walker_result = foreign_expr_walker_nulltest(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_CaseExpr: {
|
|
walker_result = foreign_expr_walker_caseexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_CaseTestExpr: {
|
|
walker_result =
|
|
foreign_expr_walker_casetestexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_ArrayExpr: {
|
|
walker_result = foreign_expr_walker_arrayexpr(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_List: {
|
|
walker_result = foreign_expr_walker_list(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
/* Don't apply exprType() to the list. */
|
|
check_type = false;
|
|
} break;
|
|
case T_Aggref: {
|
|
walker_result = foreign_expr_walker_aggref(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
} break;
|
|
case T_TargetEntry: {
|
|
walker_result =
|
|
foreign_expr_walker_targetentry(node, glob_cxt, &inner_cxt, &collation, &state, case_arg_cxt);
|
|
}
|
|
|
|
default:
|
|
|
|
/*
|
|
* If it's anything else, assume it's unsafe. This list can be
|
|
* expanded later, but don't forget to add deparse support below.
|
|
*/
|
|
collation = InvalidOid;
|
|
state =FDW_COLLATE_NONE;
|
|
return false;
|
|
}
|
|
if(!walker_result) {
|
|
return false;
|
|
}
|
|
/*
|
|
* If result type of given expression is not built-in, it can't be sent to
|
|
* remote because it might have incompatible semantics on remote side.
|
|
*/
|
|
if (check_type && !is_builtin(exprType(node))) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Now, merge my collation information into my parent's state.
|
|
*/
|
|
foreign_expr_walker_outer_cxt(collation,state,outer_cxt);
|
|
|
|
/* It looks OK */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Returns true if given expr is something we'd have to send the value of
|
|
* to the foreign server.
|
|
*
|
|
* This should return true when the expression is a shippable node that
|
|
* deparseExpr would add to context->params_list. Note that we don't care
|
|
* if the expression *contains* such a node, only whether one appears at top
|
|
* level. We need this to detect cases where setrefs.c would recognize a
|
|
* false match between an fdw_exprs item (which came from the params_list)
|
|
* and an entry in fdw_scan_tlist (which we're considering putting the given
|
|
* expression into).
|
|
*/
|
|
bool is_foreign_param(PlannerInfo *root, RelOptInfo *baserel, Expr *expr)
|
|
{
|
|
if (expr == NULL) {
|
|
return false;
|
|
}
|
|
|
|
switch (nodeTag(expr)) {
|
|
case T_Var: {
|
|
/* It would have to be sent unless it's a foreign Var */
|
|
Var *var = (Var *)expr;
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)(baserel->fdw_private);
|
|
Relids relids;
|
|
|
|
if (IS_UPPER_REL(baserel)) {
|
|
relids = fpinfo->outerrel->relids;
|
|
} else {
|
|
relids = baserel->relids;
|
|
}
|
|
|
|
if (bms_is_member(var->varno, relids) && var->varlevelsup == 0) {
|
|
return false; /* foreign Var, so not a param */
|
|
} else {
|
|
return true; /* it'd have to be a param */
|
|
}
|
|
break;
|
|
}
|
|
case T_Param:
|
|
/* Params always have to be sent to the foreign server */
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns true if it's safe to push down the sort expression described by
|
|
* 'pathkey' to the foreign server.
|
|
*/
|
|
bool is_foreign_pathkey(PlannerInfo *root, RelOptInfo *baserel, PathKey *pathkey)
|
|
{
|
|
EquivalenceClass *pathkey_ec = pathkey->pk_eclass;
|
|
|
|
/*
|
|
* is_foreign_expr would detect volatile expressions as well, but checking
|
|
* ec_has_volatile here saves some cycles.
|
|
*/
|
|
if (pathkey_ec->ec_has_volatile) {
|
|
return false;
|
|
}
|
|
|
|
/* can't push down the sort if the pathkey's opfamily is not shippable */
|
|
if (!is_builtin(pathkey->pk_opfamily)) {
|
|
return false;
|
|
}
|
|
|
|
/* can push if a suitable EC member exists */
|
|
return (find_em_for_rel(root, pathkey_ec, baserel) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Return true if given object is one of openGauss's built-in objects.
|
|
*
|
|
* We use FirstBootstrapObjectId as the cutoff, so that we only consider
|
|
* objects with hand-assigned OIDs to be "built in", not for instance any
|
|
* function or type defined in the information_schema.
|
|
*
|
|
* Our constraints for dealing with types are tighter than they are for
|
|
* functions or operators: we want to accept only types that are in pg_catalog,
|
|
* else format_type might incorrectly fail to schema-qualify their names.
|
|
* (This could be fixed with some changes to format_type, but for now there's
|
|
* no need.) Thus we must exclude information_schema types.
|
|
*
|
|
* XXX there is a problem with this, which is that the set of built-in
|
|
* objects expands over time. Something that is built-in to us might not
|
|
* be known to the remote server, if it's of an older version. But keeping
|
|
* track of that would be a huge exercise.
|
|
*/
|
|
bool is_builtin(Oid oid)
|
|
{
|
|
return (oid < FirstBootstrapObjectId);
|
|
}
|
|
|
|
/*
|
|
* Convert type OID + typmod info into a type name we can ship to the remote
|
|
* server. Someplace else had better have verified that this type name is
|
|
* expected to be known on the remote end.
|
|
*
|
|
* This is almost just format_type_with_typemod(), except that if left to its
|
|
* own devices, that function will make schema-qualification decisions based
|
|
* on the local search_path, which is wrong. We must schema-qualify all
|
|
* type names that are not in pg_catalog. We assume here that built-in types
|
|
* are all in pg_catalog and need not be qualified; otherwise, qualify.
|
|
*/
|
|
static char* deparse_type_name(Oid type_oid, int32 typemod)
|
|
{
|
|
if (is_builtin(type_oid)) {
|
|
return format_type_with_typemod(type_oid, typemod);
|
|
} else {
|
|
elog(ERROR, "unsupported data type %u", type_oid);
|
|
return NULL; /* keep compiler silence */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build the targetlist for given relation to be deparsed as SELECT clause.
|
|
*
|
|
* The output targetlist contains the columns that need to be fetched from the
|
|
* foreign server for the given relation. If foreignrel is an upper relation,
|
|
* then the output targetlist can also contain expressions to be evaluated on
|
|
* foreign server.
|
|
*/
|
|
List *build_tlist_to_deparse(RelOptInfo *foreignrel)
|
|
{
|
|
List *tlist = NIL;
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)foreignrel->fdw_private;
|
|
ListCell *lc = NULL;
|
|
|
|
/*
|
|
* For an upper relation, we have already built the target list while
|
|
* checking shippability, so just return that.
|
|
*/
|
|
if (IS_UPPER_REL(foreignrel)) {
|
|
return fpinfo->grouped_tlist;
|
|
}
|
|
|
|
/*
|
|
* We require columns specified in foreignrel->reltarget->exprs and those
|
|
* required for evaluating the local conditions.
|
|
*/
|
|
tlist = add_to_flat_tlist(tlist, pull_var_clause((Node *)foreignrel->reltarget->exprs, PVC_RECURSE_AGGREGATES, PVC_RECURSE_PLACEHOLDERS));
|
|
foreach (lc, fpinfo->local_conds) {
|
|
RestrictInfo *rinfo = (RestrictInfo *)lfirst_node(RestrictInfo, lc);
|
|
|
|
tlist = add_to_flat_tlist(tlist, pull_var_clause((Node *)rinfo->clause, PVC_RECURSE_AGGREGATES, PVC_RECURSE_PLACEHOLDERS));
|
|
}
|
|
|
|
return tlist;
|
|
}
|
|
|
|
/*
|
|
* Deparse SELECT statement for given relation into buf.
|
|
*
|
|
* tlist contains the list of desired columns to be fetched from foreign server.
|
|
* For a base relation fpinfo->attrs_used is used to construct SELECT clause,
|
|
* hence the tlist is ignored for a base relation.
|
|
*
|
|
* remote_conds is the list of conditions to be deparsed into the WHERE clause
|
|
* (or, in the case of upper relations, into the HAVING clause).
|
|
*
|
|
* If params_list is not NULL, it receives a list of Params and other-relation
|
|
* Vars used in the clauses; these values must be transmitted to the remote
|
|
* server as parameter values.
|
|
*
|
|
* If params_list is NULL, we're generating the query for EXPLAIN purposes,
|
|
* so Params and other-relation Vars should be replaced by dummy values.
|
|
*
|
|
* pathkeys is the list of pathkeys to order the result by.
|
|
*
|
|
* is_subquery is the flag to indicate whether to deparse the specified
|
|
* relation as a subquery.
|
|
*
|
|
* List of columns selected is returned in retrieved_attrs.
|
|
*/
|
|
void deparseSelectStmtForRel(StringInfo buf, PlannerInfo *root, RelOptInfo *rel, List *tlist, List *remote_conds,
|
|
List *pathkeys, bool has_final_sort, bool has_limit, bool is_subquery, List **retrieved_attrs, List **params_list)
|
|
{
|
|
deparse_expr_cxt context;
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)rel->fdw_private;
|
|
List *quals = NIL;
|
|
|
|
/*
|
|
* We handle relations for foreign tables, joins between those and upper
|
|
* relations.
|
|
*/
|
|
Assert(IS_JOIN_REL(rel) || IS_SIMPLE_REL(rel) || IS_UPPER_REL(rel));
|
|
|
|
/* Fill portions of context common to upper, join and base relation */
|
|
context.buf = buf;
|
|
context.root = root;
|
|
context.foreignrel = rel;
|
|
context.scanrel = IS_UPPER_REL(rel) ? fpinfo->outerrel : rel;
|
|
context.params_list = params_list;
|
|
|
|
/* Construct SELECT clause */
|
|
deparseSelectSql(tlist, is_subquery, retrieved_attrs, &context);
|
|
|
|
/*
|
|
* For upper relations, the WHERE clause is built from the remote
|
|
* conditions of the underlying scan relation; otherwise, we can use the
|
|
* supplied list of remote conditions directly.
|
|
*/
|
|
if (IS_UPPER_REL(rel)) {
|
|
PgFdwRelationInfo *ofpinfo;
|
|
|
|
ofpinfo = (PgFdwRelationInfo *)fpinfo->outerrel->fdw_private;
|
|
quals = ofpinfo->remote_conds;
|
|
} else {
|
|
quals = remote_conds;
|
|
}
|
|
|
|
/* Construct FROM and WHERE clauses */
|
|
deparseFromExpr(quals, &context);
|
|
|
|
if (IS_UPPER_REL(rel)) {
|
|
/* Append GROUP BY clause */
|
|
appendGroupByClause(tlist, &context);
|
|
|
|
/* Append HAVING clause */
|
|
if (remote_conds) {
|
|
appendStringInfoString(buf, " HAVING ");
|
|
appendConditions(remote_conds, &context);
|
|
}
|
|
}
|
|
|
|
/* Add ORDER BY clause if we found any useful pathkeys */
|
|
if (pathkeys) {
|
|
appendOrderByClause(pathkeys, has_final_sort, &context);
|
|
}
|
|
|
|
/* Add LIMIT clause if necessary */
|
|
if (has_limit) {
|
|
appendLimitClause(&context);
|
|
}
|
|
|
|
/* Add any necessary FOR UPDATE/SHARE. */
|
|
deparseLockingClause(&context);
|
|
}
|
|
|
|
/*
|
|
* Construct a simple SELECT statement that retrieves desired columns
|
|
* of the specified foreign table, and append it to "buf". The output
|
|
* contains just "SELECT ... ".
|
|
*
|
|
* We also create an integer List of the columns being retrieved, which is
|
|
* returned to *retrieved_attrs, unless we deparse the specified relation
|
|
* as a subquery.
|
|
*
|
|
* tlist is the list of desired columns. is_subquery is the flag to
|
|
* indicate whether to deparse the specified relation as a subquery.
|
|
* Read prologue of deparseSelectStmtForRel() for details.
|
|
*/
|
|
static void deparseSelectSql(List *tlist, bool is_subquery, List **retrieved_attrs, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
RelOptInfo *foreignrel = context->foreignrel;
|
|
PlannerInfo *root = context->root;
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)foreignrel->fdw_private;
|
|
|
|
/*
|
|
* Construct SELECT list
|
|
*/
|
|
appendStringInfoString(buf, "SELECT ");
|
|
|
|
if (is_subquery) {
|
|
/*
|
|
* For a relation that is deparsed as a subquery, emit expressions
|
|
* specified in the relation's reltarget. Note that since this is for
|
|
* the subquery, no need to care about *retrieved_attrs.
|
|
*/
|
|
deparseSubqueryTargetList(context);
|
|
} else if (IS_JOIN_REL(foreignrel) || IS_UPPER_REL(foreignrel)) {
|
|
/*
|
|
* For a join or upper relation the input tlist gives the list of
|
|
* columns required to be fetched from the foreign server.
|
|
*/
|
|
deparseExplicitTargetList(tlist, false, retrieved_attrs, context);
|
|
} else {
|
|
/*
|
|
* For a base relation fpinfo->attrs_used gives the list of columns
|
|
* required to be fetched from the foreign server.
|
|
*/
|
|
RangeTblEntry *rte = planner_rt_fetch(foreignrel->relid, root);
|
|
|
|
/*
|
|
* Core code already has some lock on each rel being planned, so we
|
|
* can use NoLock here.
|
|
*/
|
|
Relation rel = heap_open(rte->relid, NoLock);
|
|
|
|
deparseTargetList(buf, rte, foreignrel->relid, rel, false, fpinfo->attrs_used, false, retrieved_attrs);
|
|
heap_close(rel, NoLock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Construct a FROM clause and, if needed, a WHERE clause, and append those to
|
|
* "buf".
|
|
*
|
|
* quals is the list of clauses to be included in the WHERE clause.
|
|
* (These may or may not include RestrictInfo decoration.)
|
|
*/
|
|
static void deparseFromExpr(List *quals, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
RelOptInfo *scanrel = context->scanrel;
|
|
|
|
/* For upper relations, scanrel must be either a joinrel or a baserel */
|
|
Assert(!IS_UPPER_REL(context->foreignrel) || IS_JOIN_REL(scanrel) || IS_SIMPLE_REL(scanrel));
|
|
|
|
/* Construct FROM clause */
|
|
appendStringInfoString(buf, " FROM ");
|
|
deparseFromExprForRel(buf, context->root, scanrel, (bms_membership(scanrel->relids) == BMS_MULTIPLE), (Index)0,
|
|
NULL, context->params_list);
|
|
|
|
/* Construct WHERE clause */
|
|
if (quals != NIL) {
|
|
appendStringInfoString(buf, " WHERE ");
|
|
appendConditions(quals, context);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Emit a target list that retrieves the columns specified in attrs_used.
|
|
* This is used for both SELECT and RETURNING targetlists; the is_returning
|
|
* parameter is true only for a RETURNING targetlist.
|
|
*
|
|
* The tlist text is appended to buf, and we also create an integer List
|
|
* of the columns being retrieved, which is returned to *retrieved_attrs.
|
|
*
|
|
* If qualify_col is true, add relation alias before the column name.
|
|
*/
|
|
static void deparseTargetList(StringInfo buf, RangeTblEntry *rte, Index rtindex, Relation rel, bool is_returning,
|
|
Bitmapset *attrs_used, bool qualify_col, List **retrieved_attrs)
|
|
{
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
bool have_wholerow;
|
|
bool first;
|
|
int i;
|
|
|
|
*retrieved_attrs = NIL;
|
|
|
|
/* If there's a whole-row reference, we'll need all the columns. */
|
|
have_wholerow = bms_is_member(0 - FirstLowInvalidHeapAttributeNumber, attrs_used);
|
|
|
|
first = true;
|
|
for (i = 1; i <= tupdesc->natts; i++) {
|
|
Form_pg_attribute attr = TupleDescAttr(tupdesc, i - 1);
|
|
|
|
/* Ignore dropped attributes. */
|
|
if (attr->attisdropped) {
|
|
continue;
|
|
}
|
|
|
|
if (have_wholerow || bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used)) {
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
} else if (is_returning) {
|
|
appendStringInfoString(buf, " RETURNING ");
|
|
}
|
|
first = false;
|
|
deparseColumnRef(buf, rtindex, i, rte, qualify_col);
|
|
*retrieved_attrs = lappend_int(*retrieved_attrs, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add ctid and tableoid if needed. We currently don't support retrieving any other
|
|
* system columns.
|
|
*/
|
|
const int support_sys_num = 2; // look above.
|
|
int syscol[support_sys_num] = {SelfItemPointerAttributeNumber, TableOidAttributeNumber};
|
|
char* syscol_name[support_sys_num] = {"ctid", "tableoid"};
|
|
for (int i = 0; i < support_sys_num; i++) {
|
|
if (bms_is_member(syscol[i] - FirstLowInvalidHeapAttributeNumber, attrs_used)) {
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
} else if (is_returning) {
|
|
appendStringInfoString(buf, " RETURNING ");
|
|
}
|
|
first = false;
|
|
|
|
if (qualify_col) {
|
|
ADD_REL_QUALIFIER(buf, rtindex);
|
|
}
|
|
appendStringInfoString(buf, syscol_name[i]);
|
|
|
|
*retrieved_attrs = lappend_int(*retrieved_attrs, syscol[i]);
|
|
}
|
|
}
|
|
|
|
/* Don't generate bad syntax if no undropped columns */
|
|
if (first && !is_returning) {
|
|
appendStringInfoString(buf, "NULL");
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Deparse the appropriate locking clause (FOR UPDATE or FOR SHARE) for a
|
|
* given relation (context->scanrel).
|
|
*/
|
|
static void deparseLockingClause(deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
PlannerInfo *root = context->root;
|
|
RelOptInfo *rel = context->scanrel;
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)rel->fdw_private;
|
|
int relid = -1;
|
|
|
|
while ((relid = bms_next_member(rel->relids, relid)) >= 0) {
|
|
/*
|
|
* Ignore relation if it appears in a lower subquery. Locking clause
|
|
* for such a relation is included in the subquery if necessary.
|
|
*/
|
|
if (bms_is_member(relid, fpinfo->lower_subquery_rels)) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Add FOR UPDATE/SHARE if appropriate. We apply locking during the
|
|
* initial row fetch, rather than later on as is done for local
|
|
* tables. The extra roundtrips involved in trying to duplicate the
|
|
* local semantics exactly don't seem worthwhile (see also comments
|
|
* for RowMarkType).
|
|
*
|
|
* Note: because we actually run the query as a cursor, this assumes
|
|
* that DECLARE CURSOR ... FOR UPDATE is supported, which it isn't
|
|
* before 8.3.
|
|
*/
|
|
if (relid == root->parse->resultRelation &&
|
|
(root->parse->commandType == CMD_UPDATE || root->parse->commandType == CMD_DELETE)) {
|
|
/* Relation is UPDATE/DELETE target, so use FOR UPDATE */
|
|
appendStringInfoString(buf, " FOR UPDATE");
|
|
|
|
/* Add the relation alias if we are here for a join relation */
|
|
if (IS_JOIN_REL(rel)) {
|
|
appendStringInfo(buf, " OF %s%d", REL_ALIAS_PREFIX, relid);
|
|
}
|
|
} else {
|
|
RowMarkClause *rc = get_parse_rowmark(root->parse, relid);
|
|
|
|
if (rc != NULL) {
|
|
/*
|
|
* Relation is specified as a FOR UPDATE/SHARE target, so handle
|
|
* that.
|
|
*
|
|
* For now, just ignore any [NO] KEY specification, since (a) it's
|
|
* not clear what that means for a remote table that we don't have
|
|
* complete information about, and (b) it wouldn't work anyway on
|
|
* older remote servers. Likewise, we don't worry about NOWAIT.
|
|
*/
|
|
switch (rc->strength) {
|
|
case LCS_FORKEYSHARE:
|
|
case LCS_FORSHARE:
|
|
appendStringInfoString(buf, " FOR SHARE");
|
|
break;
|
|
case LCS_FORNOKEYUPDATE:
|
|
case LCS_FORUPDATE:
|
|
appendStringInfoString(buf, " FOR UPDATE");
|
|
break;
|
|
default:
|
|
ereport(ERROR, (errmsg("unknown lock type: %d", rc->strength)));
|
|
break;
|
|
}
|
|
|
|
/* Add the relation alias if we are here for a join relation */
|
|
if (bms_membership(rel->relids) == BMS_MULTIPLE) {
|
|
appendStringInfo(buf, " OF %s%d", REL_ALIAS_PREFIX, relid);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse given targetlist and append it to context->buf.
|
|
*
|
|
* tlist is list of TargetEntry's which in turn contain Var nodes.
|
|
*
|
|
* retrieved_attrs is the list of continuously increasing integers starting
|
|
* from 1. It has same number of entries as tlist.
|
|
*
|
|
* This is used for both SELECT and RETURNING targetlists; the is_returning
|
|
* parameter is true only for a RETURNING targetlist.
|
|
*/
|
|
static void deparseExplicitTargetList(List *tlist, bool is_returning, List **retrieved_attrs, deparse_expr_cxt *context)
|
|
{
|
|
ListCell *lc = NULL;
|
|
StringInfo buf = context->buf;
|
|
int i = 0;
|
|
|
|
*retrieved_attrs = NIL;
|
|
|
|
foreach (lc, tlist) {
|
|
TargetEntry *tle = lfirst_node(TargetEntry, lc);
|
|
|
|
if (i > 0) {
|
|
appendStringInfoString(buf, ", ");
|
|
} else if (is_returning) {
|
|
appendStringInfoString(buf, " RETURNING ");
|
|
}
|
|
|
|
deparseExpr((Expr *)tle->expr, context);
|
|
|
|
*retrieved_attrs = lappend_int(*retrieved_attrs, i + 1);
|
|
i++;
|
|
}
|
|
|
|
if (i == 0 && !is_returning) {
|
|
appendStringInfoString(buf, "NULL");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Emit expressions specified in the given relation's reltarget.
|
|
*
|
|
* This is used for deparsing the given relation as a subquery.
|
|
*/
|
|
static void deparseSubqueryTargetList(deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
RelOptInfo *foreignrel = context->foreignrel;
|
|
bool first;
|
|
ListCell *lc = NULL;
|
|
|
|
/* Should only be called in these cases. */
|
|
Assert(IS_SIMPLE_REL(foreignrel) || IS_JOIN_REL(foreignrel));
|
|
|
|
first = true;
|
|
foreach (lc, foreignrel->reltarget->exprs) {
|
|
Node *node = (Node *)lfirst(lc);
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
deparseExpr((Expr *)node, context);
|
|
}
|
|
|
|
/* Don't generate bad syntax if no expressions */
|
|
if (first) {
|
|
appendStringInfoString(buf, "NULL");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Construct FROM clause for given relation
|
|
*
|
|
* The function constructs ... JOIN ... ON ... for join relation. For a base
|
|
* relation it just returns schema-qualified tablename, with the appropriate
|
|
* alias if so requested.
|
|
*
|
|
* 'ignore_rel' is either zero or the RT index of a target relation. In the
|
|
* latter case the function constructs FROM clause of UPDATE or USING clause
|
|
* of DELETE; it deparses the join relation as if the relation never contained
|
|
* the target relation, and creates a List of conditions to be deparsed into
|
|
* the top-level WHERE clause, which is returned to *ignore_conds.
|
|
*/
|
|
static void deparseFromExprForRel(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool use_alias,
|
|
Index ignore_rel, List **ignore_conds, List **params_list)
|
|
{
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)foreignrel->fdw_private;
|
|
|
|
if (IS_JOIN_REL(foreignrel)) {
|
|
StringInfoData join_sql_o;
|
|
StringInfoData join_sql_i;
|
|
RelOptInfo *outerrel = fpinfo->outerrel;
|
|
RelOptInfo *innerrel = fpinfo->innerrel;
|
|
bool outerrel_is_target = false;
|
|
bool innerrel_is_target = false;
|
|
|
|
if (ignore_rel > 0 && bms_is_member(ignore_rel, foreignrel->relids)) {
|
|
/*
|
|
* If this is an inner join, add joinclauses to *ignore_conds and
|
|
* set it to empty so that those can be deparsed into the WHERE
|
|
* clause. Note that since the target relation can never be
|
|
* within the nullable side of an outer join, those could safely
|
|
* be pulled up into the WHERE clause (see foreign_join_ok()).
|
|
* Note also that since the target relation is only inner-joined
|
|
* to any other relation in the query, all conditions in the join
|
|
* tree mentioning the target relation could be deparsed into the
|
|
* WHERE clause by doing this recursively.
|
|
*/
|
|
if (fpinfo->jointype == JOIN_INNER) {
|
|
*ignore_conds = list_concat(*ignore_conds, fpinfo->joinclauses);
|
|
fpinfo->joinclauses = NIL;
|
|
}
|
|
|
|
/*
|
|
* Check if either of the input relations is the target relation.
|
|
*/
|
|
if (outerrel->relid == ignore_rel) {
|
|
outerrel_is_target = true;
|
|
} else if (innerrel->relid == ignore_rel) {
|
|
innerrel_is_target = true;
|
|
}
|
|
}
|
|
|
|
/* Deparse outer relation if not the target relation. */
|
|
if (!outerrel_is_target) {
|
|
initStringInfo(&join_sql_o);
|
|
deparseRangeTblRef(&join_sql_o, root, outerrel, fpinfo->make_outerrel_subquery, ignore_rel, ignore_conds,
|
|
params_list);
|
|
|
|
/*
|
|
* If inner relation is the target relation, skip deparsing it.
|
|
* Note that since the join of the target relation with any other
|
|
* relation in the query is an inner join and can never be within
|
|
* the nullable side of an outer join, the join could be
|
|
* interchanged with higher-level joins (cf. identity 1 on outer
|
|
* join reordering shown in src/backend/optimizer/README), which
|
|
* means it's safe to skip the target-relation deparsing here.
|
|
*/
|
|
if (innerrel_is_target) {
|
|
Assert(fpinfo->jointype == JOIN_INNER);
|
|
Assert(fpinfo->joinclauses == NIL);
|
|
appendBinaryStringInfo(buf, join_sql_o.data, join_sql_o.len);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Deparse inner relation if not the target relation. */
|
|
if (!innerrel_is_target) {
|
|
initStringInfo(&join_sql_i);
|
|
deparseRangeTblRef(&join_sql_i, root, innerrel, fpinfo->make_innerrel_subquery, ignore_rel, ignore_conds,
|
|
params_list);
|
|
|
|
/*
|
|
* If outer relation is the target relation, skip deparsing it.
|
|
* See the above note about safety.
|
|
*/
|
|
if (outerrel_is_target) {
|
|
Assert(fpinfo->jointype == JOIN_INNER);
|
|
Assert(fpinfo->joinclauses == NIL);
|
|
appendBinaryStringInfo(buf, join_sql_i.data, join_sql_i.len);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Neither of the relations is the target relation. */
|
|
Assert(!outerrel_is_target && !innerrel_is_target);
|
|
|
|
/*
|
|
* For a join relation FROM clause entry is deparsed as
|
|
*
|
|
* ((outer relation) <join type> (inner relation) ON (joinclauses))
|
|
*/
|
|
appendStringInfo(buf, "(%s %s JOIN %s ON ", join_sql_o.data, get_jointype_name(fpinfo->jointype),
|
|
join_sql_i.data);
|
|
|
|
/* Append join clause; (TRUE) if no join clause */
|
|
if (fpinfo->joinclauses) {
|
|
deparse_expr_cxt context;
|
|
|
|
context.buf = buf;
|
|
context.foreignrel = foreignrel;
|
|
context.scanrel = foreignrel;
|
|
context.root = root;
|
|
context.params_list = params_list;
|
|
|
|
appendStringInfoChar(buf, '(');
|
|
appendConditions(fpinfo->joinclauses, &context);
|
|
appendStringInfoChar(buf, ')');
|
|
} else {
|
|
appendStringInfoString(buf, "(TRUE)");
|
|
}
|
|
|
|
/* End the FROM clause entry. */
|
|
appendStringInfoChar(buf, ')');
|
|
} else {
|
|
RangeTblEntry *rte = planner_rt_fetch(foreignrel->relid, root);
|
|
|
|
/*
|
|
* Core code already has some lock on each rel being planned, so we
|
|
* can use NoLock here.
|
|
*/
|
|
Relation rel = heap_open(rte->relid, NoLock);
|
|
|
|
deparseRelation(buf, rel);
|
|
|
|
/*
|
|
* Add a unique alias to avoid any conflict in relation names due to
|
|
* pulled up subqueries in the query being built for a pushed down
|
|
* join.
|
|
*/
|
|
if (use_alias) {
|
|
appendStringInfo(buf, " %s%d", REL_ALIAS_PREFIX, foreignrel->relid);
|
|
}
|
|
|
|
heap_close(rel, NoLock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse conditions from the provided list and append them to buf.
|
|
*
|
|
* The conditions in the list are assumed to be ANDed. This function is used to
|
|
* deparse WHERE clauses, JOIN .. ON clauses and HAVING clauses.
|
|
*
|
|
* Depending on the caller, the list elements might be either RestrictInfos
|
|
* or bare clauses.
|
|
*/
|
|
static void appendConditions(List *exprs, deparse_expr_cxt *context)
|
|
{
|
|
int nestlevel;
|
|
ListCell *lc = NULL;
|
|
bool is_first = true;
|
|
StringInfo buf = context->buf;
|
|
|
|
/* Make sure any constants in the exprs are printed portably */
|
|
nestlevel = set_transmission_modes();
|
|
|
|
foreach (lc, exprs) {
|
|
Expr *expr = (Expr *)lfirst(lc);
|
|
|
|
/* Extract clause from RestrictInfo, if required */
|
|
if (IsA(expr, RestrictInfo)) {
|
|
expr = ((RestrictInfo *)expr)->clause;
|
|
}
|
|
|
|
/* Connect expressions with "AND" and parenthesize each condition. */
|
|
if (!is_first) {
|
|
appendStringInfoString(buf, " AND ");
|
|
}
|
|
|
|
appendStringInfoChar(buf, '(');
|
|
deparseExpr(expr, context);
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
is_first = false;
|
|
}
|
|
|
|
reset_transmission_modes(nestlevel);
|
|
}
|
|
|
|
|
|
/* Output join name for given join type */
|
|
const char *get_jointype_name(JoinType jointype)
|
|
{
|
|
switch (jointype) {
|
|
case JOIN_INNER:
|
|
return "INNER";
|
|
|
|
case JOIN_LEFT:
|
|
return "LEFT";
|
|
|
|
case JOIN_RIGHT:
|
|
return "RIGHT";
|
|
|
|
case JOIN_FULL:
|
|
return "FULL";
|
|
|
|
default:
|
|
/* Shouldn't come here, but protect from buggy code. */
|
|
elog(ERROR, "unsupported join type %d", jointype);
|
|
}
|
|
|
|
/* Keep compiler happy */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Append FROM clause entry for the given relation into buf.
|
|
*/
|
|
static void deparseRangeTblRef(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool make_subquery,
|
|
Index ignore_rel, List **ignore_conds, List **params_list)
|
|
{
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)foreignrel->fdw_private;
|
|
|
|
/* Should only be called in these cases. */
|
|
Assert(IS_SIMPLE_REL(foreignrel) || IS_JOIN_REL(foreignrel));
|
|
|
|
Assert(fpinfo->local_conds == NIL);
|
|
|
|
/* If make_subquery is true, deparse the relation as a subquery. */
|
|
if (make_subquery) {
|
|
List *retrieved_attrs = NIL;
|
|
int ncols;
|
|
|
|
/*
|
|
* The given relation shouldn't contain the target relation, because
|
|
* this should only happen for input relations for a full join, and
|
|
* such relations can never contain an UPDATE/DELETE target.
|
|
*/
|
|
Assert(ignore_rel == 0 || !bms_is_member(ignore_rel, foreignrel->relids));
|
|
|
|
/* Deparse the subquery representing the relation. */
|
|
appendStringInfoChar(buf, '(');
|
|
deparseSelectStmtForRel(buf, root, foreignrel, NIL, fpinfo->remote_conds, NIL, false, false, true,
|
|
&retrieved_attrs, params_list);
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
/* Append the relation alias. */
|
|
appendStringInfo(buf, " %s%d", SUBQUERY_REL_ALIAS_PREFIX, fpinfo->relation_index);
|
|
|
|
/*
|
|
* Append the column aliases if needed. Note that the subquery emits
|
|
* expressions specified in the relation's reltarget (see
|
|
* deparseSubqueryTargetList).
|
|
*/
|
|
ncols = list_length(foreignrel->reltarget->exprs);
|
|
if (ncols > 0) {
|
|
int i;
|
|
|
|
appendStringInfoChar(buf, '(');
|
|
for (i = 1; i <= ncols; i++) {
|
|
if (i > 1) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
|
|
appendStringInfo(buf, "%s%d", SUBQUERY_COL_ALIAS_PREFIX, i);
|
|
}
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
} else {
|
|
deparseFromExprForRel(buf, root, foreignrel, true, ignore_rel, ignore_conds, params_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* deparse remote INSERT statement
|
|
*
|
|
* The statement text is appended to buf, and we also create an integer List
|
|
* of the columns being retrieved by WITH CHECK OPTION or RETURNING (if any),
|
|
* which is returned to *retrieved_attrs.
|
|
*/
|
|
void deparseInsertSql(StringInfo buf, RangeTblEntry *rte, Index rtindex, Relation rel, List *targetAttrs,
|
|
List *withCheckOptionList, List *returningList, List **retrieved_attrs)
|
|
{
|
|
AttrNumber pindex;
|
|
ListCell *lc = NULL;
|
|
|
|
appendStringInfoString(buf, "INSERT INTO ");
|
|
deparseRelation(buf, rel);
|
|
|
|
if (targetAttrs) {
|
|
appendStringInfoChar(buf, '(');
|
|
|
|
bool first = true;
|
|
foreach (lc, targetAttrs) {
|
|
int attnum = lfirst_int(lc);
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
deparseColumnRef(buf, rtindex, attnum, rte, false);
|
|
}
|
|
|
|
appendStringInfoString(buf, ") VALUES (");
|
|
|
|
pindex = 1;
|
|
first = true;
|
|
foreach (lc, targetAttrs) {
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
appendStringInfo(buf, "$%d", pindex);
|
|
pindex++;
|
|
}
|
|
|
|
appendStringInfoChar(buf, ')');
|
|
} else {
|
|
appendStringInfoString(buf, " DEFAULT VALUES");
|
|
}
|
|
|
|
deparseReturningList(buf, rte, rtindex, rel, rel->trigdesc && rel->trigdesc->trig_insert_after_row,
|
|
withCheckOptionList, returningList, retrieved_attrs);
|
|
}
|
|
|
|
/*
|
|
* deparse remote UPDATE statement
|
|
*
|
|
* The statement text is appended to buf, and we also create an integer List
|
|
* of the columns being retrieved by WITH CHECK OPTION or RETURNING (if any),
|
|
* which is returned to *retrieved_attrs.
|
|
*/
|
|
void deparseUpdateSql(StringInfo buf, RangeTblEntry *rte, Index rtindex, Relation rel, List *targetAttrs,
|
|
List *withCheckOptionList, List *returningList, List **retrieved_attrs)
|
|
{
|
|
AttrNumber pindex;
|
|
ListCell *lc = NULL;
|
|
|
|
appendStringInfoString(buf, "UPDATE ");
|
|
deparseRelation(buf, rel);
|
|
appendStringInfoString(buf, " SET ");
|
|
|
|
pindex = 3; /* ctid and tableoid is always the first and second param */
|
|
bool first = true;
|
|
foreach (lc, targetAttrs) {
|
|
int attnum = lfirst_int(lc);
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
deparseColumnRef(buf, rtindex, attnum, rte, false);
|
|
appendStringInfo(buf, " = $%d", pindex);
|
|
pindex++;
|
|
}
|
|
appendStringInfoString(buf, " WHERE ctid = $1 and tableoid = $2");
|
|
|
|
deparseReturningList(buf, rte, rtindex, rel, rel->trigdesc && rel->trigdesc->trig_update_after_row,
|
|
withCheckOptionList, returningList, retrieved_attrs);
|
|
}
|
|
|
|
/*
|
|
* deparse remote DELETE statement
|
|
*
|
|
* The statement text is appended to buf, and we also create an integer List
|
|
* of the columns being retrieved by RETURNING (if any), which is returned
|
|
* to *retrieved_attrs.
|
|
*/
|
|
void deparseDeleteSql(StringInfo buf, RangeTblEntry *rte, Index rtindex, Relation rel, List *returningList,
|
|
List **retrieved_attrs)
|
|
{
|
|
appendStringInfoString(buf, "DELETE FROM ");
|
|
deparseRelation(buf, rel);
|
|
appendStringInfoString(buf, " WHERE ctid = $1 and tableoid = $2");
|
|
|
|
deparseReturningList(buf, rte, rtindex, rel, rel->trigdesc && rel->trigdesc->trig_delete_after_row, NIL,
|
|
returningList, retrieved_attrs);
|
|
}
|
|
|
|
/*
|
|
* Add a RETURNING clause, if needed, to an INSERT/UPDATE/DELETE.
|
|
*/
|
|
static void deparseReturningList(StringInfo buf, RangeTblEntry *rte, Index rtindex, Relation rel, bool trig_after_row,
|
|
List *withCheckOptionList, List *returningList, List **retrieved_attrs)
|
|
{
|
|
Bitmapset *attrs_used = NULL;
|
|
|
|
if (trig_after_row) {
|
|
/* whole-row reference acquires all non-system columns */
|
|
attrs_used = bms_make_singleton(0 - FirstLowInvalidHeapAttributeNumber);
|
|
}
|
|
|
|
if (withCheckOptionList != NIL) {
|
|
/*
|
|
* We need the attrs, non-system and system, mentioned in the local
|
|
* query's WITH CHECK OPTION list.
|
|
*
|
|
* Note: we do this to ensure that WCO constraints will be evaluated
|
|
* on the data actually inserted/updated on the remote side, which
|
|
* might differ from the data supplied by the core code, for example
|
|
* as a result of remote triggers.
|
|
*/
|
|
pull_varattnos((Node*)withCheckOptionList, rtindex, &attrs_used);
|
|
}
|
|
|
|
if (returningList != NIL) {
|
|
/*
|
|
* We need the attrs, non-system and system, mentioned in the local
|
|
* query's RETURNING list.
|
|
*/
|
|
pull_varattnos((Node *)returningList, rtindex, &attrs_used);
|
|
}
|
|
|
|
if (attrs_used != NULL) {
|
|
deparseTargetList(buf, rte, rtindex, rel, true, attrs_used, false, retrieved_attrs);
|
|
} else {
|
|
*retrieved_attrs = NIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Construct SELECT statement to acquire size in blocks of given relation.
|
|
*
|
|
* Note: we use local definition of block size, not remote definition.
|
|
* This is perhaps debatable.
|
|
*
|
|
* Note: pg_relation_size() exists in 8.1 and later.
|
|
*/
|
|
void deparseAnalyzeSizeSql(StringInfo buf, Relation rel)
|
|
{
|
|
StringInfoData relname;
|
|
|
|
/* We'll need the remote relation name as a literal. */
|
|
initStringInfo(&relname);
|
|
deparseRelation(&relname, rel);
|
|
|
|
appendStringInfoString(buf, "SELECT pg_catalog.pg_relation_size(");
|
|
deparseStringLiteral(buf, relname.data);
|
|
appendStringInfo(buf, "::pg_catalog.regclass) / %d", BLCKSZ);
|
|
}
|
|
|
|
/*
|
|
* Construct SELECT statement to acquire sample rows of given relation.
|
|
*
|
|
* SELECT command is appended to buf, and list of columns retrieved
|
|
* is returned to *retrieved_attrs.
|
|
*/
|
|
void deparseAnalyzeSql(StringInfo buf, Relation rel, List **retrieved_attrs)
|
|
{
|
|
Oid relid = RelationGetRelid(rel);
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
int i;
|
|
ListCell *lc = NULL;
|
|
bool first = true;
|
|
|
|
*retrieved_attrs = NIL;
|
|
|
|
appendStringInfoString(buf, "SELECT ");
|
|
for (i = 0; i < tupdesc->natts; i++) {
|
|
/* Ignore dropped columns. */
|
|
if (tupdesc->attrs[i].attisdropped) {
|
|
continue;
|
|
}
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
/* Use attribute name or column_name option. */
|
|
char *colname = NameStr(tupdesc->attrs[i].attname);
|
|
List *options = GetForeignColumnOptions(relid, i + 1);
|
|
|
|
foreach (lc, options) {
|
|
DefElem *def = (DefElem *)lfirst(lc);
|
|
|
|
if (strcmp(def->defname, "column_name") == 0) {
|
|
colname = defGetString(def);
|
|
break;
|
|
}
|
|
}
|
|
|
|
appendStringInfoString(buf, quote_identifier(colname));
|
|
|
|
*retrieved_attrs = lappend_int(*retrieved_attrs, i + 1);
|
|
}
|
|
|
|
/* Don't generate bad syntax for zero-column relation. */
|
|
if (first) {
|
|
appendStringInfoString(buf, "NULL");
|
|
}
|
|
|
|
/*
|
|
* Construct FROM clause
|
|
*/
|
|
appendStringInfoString(buf, " FROM ");
|
|
deparseRelation(buf, rel);
|
|
}
|
|
|
|
/*
|
|
* Construct name to use for given column, and emit it into buf.
|
|
* If it has a column_name FDW option, use that instead of attribute name.
|
|
*
|
|
* If qualify_col is true, qualify column name with the alias of relation.
|
|
*/
|
|
static void deparseColumnRef(StringInfo buf, int varno, int varattno, RangeTblEntry *rte, bool qualify_col)
|
|
{
|
|
/* We support fetching the remote side's CTID and OID. */
|
|
if (varattno == SelfItemPointerAttributeNumber) {
|
|
if (qualify_col) {
|
|
ADD_REL_QUALIFIER(buf, varno);
|
|
}
|
|
appendStringInfoString(buf, "ctid");
|
|
} else if (varattno < 0) {
|
|
/*
|
|
* All other system attributes are fetched as 0, except for table OID,
|
|
* which is fetched as the local table OID. However, we must be
|
|
* careful; the table could be beneath an outer join, in which case it
|
|
* must go to NULL whenever the rest of the row does.
|
|
*/
|
|
Oid fetchval = 0;
|
|
|
|
if (varattno == TableOidAttributeNumber) {
|
|
fetchval = rte->relid;
|
|
}
|
|
|
|
if (qualify_col) {
|
|
appendStringInfoString(buf, "CASE WHEN (");
|
|
ADD_REL_QUALIFIER(buf, varno);
|
|
appendStringInfo(buf, "*)::text IS NOT NULL THEN %u END", fetchval);
|
|
} else {
|
|
appendStringInfo(buf, "%u", fetchval);
|
|
}
|
|
} else if (varattno == 0) {
|
|
/* Whole row reference */
|
|
Relation rel;
|
|
Bitmapset *attrs_used;
|
|
|
|
/* Required only to be passed down to deparseTargetList(). */
|
|
List *retrieved_attrs;
|
|
|
|
/*
|
|
* The lock on the relation will be held by upper callers, so it's
|
|
* fine to open it with no lock here.
|
|
*/
|
|
rel = heap_open(rte->relid, NoLock);
|
|
|
|
/*
|
|
* The local name of the foreign table can not be recognized by the
|
|
* foreign server and the table it references on foreign server might
|
|
* have different column ordering or different columns than those
|
|
* declared locally. Hence we have to deparse whole-row reference as
|
|
* ROW(columns referenced locally). Construct this by deparsing a
|
|
* "whole row" attribute.
|
|
*/
|
|
attrs_used = bms_add_member(NULL, 0 - FirstLowInvalidHeapAttributeNumber);
|
|
|
|
/*
|
|
* In case the whole-row reference is under an outer join then it has
|
|
* to go NULL whenever the rest of the row goes NULL. Deparsing a join
|
|
* query would always involve multiple relations, thus qualify_col
|
|
* would be true.
|
|
*/
|
|
if (qualify_col) {
|
|
appendStringInfoString(buf, "CASE WHEN (");
|
|
ADD_REL_QUALIFIER(buf, varno);
|
|
appendStringInfoString(buf, "*)::text IS NOT NULL THEN ");
|
|
}
|
|
|
|
appendStringInfoString(buf, "ROW(");
|
|
deparseTargetList(buf, rte, varno, rel, false, attrs_used, qualify_col, &retrieved_attrs);
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
/* Complete the CASE WHEN statement started above. */
|
|
if (qualify_col)
|
|
appendStringInfoString(buf, " END");
|
|
|
|
heap_close(rel, NoLock);
|
|
bms_free(attrs_used);
|
|
} else {
|
|
char *colname = NULL;
|
|
List *options;
|
|
ListCell *lc;
|
|
|
|
/* varno must not be any of OUTER_VAR, INNER_VAR and INDEX_VAR. */
|
|
Assert(!IS_SPECIAL_VARNO(varno));
|
|
|
|
/*
|
|
* If it's a column of a foreign table, and it has the column_name FDW
|
|
* option, use that value.
|
|
*/
|
|
options = GetForeignColumnOptions(rte->relid, varattno);
|
|
foreach (lc, options) {
|
|
DefElem *def = (DefElem *)lfirst(lc);
|
|
|
|
if (strcmp(def->defname, "column_name") == 0) {
|
|
colname = defGetString(def);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If it's a column of a regular table or it doesn't have column_name
|
|
* FDW option, use attribute name.
|
|
*/
|
|
if (colname == NULL) {
|
|
colname = get_attname(rte->relid, varattno);
|
|
}
|
|
|
|
if (qualify_col) {
|
|
ADD_REL_QUALIFIER(buf, varno);
|
|
}
|
|
|
|
appendStringInfoString(buf, quote_identifier(colname));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Append remote name of specified foreign table to buf.
|
|
* Use value of table_name FDW option (if any) instead of relation's name.
|
|
* Similarly, schema_name FDW option overrides schema name.
|
|
*/
|
|
static void deparseRelation(StringInfo buf, Relation rel)
|
|
{
|
|
const char *nspname = NULL;
|
|
const char *relname = NULL;
|
|
ListCell *lc = NULL;
|
|
|
|
/* obtain additional catalog information. */
|
|
ForeignTable* table = GetForeignTable(RelationGetRelid(rel));
|
|
|
|
/*
|
|
* Use value of FDW options if any, instead of the name of object itself.
|
|
*/
|
|
foreach (lc, table->options) {
|
|
DefElem *def = (DefElem *)lfirst(lc);
|
|
|
|
if (strcmp(def->defname, "schema_name") == 0) {
|
|
nspname = defGetString(def);
|
|
} else if (strcmp(def->defname, "table_name") == 0) {
|
|
relname = defGetString(def);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: we could skip printing the schema name if it's pg_catalog, but
|
|
* that doesn't seem worth the trouble.
|
|
*/
|
|
if (nspname == NULL) {
|
|
nspname = get_namespace_name(RelationGetNamespace(rel));
|
|
}
|
|
if (relname == NULL) {
|
|
relname = RelationGetRelationName(rel);
|
|
}
|
|
|
|
/* In current version, there are some unpredictable operations (delete/update, etc.) of foreign table built on
|
|
* partitioned table. We forbid all operations in this condition by default. */
|
|
if (!ENABLE_SQL_BETA_FEATURE(PARTITION_FDW_ON)) {
|
|
char parttype = PARTTYPE_NON_PARTITIONED_RELATION;
|
|
UserMapping* user = GetUserMapping(GetUserId(), table->serverid);
|
|
ForeignServer *server = GetForeignServer(table->serverid);
|
|
PGconn* conn = GetConnection(server, user, false);
|
|
|
|
PQExpBuffer query = createPQExpBuffer();
|
|
appendPQExpBuffer(query,
|
|
"SELECT c.parttype FROM pg_class c, pg_namespace n "
|
|
"WHERE c.relname = '%s' and c.relnamespace = n.oid and n.nspname = '%s'",
|
|
quote_identifier(relname), quote_identifier(nspname));
|
|
|
|
PGresult* res = pgfdw_exec_query(conn, query->data);
|
|
if (PQresultStatus(res) != PGRES_TUPLES_OK) {
|
|
pgfdw_report_error(ERROR, res, conn, true, query->data);
|
|
}
|
|
/* res may be empty as the relname/nspname validation is not checked */
|
|
if (PQntuples(res) > 0) {
|
|
parttype = *PQgetvalue(res, 0, 0);
|
|
}
|
|
PQclear(res);
|
|
destroyPQExpBuffer(query);
|
|
|
|
if ((parttype == PARTTYPE_PARTITIONED_RELATION || parttype == PARTTYPE_SUBPARTITIONED_RELATION)) {
|
|
ereport(ERROR, (errmsg("could not operate foreign table on partitioned table")));
|
|
}
|
|
}
|
|
|
|
appendStringInfo(buf, "%s.%s", quote_identifier(nspname), quote_identifier(relname));
|
|
}
|
|
|
|
/*
|
|
* Append a SQL string literal representing "val" to buf.
|
|
*/
|
|
static void deparseStringLiteral(StringInfo buf, const char *val)
|
|
{
|
|
const char *valptr = NULL;
|
|
|
|
/*
|
|
* Rather than making assumptions about the remote server's value of
|
|
* standard_conforming_strings, always use E'foo' syntax if there are any
|
|
* backslashes. This will fail on remote servers before 8.1, but those
|
|
* are long out of support.
|
|
*/
|
|
if (strchr(val, '\\') != NULL) {
|
|
appendStringInfoChar(buf, ESCAPE_STRING_SYNTAX);
|
|
}
|
|
appendStringInfoChar(buf, '\'');
|
|
for (valptr = val; *valptr; valptr++) {
|
|
char ch = *valptr;
|
|
|
|
if (SQL_STR_DOUBLE(ch, true)) {
|
|
appendStringInfoChar(buf, ch);
|
|
}
|
|
appendStringInfoChar(buf, ch);
|
|
}
|
|
appendStringInfoChar(buf, '\'');
|
|
}
|
|
|
|
/*
|
|
* Deparse given expression into context->buf.
|
|
*
|
|
* This function must support all the same node types that foreign_expr_walker
|
|
* accepts.
|
|
*
|
|
* Note: unlike ruleutils.c, we just use a simple hard-wired parenthesization
|
|
* scheme: anything more complex than a Var, Const, function call or cast
|
|
* should be self-parenthesized.
|
|
*/
|
|
static void deparseExpr(Expr *node, deparse_expr_cxt *context)
|
|
{
|
|
if (node == NULL) {
|
|
return;
|
|
}
|
|
|
|
switch (nodeTag(node)) {
|
|
case T_Var:
|
|
deparseVar((Var *)node, context);
|
|
break;
|
|
case T_Const:
|
|
deparseConst((Const *) node, context, 0);
|
|
break;
|
|
case T_Param:
|
|
deparseParam((Param *)node, context);
|
|
break;
|
|
case T_ArrayRef:
|
|
deparseArrayRef((ArrayRef *)node, context);
|
|
break;
|
|
case T_FuncExpr:
|
|
deparseFuncExpr((FuncExpr *)node, context);
|
|
break;
|
|
case T_OpExpr:
|
|
deparseOpExpr((OpExpr *)node, context);
|
|
break;
|
|
case T_DistinctExpr:
|
|
deparseDistinctExpr((DistinctExpr *)node, context);
|
|
break;
|
|
case T_ScalarArrayOpExpr:
|
|
deparseScalarArrayOpExpr((ScalarArrayOpExpr *)node, context);
|
|
break;
|
|
case T_RelabelType:
|
|
deparseRelabelType((RelabelType *)node, context);
|
|
break;
|
|
case T_BoolExpr:
|
|
deparseBoolExpr((BoolExpr *)node, context);
|
|
break;
|
|
case T_NullTest:
|
|
deparseNullTest((NullTest *)node, context);
|
|
break;
|
|
case T_CaseExpr:
|
|
deparseCaseExpr((CaseExpr *)node, context);
|
|
break;
|
|
case T_ArrayExpr:
|
|
deparseArrayExpr((ArrayExpr *)node, context);
|
|
break;
|
|
case T_Aggref:
|
|
deparseAggref((Aggref *)node, context);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unsupported expression type for deparse: %d", (int)nodeTag(node));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse given Var node into context->buf.
|
|
*
|
|
* If the Var belongs to the foreign relation, just print its remote name.
|
|
* Otherwise, it's effectively a Param (and will in fact be a Param at
|
|
* run time). Handle it the same way we handle plain Params --- see
|
|
* deparseParam for comments.
|
|
*/
|
|
static void deparseVar(Var *node, deparse_expr_cxt *context)
|
|
{
|
|
Relids relids = context->scanrel->relids;
|
|
int relno;
|
|
int colno;
|
|
|
|
/* Qualify columns when multiple relations are involved. */
|
|
bool qualify_col = (bms_membership(relids) == BMS_MULTIPLE);
|
|
|
|
/*
|
|
* If the Var belongs to the foreign relation that is deparsed as a
|
|
* subquery, use the relation and column alias to the Var provided by the
|
|
* subquery, instead of the remote name.
|
|
*/
|
|
if (is_subquery_var(node, context->scanrel, &relno, &colno)) {
|
|
appendStringInfo(context->buf, "%s%d.%s%d", SUBQUERY_REL_ALIAS_PREFIX, relno, SUBQUERY_COL_ALIAS_PREFIX, colno);
|
|
return;
|
|
}
|
|
|
|
if (bms_is_member(node->varno, relids) && node->varlevelsup == 0)
|
|
deparseColumnRef(context->buf, node->varno, node->varattno, planner_rt_fetch(node->varno, context->root),
|
|
qualify_col);
|
|
else {
|
|
/* Treat like a Param */
|
|
if (context->params_list) {
|
|
int pindex = 0;
|
|
ListCell *lc;
|
|
|
|
/* find its index in params_list */
|
|
foreach (lc, *context->params_list) {
|
|
pindex++;
|
|
if (equal(node, (Node *)lfirst(lc))) {
|
|
break;
|
|
}
|
|
}
|
|
if (lc == NULL) {
|
|
/* not in list, so add it */
|
|
pindex++;
|
|
*context->params_list = lappend(*context->params_list, node);
|
|
}
|
|
|
|
printRemoteParam(pindex, node->vartype, node->vartypmod, context);
|
|
} else {
|
|
printRemotePlaceholder(node->vartype, node->vartypmod, context);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse given constant value into context->buf.
|
|
*
|
|
* This function has to be kept in sync with ruleutils.c's get_const_expr.
|
|
*
|
|
* As in that function, showtype can be -1 to never show "::typename"
|
|
* decoration, +1 to always show it, or 0 to show it only if the constant
|
|
* wouldn't be assumed to be the right type by default.
|
|
*
|
|
* In addition, this code allows showtype to be -2 to indicate that we should
|
|
* not show "::typename" decoration if the constant is printed as an untyped
|
|
* literal or NULL (while in other cases, behaving as for showtype == 0).
|
|
*/
|
|
static void deparseConst(Const *node, deparse_expr_cxt *context, int showtype)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
Oid typoutput;
|
|
bool typIsVarlena;
|
|
char *extval = NULL;
|
|
bool isfloat = false;
|
|
bool isstring = false;
|
|
bool needlabel;
|
|
|
|
if (node->constisnull) {
|
|
appendStringInfoString(buf, "NULL");
|
|
if (showtype >= 0) {
|
|
appendStringInfo(buf, "::%s", deparse_type_name(node->consttype, node->consttypmod));
|
|
}
|
|
return;
|
|
}
|
|
|
|
getTypeOutputInfo(node->consttype, &typoutput, &typIsVarlena);
|
|
extval = OidOutputFunctionCall(typoutput, node->constvalue);
|
|
|
|
switch (node->consttype) {
|
|
case INT2OID:
|
|
case INT4OID:
|
|
case INT8OID:
|
|
case OIDOID:
|
|
case FLOAT4OID:
|
|
case FLOAT8OID:
|
|
case NUMERICOID: {
|
|
/*
|
|
* No need to quote unless it's a special value such as 'NaN'.
|
|
* See comments in get_const_expr().
|
|
*/
|
|
if (strspn(extval, "0123456789+-eE.") == strlen(extval)) {
|
|
if (extval[0] == '+' || extval[0] == '-') {
|
|
appendStringInfo(buf, "(%s)", extval);
|
|
} else {
|
|
appendStringInfoString(buf, extval);
|
|
}
|
|
if (strcspn(extval, "eE.") != strlen(extval)) {
|
|
isfloat = true; /* it looks like a float */
|
|
}
|
|
} else {
|
|
appendStringInfo(buf, "'%s'", extval);
|
|
}
|
|
} break;
|
|
case BITOID:
|
|
case VARBITOID:
|
|
appendStringInfo(buf, "B'%s'", extval);
|
|
break;
|
|
case BOOLOID:
|
|
if (strcmp(extval, "t") == 0) {
|
|
appendStringInfoString(buf, "true");
|
|
} else {
|
|
appendStringInfoString(buf, "false");
|
|
}
|
|
break;
|
|
default:
|
|
deparseStringLiteral(buf, extval);
|
|
isstring = true;
|
|
break;
|
|
}
|
|
|
|
pfree(extval);
|
|
|
|
if (showtype == -1) {
|
|
return; /* never print type label */
|
|
}
|
|
|
|
/*
|
|
* For showtype == 0, append ::typename unless the constant will be
|
|
* implicitly typed as the right type when it is read in.
|
|
*
|
|
* XXX this code has to be kept in sync with the behavior of the parser,
|
|
* especially make_const.
|
|
*/
|
|
switch (node->consttype) {
|
|
case BOOLOID:
|
|
case INT4OID:
|
|
case UNKNOWNOID:
|
|
needlabel = false;
|
|
break;
|
|
case NUMERICOID:
|
|
needlabel = !isfloat || (node->consttypmod >= 0);
|
|
break;
|
|
default:
|
|
if (showtype == -2) {
|
|
/* label unless we printed it as an untyped string */
|
|
needlabel = !isstring;
|
|
} else {
|
|
needlabel = true;
|
|
}
|
|
break;
|
|
}
|
|
if (needlabel || showtype > 0) {
|
|
appendStringInfo(buf, "::%s", deparse_type_name(node->consttype, node->consttypmod));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse given Param node.
|
|
*
|
|
* If we're generating the query "for real", add the Param to
|
|
* context->params_list if it's not already present, and then use its index
|
|
* in that list as the remote parameter number. During EXPLAIN, there's
|
|
* no need to identify a parameter number.
|
|
*/
|
|
static void deparseParam(Param *node, deparse_expr_cxt *context)
|
|
{
|
|
if (context->params_list) {
|
|
int pindex = 0;
|
|
ListCell *lc = NULL;
|
|
|
|
/* find its index in params_list */
|
|
foreach (lc, *context->params_list) {
|
|
pindex++;
|
|
if (equal(node, (Node *)lfirst(lc))) {
|
|
break;
|
|
}
|
|
}
|
|
if (lc == NULL) {
|
|
/* not in list, so add it */
|
|
pindex++;
|
|
*context->params_list = lappend(*context->params_list, node);
|
|
}
|
|
|
|
printRemoteParam(pindex, node->paramtype, node->paramtypmod, context);
|
|
} else {
|
|
printRemotePlaceholder(node->paramtype, node->paramtypmod, context);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse an array subscript expression.
|
|
*/
|
|
static void deparseArrayRef(ArrayRef *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
ListCell *uplist_item = NULL;
|
|
|
|
/* Always parenthesize the expression. */
|
|
appendStringInfoChar(buf, '(');
|
|
|
|
/*
|
|
* Deparse referenced array expression first. If that expression includes
|
|
* a cast, we have to parenthesize to prevent the array subscript from
|
|
* being taken as typename decoration. We can avoid that in the typical
|
|
* case of subscripting a Var, but otherwise do it.
|
|
*/
|
|
if (IsA(node->refexpr, Var)) {
|
|
deparseExpr(node->refexpr, context);
|
|
} else {
|
|
appendStringInfoChar(buf, '(');
|
|
deparseExpr(node->refexpr, context);
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
|
|
/* Deparse subscript expressions. */
|
|
ListCell *lowlist_item = list_head(node->reflowerindexpr); /* could be NULL */
|
|
foreach (uplist_item, node->refupperindexpr) {
|
|
appendStringInfoChar(buf, '[');
|
|
if (lowlist_item) {
|
|
deparseExpr((Expr *)lfirst(lowlist_item), context);
|
|
appendStringInfoChar(buf, ':');
|
|
lowlist_item = lnext(lowlist_item);
|
|
}
|
|
deparseExpr((Expr *)lfirst(uplist_item), context);
|
|
appendStringInfoChar(buf, ']');
|
|
}
|
|
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
|
|
/*
|
|
* Deparse a function call.
|
|
*/
|
|
static void deparseFuncExpr(FuncExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
ListCell *arg = NULL;
|
|
|
|
/*
|
|
* If the function call came from an implicit coercion, then just show the
|
|
* first argument.
|
|
*/
|
|
if (node->funcformat == COERCE_IMPLICIT_CAST) {
|
|
deparseExpr((Expr *)linitial(node->args), context);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the function call came from a cast, then show the first argument
|
|
* plus an explicit cast operation.
|
|
*/
|
|
if (node->funcformat == COERCE_EXPLICIT_CAST) {
|
|
Oid rettype = node->funcresulttype;
|
|
int32 coercedTypmod;
|
|
|
|
/* Get the typmod if this is a length-coercion function */
|
|
(void)exprIsLengthCoercion((Node *)node, &coercedTypmod);
|
|
|
|
deparseExpr((Expr *)linitial(node->args), context);
|
|
appendStringInfo(buf, "::%s", format_type_with_typemod(rettype, coercedTypmod));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Normal function: display as proname(args).
|
|
*/
|
|
HeapTuple proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(node->funcid));
|
|
if (!HeapTupleIsValid(proctup)) {
|
|
elog(ERROR, "cache lookup failed for function %u", node->funcid);
|
|
}
|
|
Form_pg_proc procform = (Form_pg_proc)GETSTRUCT(proctup);
|
|
|
|
/* Check if need to print VARIADIC (cf. ruleutils.c) */
|
|
bool use_variadic = node->funcvariadic;
|
|
|
|
/* Print schema name only if it's not pg_catalog */
|
|
if (procform->pronamespace != PG_CATALOG_NAMESPACE) {
|
|
const char *schemaname = get_namespace_name(procform->pronamespace);
|
|
appendStringInfo(buf, "%s.", quote_identifier(schemaname));
|
|
}
|
|
|
|
/* Deparse the function name ... */
|
|
const char *proname = NameStr(procform->proname);
|
|
appendStringInfo(buf, "%s(", quote_identifier(proname));
|
|
/* ... and all the arguments */
|
|
bool first = true;
|
|
foreach (arg, node->args) {
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
if (use_variadic && lnext(arg) == NULL) {
|
|
appendStringInfoString(buf, "VARIADIC ");
|
|
}
|
|
deparseExpr((Expr *)lfirst(arg), context);
|
|
first = false;
|
|
}
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
ReleaseSysCache(proctup);
|
|
}
|
|
|
|
/*
|
|
* Deparse given operator expression. To avoid problems around
|
|
* priority of operations, we always parenthesize the arguments.
|
|
*/
|
|
static void deparseOpExpr(OpExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
char oprkind;
|
|
ListCell *arg = NULL;
|
|
|
|
/* Retrieve information about the operator from system catalog. */
|
|
HeapTuple tuple = SearchSysCache1(OPEROID, ObjectIdGetDatum(node->opno));
|
|
if (!HeapTupleIsValid(tuple)) {
|
|
elog(ERROR, "cache lookup failed for operator %u", node->opno);
|
|
}
|
|
Form_pg_operator form = (Form_pg_operator)GETSTRUCT(tuple);
|
|
oprkind = form->oprkind;
|
|
|
|
/* Sanity check. */
|
|
Assert((oprkind == 'r' && list_length(node->args) == 1) || (oprkind == 'l' && list_length(node->args) == 1) ||
|
|
(oprkind == 'b' && list_length(node->args) == 2));
|
|
|
|
/* Always parenthesize the expression. */
|
|
appendStringInfoChar(buf, '(');
|
|
|
|
/* Deparse left operand. */
|
|
if (oprkind == 'r' || oprkind == 'b') {
|
|
arg = list_head(node->args);
|
|
deparseExpr((Expr *)lfirst(arg), context);
|
|
appendStringInfoChar(buf, ' ');
|
|
}
|
|
|
|
/* Deparse operator name. */
|
|
deparseOperatorName(buf, form);
|
|
|
|
/* Deparse right operand. */
|
|
if (oprkind == 'l' || oprkind == 'b') {
|
|
arg = list_tail(node->args);
|
|
appendStringInfoChar(buf, ' ');
|
|
deparseExpr((Expr *)lfirst(arg), context);
|
|
}
|
|
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
ReleaseSysCache(tuple);
|
|
}
|
|
|
|
/*
|
|
* Print the name of an operator.
|
|
*/
|
|
static void deparseOperatorName(StringInfo buf, Form_pg_operator opform)
|
|
{
|
|
/* opname is not a SQL identifier, so we should not quote it. */
|
|
char* opname = NameStr(opform->oprname);
|
|
|
|
/* Print schema name only if it's not pg_catalog */
|
|
if (opform->oprnamespace != PG_CATALOG_NAMESPACE) {
|
|
const char *opnspname = get_namespace_name(opform->oprnamespace);
|
|
/* Print fully qualified operator name. */
|
|
if(opnspname != NULL) {
|
|
appendStringInfo(buf, "OPERATOR(%s.%s)", quote_identifier(opnspname), opname);
|
|
} else {
|
|
appendStringInfo(buf, "OPERATOR(\"Unknown\".%s)", opname);
|
|
}
|
|
} else {
|
|
/* Just print operator name. */
|
|
appendStringInfoString(buf, opname);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse IS DISTINCT FROM.
|
|
*/
|
|
static void deparseDistinctExpr(DistinctExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
|
|
Assert(list_length(node->args) == 2);
|
|
|
|
appendStringInfoChar(buf, '(');
|
|
deparseExpr((Expr *)linitial(node->args), context);
|
|
appendStringInfoString(buf, " IS DISTINCT FROM ");
|
|
deparseExpr((Expr *)lsecond(node->args), context);
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
|
|
/*
|
|
* Deparse given ScalarArrayOpExpr expression. To avoid problems
|
|
* around priority of operations, we always parenthesize the arguments.
|
|
*/
|
|
static void deparseScalarArrayOpExpr(ScalarArrayOpExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
|
|
/* Retrieve information about the operator from system catalog. */
|
|
HeapTuple tuple = SearchSysCache1(OPEROID, ObjectIdGetDatum(node->opno));
|
|
if (!HeapTupleIsValid(tuple)) {
|
|
elog(ERROR, "cache lookup failed for operator %u", node->opno);
|
|
}
|
|
Form_pg_operator form = (Form_pg_operator)GETSTRUCT(tuple);
|
|
|
|
/* Sanity check. */
|
|
Assert(list_length(node->args) == 2);
|
|
|
|
/* Always parenthesize the expression. */
|
|
appendStringInfoChar(buf, '(');
|
|
|
|
/* Deparse left operand. */
|
|
Expr *arg1 = (Expr *)linitial(node->args);
|
|
deparseExpr(arg1, context);
|
|
appendStringInfoChar(buf, ' ');
|
|
|
|
/* Deparse operator name plus decoration. */
|
|
deparseOperatorName(buf, form);
|
|
appendStringInfo(buf, " %s (", node->useOr ? "ANY" : "ALL");
|
|
|
|
/* Deparse right operand. */
|
|
Expr *arg2 = (Expr *)lsecond(node->args);
|
|
deparseExpr(arg2, context);
|
|
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
/* Always parenthesize the expression. */
|
|
appendStringInfoChar(buf, ')');
|
|
|
|
ReleaseSysCache(tuple);
|
|
}
|
|
|
|
/*
|
|
* Deparse a RelabelType (binary-compatible cast) node.
|
|
*/
|
|
static void deparseRelabelType(RelabelType *node, deparse_expr_cxt *context)
|
|
{
|
|
deparseExpr(node->arg, context);
|
|
if (node->relabelformat != COERCE_IMPLICIT_CAST) {
|
|
appendStringInfo(context->buf, "::%s", format_type_with_typemod(node->resulttype, node->resulttypmod));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse a BoolExpr node.
|
|
*
|
|
* Note: by the time we get here, AND and OR expressions have been flattened
|
|
* into N-argument form, so we'd better be prepared to deal with that.
|
|
*/
|
|
static void deparseBoolExpr(BoolExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
const char *op = NULL; /* keep compiler quiet */
|
|
ListCell *lc = NULL;
|
|
|
|
switch (node->boolop) {
|
|
case AND_EXPR:
|
|
op = "AND";
|
|
break;
|
|
case OR_EXPR:
|
|
op = "OR";
|
|
break;
|
|
case NOT_EXPR:
|
|
appendStringInfoString(buf, "(NOT ");
|
|
deparseExpr((Expr *)linitial(node->args), context);
|
|
appendStringInfoChar(buf, ')');
|
|
return;
|
|
}
|
|
|
|
appendStringInfoChar(buf, '(');
|
|
bool first = true;
|
|
foreach (lc, node->args) {
|
|
if (!first) {
|
|
appendStringInfo(buf, " %s ", op);
|
|
}
|
|
deparseExpr((Expr *)lfirst(lc), context);
|
|
first = false;
|
|
}
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
|
|
/*
|
|
* Deparse IS [NOT] NULL expression.
|
|
*/
|
|
static void deparseNullTest(NullTest *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
|
|
appendStringInfoChar(buf, '(');
|
|
deparseExpr(node->arg, context);
|
|
|
|
/*
|
|
* For scalar inputs, we prefer to print as IS [NOT] NULL, which is
|
|
* shorter and traditional. If it's a rowtype input but we're applying a
|
|
* scalar test, must print IS [NOT] DISTINCT FROM NULL to be semantically
|
|
* correct.
|
|
*/
|
|
if (node->argisrow || !type_is_rowtype(exprType((Node *)node->arg))) {
|
|
if (node->nulltesttype == IS_NULL) {
|
|
appendStringInfoString(buf, " IS NULL)");
|
|
} else {
|
|
appendStringInfoString(buf, " IS NOT NULL)");
|
|
}
|
|
} else {
|
|
if (node->nulltesttype == IS_NULL) {
|
|
appendStringInfoString(buf, " IS NOT DISTINCT FROM NULL)");
|
|
} else {
|
|
appendStringInfoString(buf, " IS DISTINCT FROM NULL)");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse CASE expression
|
|
*/
|
|
static void deparseCaseExpr(CaseExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
ListCell *lc = NULL;
|
|
|
|
appendStringInfoString(buf, "(CASE");
|
|
|
|
/* If this is a CASE arg WHEN then emit the arg expression */
|
|
if (node->arg != NULL) {
|
|
appendStringInfoChar(buf, ' ');
|
|
deparseExpr(node->arg, context);
|
|
}
|
|
|
|
/* Add each condition/result of the CASE clause */
|
|
foreach (lc, node->args) {
|
|
CaseWhen *whenclause = (CaseWhen *)lfirst(lc);
|
|
|
|
/* WHEN */
|
|
appendStringInfoString(buf, " WHEN ");
|
|
if (node->arg == NULL) { /* CASE WHEN */
|
|
deparseExpr(whenclause->expr, context);
|
|
} else { /* CASE arg WHEN */
|
|
/* Ignore the CaseTestExpr and equality operator. */
|
|
deparseExpr((Expr*)lsecond(castNode(OpExpr, whenclause->expr)->args), context);
|
|
}
|
|
|
|
/* THEN */
|
|
appendStringInfoString(buf, " THEN ");
|
|
deparseExpr(whenclause->result, context);
|
|
}
|
|
|
|
/* add ELSE if present */
|
|
if (node->defresult != NULL) {
|
|
appendStringInfoString(buf, " ELSE ");
|
|
deparseExpr(node->defresult, context);
|
|
}
|
|
|
|
/* append END */
|
|
appendStringInfoString(buf, " END)");
|
|
}
|
|
|
|
/*
|
|
* Deparse ARRAY[...] construct.
|
|
*/
|
|
static void deparseArrayExpr(ArrayExpr *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
bool first = true;
|
|
ListCell *lc = NULL;
|
|
|
|
appendStringInfoString(buf, "ARRAY[");
|
|
foreach (lc, node->elements) {
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
deparseExpr((Expr *)lfirst(lc), context);
|
|
first = false;
|
|
}
|
|
appendStringInfoChar(buf, ']');
|
|
|
|
/* If the array is empty, we need an explicit cast to the array type. */
|
|
if (node->elements == NIL) {
|
|
appendStringInfo(buf, "::%s", format_type_with_typemod(node->array_typeid, -1));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse an Aggref node.
|
|
*/
|
|
static void deparseAggref(Aggref *node, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
bool use_variadic;
|
|
|
|
/* Check if need to print VARIADIC (cf. ruleutils.c) */
|
|
use_variadic = node->aggvariadic;
|
|
|
|
/* Find aggregate name from aggfnoid which is a pg_proc entry */
|
|
appendFunctionName(node->aggfnoid, context);
|
|
appendStringInfoChar(buf, '(');
|
|
|
|
/* Add DISTINCT */
|
|
appendStringInfoString(buf, (node->aggdistinct != NIL) ? "DISTINCT " : "");
|
|
|
|
if (AGGKIND_IS_ORDERED_SET(node->aggkind)) {
|
|
/* Add WITHIN GROUP (ORDER BY ..) */
|
|
ListCell *arg;
|
|
bool first = true;
|
|
|
|
Assert(!node->aggvariadic);
|
|
Assert(node->aggorder != NIL);
|
|
|
|
foreach (arg, node->aggdirectargs) {
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
deparseExpr((Expr *)lfirst(arg), context);
|
|
}
|
|
|
|
appendStringInfoString(buf, ") WITHIN GROUP (ORDER BY ");
|
|
appendAggOrderBy(node->aggorder, node->args, context);
|
|
} else {
|
|
/* aggstar can be set only in zero-argument aggregates */
|
|
if (node->aggstar) {
|
|
appendStringInfoChar(buf, '*');
|
|
} else {
|
|
ListCell *arg = NULL;
|
|
bool first = true;
|
|
|
|
/* Add all the arguments */
|
|
foreach (arg, node->args) {
|
|
TargetEntry *tle = (TargetEntry *)lfirst(arg);
|
|
Node *n = (Node *)tle->expr;
|
|
|
|
if (tle->resjunk) {
|
|
continue;
|
|
}
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
/* Add VARIADIC */
|
|
if (use_variadic && lnext(arg) == NULL) {
|
|
appendStringInfoString(buf, "VARIADIC ");
|
|
}
|
|
|
|
deparseExpr((Expr *)n, context);
|
|
}
|
|
}
|
|
|
|
/* Add ORDER BY */
|
|
if (node->aggorder != NIL) {
|
|
appendStringInfoString(buf, " ORDER BY ");
|
|
appendAggOrderBy(node->aggorder, node->args, context);
|
|
}
|
|
}
|
|
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
|
|
/*
|
|
* Append ORDER BY within aggregate function.
|
|
*/
|
|
static void appendAggOrderBy(List *orderList, List *targetList, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
ListCell *lc = NULL;
|
|
bool first = true;
|
|
|
|
foreach (lc, orderList) {
|
|
SortGroupClause *srt = (SortGroupClause *)lfirst(lc);
|
|
Node *sortexpr = NULL;
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
/* Deparse the sort expression proper. */
|
|
sortexpr = deparseSortGroupClause(srt->tleSortGroupRef, targetList, false, context);
|
|
/* Add decoration as needed. */
|
|
appendOrderBySuffix(srt->sortop, exprType(sortexpr), srt->nulls_first, context);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Append the ASC, DESC, USING <OPERATOR> and NULLS FIRST / NULLS LAST parts
|
|
* of an ORDER BY clause.
|
|
*/
|
|
static void appendOrderBySuffix(Oid sortop, Oid sortcoltype, bool nulls_first, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
TypeCacheEntry *typentry = NULL;
|
|
|
|
/* See whether operator is default < or > for sort expr's datatype. */
|
|
typentry = lookup_type_cache(sortcoltype, TYPECACHE_LT_OPR | TYPECACHE_GT_OPR);
|
|
|
|
if (sortop == typentry->lt_opr) {
|
|
appendStringInfoString(buf, " ASC");
|
|
} else if (sortop == typentry->gt_opr) {
|
|
appendStringInfoString(buf, " DESC");
|
|
} else {
|
|
HeapTuple opertup;
|
|
Form_pg_operator operform;
|
|
|
|
appendStringInfoString(buf, " USING ");
|
|
|
|
/* Append operator name. */
|
|
opertup = SearchSysCache1(OPEROID, ObjectIdGetDatum(sortop));
|
|
if (!HeapTupleIsValid(opertup)) {
|
|
elog(ERROR, "cache lookup failed for operator %u", sortop);
|
|
}
|
|
operform = (Form_pg_operator)GETSTRUCT(opertup);
|
|
deparseOperatorName(buf, operform);
|
|
ReleaseSysCache(opertup);
|
|
}
|
|
|
|
if (nulls_first) {
|
|
appendStringInfoString(buf, " NULLS FIRST");
|
|
} else {
|
|
appendStringInfoString(buf, " NULLS LAST");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print the representation of a parameter to be sent to the remote side.
|
|
*
|
|
* Note: we always label the Param's type explicitly rather than relying on
|
|
* transmitting a numeric type OID in PQexecParams(). This allows us to
|
|
* avoid assuming that types have the same OIDs on the remote side as they
|
|
* do locally --- they need only have the same names.
|
|
*/
|
|
static void printRemoteParam(int paramindex, Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
char *ptypename = format_type_with_typemod(paramtype, paramtypmod);
|
|
|
|
appendStringInfo(buf, "$%d::%s", paramindex, ptypename);
|
|
}
|
|
|
|
/*
|
|
* Print the representation of a placeholder for a parameter that will be
|
|
* sent to the remote side at execution time.
|
|
*
|
|
* This is used when we're just trying to EXPLAIN the remote query.
|
|
* We don't have the actual value of the runtime parameter yet, and we don't
|
|
* want the remote planner to generate a plan that depends on such a value
|
|
* anyway. Thus, we can't do something simple like "$1::paramtype".
|
|
* Instead, we emit "((SELECT null::paramtype)::paramtype)".
|
|
* In all extant versions of openGauss, the planner will see that as an unknown
|
|
* constant value, which is what we want. This might need adjustment if we
|
|
* ever make the planner flatten scalar subqueries. Note: the reason for the
|
|
* apparently useless outer cast is to ensure that the representation as a
|
|
* whole will be parsed as an a_expr and not a select_with_parens; the latter
|
|
* would do the wrong thing in the context "x = ANY(...)".
|
|
*/
|
|
static void printRemotePlaceholder(Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
char *ptypename = format_type_with_typemod(paramtype, paramtypmod);
|
|
|
|
appendStringInfo(buf, "((SELECT null::%s)::%s)", ptypename, ptypename);
|
|
}
|
|
|
|
/*
|
|
* Deparse GROUP BY clause.
|
|
*/
|
|
static void appendGroupByClause(List *tlist, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
Query *query = context->root->parse;
|
|
ListCell *lc = NULL;
|
|
bool first = true;
|
|
|
|
/* Nothing to be done, if there's no GROUP BY clause in the query. */
|
|
if (!query->groupClause) {
|
|
return;
|
|
}
|
|
|
|
appendStringInfoString(buf, " GROUP BY ");
|
|
|
|
/*
|
|
* Queries with grouping sets are not pushed down, so we don't expect
|
|
* grouping sets here.
|
|
*/
|
|
Assert(!query->groupingSets);
|
|
|
|
foreach (lc, query->groupClause) {
|
|
SortGroupClause *grp = (SortGroupClause *)lfirst(lc);
|
|
|
|
if (!first) {
|
|
appendStringInfoString(buf, ", ");
|
|
}
|
|
first = false;
|
|
|
|
deparseSortGroupClause(grp->tleSortGroupRef, tlist, true, context);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deparse ORDER BY clause defined by the given pathkeys.
|
|
*
|
|
* The clause should use Vars from context->scanrel if !has_final_sort,
|
|
* or from context->foreignrel's targetlist if has_final_sort.
|
|
*
|
|
* We find a suitable pathkey expression (some earlier step
|
|
* should have verified that there is one) and deparse it.
|
|
*/
|
|
static void appendOrderByClause(List *pathkeys, bool has_final_sort, deparse_expr_cxt *context)
|
|
{
|
|
ListCell *lcell = NULL;
|
|
int nestlevel;
|
|
const char *delim = " ";
|
|
StringInfo buf = context->buf;
|
|
|
|
/* Make sure any constants in the exprs are printed portably */
|
|
nestlevel = set_transmission_modes();
|
|
|
|
appendStringInfoString(buf, " ORDER BY");
|
|
foreach (lcell, pathkeys) {
|
|
PathKey *pathkey = (PathKey*)lfirst(lcell);
|
|
EquivalenceMember *em;
|
|
Expr *em_expr;
|
|
Oid oprid;
|
|
|
|
if (has_final_sort) {
|
|
/*
|
|
* By construction, context->foreignrel is the input relation to
|
|
* the final sort.
|
|
*/
|
|
em = find_em_for_rel_target(context->root, pathkey->pk_eclass, context->foreignrel);
|
|
} else {
|
|
em = find_em_for_rel(context->root, pathkey->pk_eclass, context->scanrel);
|
|
}
|
|
|
|
/*
|
|
* We don't expect any error here; it would mean that shippability
|
|
* wasn't verified earlier. For the same reason, we don't recheck
|
|
* shippability of the sort operator.
|
|
*/
|
|
if (em == NULL) {
|
|
elog(ERROR, "could not find pathkey item to sort");
|
|
}
|
|
|
|
em_expr = em->em_expr;
|
|
|
|
/*
|
|
* Lookup the operator corresponding to the strategy in the opclass.
|
|
* The datatype used by the opfamily is not necessarily the same as
|
|
* the expression type (for array types for example).
|
|
*/
|
|
oprid = get_opfamily_member(pathkey->pk_opfamily, em->em_datatype, em->em_datatype, pathkey->pk_strategy);
|
|
if (!OidIsValid(oprid)) {
|
|
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u", pathkey->pk_strategy, em->em_datatype,
|
|
em->em_datatype, pathkey->pk_opfamily);
|
|
}
|
|
|
|
appendStringInfoString(buf, delim);
|
|
deparseExpr(em_expr, context);
|
|
|
|
/*
|
|
* Here we need to use the expression's actual type to discover
|
|
* whether the desired operator will be the default or not.
|
|
*/
|
|
appendOrderBySuffix(oprid, exprType((Node *)em_expr), pathkey->pk_nulls_first, context);
|
|
|
|
delim = ", ";
|
|
}
|
|
reset_transmission_modes(nestlevel);
|
|
}
|
|
|
|
/*
|
|
* Deparse LIMIT/OFFSET clause.
|
|
*/
|
|
static void appendLimitClause(deparse_expr_cxt *context)
|
|
{
|
|
PlannerInfo *root = context->root;
|
|
StringInfo buf = context->buf;
|
|
int nestlevel;
|
|
|
|
/* Make sure any constants in the exprs are printed portably */
|
|
nestlevel = set_transmission_modes();
|
|
|
|
if (root->parse->limitCount) {
|
|
appendStringInfoString(buf, " LIMIT ");
|
|
deparseExpr((Expr *)root->parse->limitCount, context);
|
|
}
|
|
if (root->parse->limitOffset) {
|
|
appendStringInfoString(buf, " OFFSET ");
|
|
deparseExpr((Expr *)root->parse->limitOffset, context);
|
|
}
|
|
|
|
reset_transmission_modes(nestlevel);
|
|
}
|
|
|
|
/*
|
|
* appendFunctionName
|
|
* Deparses function name from given function oid.
|
|
*/
|
|
static void appendFunctionName(Oid funcid, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
HeapTuple proctup;
|
|
Form_pg_proc procform;
|
|
const char *proname = NULL;
|
|
|
|
proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
|
|
if (!HeapTupleIsValid(proctup)) {
|
|
elog(ERROR, "cache lookup failed for function %u", funcid);
|
|
}
|
|
procform = (Form_pg_proc)GETSTRUCT(proctup);
|
|
|
|
/* Print schema name only if it's not pg_catalog */
|
|
if (procform->pronamespace != PG_CATALOG_NAMESPACE) {
|
|
const char *schemaname = NULL;
|
|
|
|
schemaname = get_namespace_name(procform->pronamespace);
|
|
appendStringInfo(buf, "%s.", quote_identifier(schemaname));
|
|
}
|
|
|
|
/* Always print the function name */
|
|
proname = NameStr(procform->proname);
|
|
appendStringInfoString(buf, quote_identifier(proname));
|
|
|
|
ReleaseSysCache(proctup);
|
|
}
|
|
|
|
/*
|
|
* Appends a sort or group clause.
|
|
*
|
|
* Like get_rule_sortgroupclause(), returns the expression tree, so caller
|
|
* need not find it again.
|
|
*/
|
|
static Node *deparseSortGroupClause(Index ref, List *tlist, bool force_colno, deparse_expr_cxt *context)
|
|
{
|
|
StringInfo buf = context->buf;
|
|
TargetEntry *tle = NULL;
|
|
Expr *expr = NULL;
|
|
|
|
tle = get_sortgroupref_tle(ref, tlist);
|
|
expr = tle->expr;
|
|
|
|
if (force_colno) {
|
|
/* Use column-number form when requested by caller. */
|
|
Assert(!tle->resjunk);
|
|
appendStringInfo(buf, "%d", tle->resno);
|
|
} else if (expr && IsA(expr, Const)) {
|
|
/*
|
|
* Force a typecast here so that we don't emit something like "GROUP
|
|
* BY 2", which will be misconstrued as a column position rather than
|
|
* a constant.
|
|
*/
|
|
deparseConst((Const *)expr, context, 1);
|
|
} else if (!expr || IsA(expr, Var)) {
|
|
deparseExpr(expr, context);
|
|
} else {
|
|
/* Always parenthesize the expression. */
|
|
appendStringInfoChar(buf, '(');
|
|
deparseExpr(expr, context);
|
|
appendStringInfoChar(buf, ')');
|
|
}
|
|
|
|
return (Node *)expr;
|
|
}
|
|
|
|
/*
|
|
* Returns true if given Var is deparsed as a subquery output column, in
|
|
* which case, *relno and *colno are set to the IDs for the relation and
|
|
* column alias to the Var provided by the subquery.
|
|
*/
|
|
static bool is_subquery_var(Var *node, RelOptInfo *foreignrel, int *relno, int *colno)
|
|
{
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)foreignrel->fdw_private;
|
|
RelOptInfo *outerrel = fpinfo->outerrel;
|
|
RelOptInfo *innerrel = fpinfo->innerrel;
|
|
|
|
/* Should only be called in these cases. */
|
|
Assert(IS_SIMPLE_REL(foreignrel) || IS_JOIN_REL(foreignrel));
|
|
|
|
/*
|
|
* If the given relation isn't a join relation, it doesn't have any lower
|
|
* subqueries, so the Var isn't a subquery output column.
|
|
*/
|
|
if (!IS_JOIN_REL(foreignrel)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If the Var doesn't belong to any lower subqueries, it isn't a subquery
|
|
* output column.
|
|
*/
|
|
if (!bms_is_member(node->varno, fpinfo->lower_subquery_rels)) {
|
|
return false;
|
|
}
|
|
|
|
if (bms_is_member(node->varno, outerrel->relids)) {
|
|
/*
|
|
* If outer relation is deparsed as a subquery, the Var is an output
|
|
* column of the subquery; get the IDs for the relation/column alias.
|
|
*/
|
|
if (fpinfo->make_outerrel_subquery) {
|
|
get_relation_column_alias_ids(node, outerrel, relno, colno);
|
|
return true;
|
|
}
|
|
|
|
/* Otherwise, recurse into the outer relation. */
|
|
return is_subquery_var(node, outerrel, relno, colno);
|
|
} else {
|
|
Assert(bms_is_member(node->varno, innerrel->relids));
|
|
|
|
/*
|
|
* If inner relation is deparsed as a subquery, the Var is an output
|
|
* column of the subquery; get the IDs for the relation/column alias.
|
|
*/
|
|
if (fpinfo->make_innerrel_subquery) {
|
|
get_relation_column_alias_ids(node, innerrel, relno, colno);
|
|
return true;
|
|
}
|
|
|
|
/* Otherwise, recurse into the inner relation. */
|
|
return is_subquery_var(node, innerrel, relno, colno);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the IDs for the relation and column alias to given Var belonging to
|
|
* given relation, which are returned into *relno and *colno.
|
|
*/
|
|
static void get_relation_column_alias_ids(Var *node, RelOptInfo *foreignrel, int *relno, int *colno)
|
|
{
|
|
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *)foreignrel->fdw_private;
|
|
int i;
|
|
ListCell *lc = NULL;
|
|
|
|
/* Get the relation alias ID */
|
|
*relno = fpinfo->relation_index;
|
|
|
|
/* Get the column alias ID */
|
|
i = 1;
|
|
foreach (lc, foreignrel->reltarget->exprs) {
|
|
if (equal(lfirst(lc), (Node *)node)) {
|
|
*colno = i;
|
|
return;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
/* Shouldn't get here */
|
|
elog(ERROR, "unexpected expression in subquery output");
|
|
}
|