Files
openGauss-server/src/common/backend/parser/parse_coerce.cpp

2925 lines
110 KiB
C++

/* -------------------------------------------------------------------------
*
* parse_coerce.cpp
* handle type coercions/conversions for parser
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
* Portions Copyright (c) 2021, openGauss Contributors
*
*
* IDENTIFICATION
* src/common/backend/parser/parse_coerce.cpp
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "knl/knl_variable.h"
#include "catalog/pg_cast.h"
#include "catalog/pg_class.h"
#include "catalog/pg_inherits_fn.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "parser/parse_relation.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
#include "optimizer/clauses.h"
#include "utils/numeric.h"
#include "utils/guc.h"
#include "utils/guc_tables.h"
#ifdef PGXC
#include "pgxc/pgxc.h"
#endif
static Node* coerce_type_typmod(Node* node, Oid targetTypeId, int32 targetTypMod, CoercionForm cformat, int location,
bool isExplicit, bool hideInputCoercion);
static void hide_coercion_node(Node* node);
static Node* build_coercion_expression(Node* node, CoercionPathType pathtype, Oid funcId, Oid targetTypeId,
int32 targetTypMod, CoercionForm cformat, int location, bool isExplicit);
static Node* coerce_record_to_complex(
ParseState* pstate, Node* node, Oid targetTypeId, CoercionContext ccontext, CoercionForm cformat, int location);
static bool is_complex_array(Oid typid);
static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId);
static Oid choose_decode_result1_type(ParseState* pstate, List* exprs, const char* context);
static void handle_diff_category(ParseState* pstate, Node* nextExpr, const char* context,
TYPCATEGORY preferCategory, TYPCATEGORY nextCategory, Oid preferType, Oid nextType);
static bool category_can_be_matched(TYPCATEGORY preferCategory, TYPCATEGORY nextCategory);
static bool type_can_be_matched(Oid preferType, Oid nextType);
static Oid choose_specific_expr_type(ParseState* pstate, List* exprs, const char* context);
static Oid choose_nvl_type(ParseState* pstate, List* exprs, const char* context);
static Oid choose_expr_type(ParseState* pstate, List* exprs, const char* context, Node** which_expr);
static bool check_category_in_whitelist(TYPCATEGORY category, Oid type);
static bool check_numeric_type_in_blacklist(Oid type);
static bool meet_decode_compatibility(List* exprs, const char* context);
static bool meet_c_format_compatibility(List* exprs, const char* context);
static bool meet_set_type_compatibility(List* exprs, const char* context, Oid *retOid);
extern Node* makeAConst(Value* v, int location);
/*
* @Description: same as get_element_type() except this reports error
* when the result is invalid.
* @in base_type: array type oid to resolve
* @return: valid element oid
*/
inline Oid get_valid_element_type(Oid base_type)
{
Oid array_typelem = get_element_type(base_type);
if (!OidIsValid(array_typelem)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not an array but type %s", format_type_be(base_type))));
}
return array_typelem;
}
/*
* @Description: same as get_array_type() except this reports error
* when the result is invalid.
* @in elem_type: element type oid to be searched
* @return: valid array oid
*/
inline Oid get_valid_array_type(Oid elem_type)
{
Oid array_typeid = get_array_type(elem_type);
if (!OidIsValid(array_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find range type for data type %s", format_type_be(elem_type))));
}
return array_typeid;
}
/*
* coerce_to_target_type()
* Convert an expression to a target type and typmod.
*
* This is the general-purpose entry point for arbitrary type coercion
* operations. Direct use of the component operations can_coerce_type,
* coerce_type, and coerce_type_typmod should be restricted to special
* cases (eg, when the conversion is expected to succeed).
*
* Returns the possibly-transformed expression tree, or NULL if the type
* conversion is not possible. (We do this, rather than ereport'ing directly,
* so that callers can generate custom error messages indicating context.)
*
* pstate - parse state (can be NULL, see coerce_type)
* expr - input expression tree (already transformed by transformExpr)
* exprtype - result type of expr
* targettype - desired result type
* targettypmod - desired result typmod
* ccontext, cformat - context indicators to control coercions
* location - parse location of the coercion request, or -1 if unknown/implicit
*/
Node* coerce_to_target_type(ParseState* pstate, Node* expr, Oid exprtype, Oid targettype, int32 targettypmod,
CoercionContext ccontext, CoercionForm cformat, int location)
{
Node* result = NULL;
Node* origexpr = NULL;
if (!can_coerce_type(1, &exprtype, &targettype, ccontext)) {
return NULL;
}
/*
* If the input has a CollateExpr at the top, strip it off, perform the
* coercion, and put a new one back on. This is annoying since it
* duplicates logic in coerce_type, but if we don't do this then it's too
* hard to tell whether coerce_type actually changed anything, and we
* *must* know that to avoid possibly calling hide_coercion_node on
* something that wasn't generated by coerce_type. Note that if there are
* multiple stacked CollateExprs, we just discard all but the topmost.
*/
origexpr = expr;
while (expr && IsA(expr, CollateExpr)) {
expr = (Node*)((CollateExpr*)expr)->arg;
}
result = coerce_type(pstate, expr, exprtype, targettype, targettypmod, ccontext, cformat, location);
/*
* If the target is a fixed-length type, it may need a length coercion as
* well as a type coercion. If we find ourselves adding both, force the
* inner coercion node to implicit display form.
*/
result = coerce_type_typmod(result,
targettype,
targettypmod,
cformat,
location,
(cformat != COERCE_IMPLICIT_CAST),
(result != expr && !IsA(result, Const)));
#ifdef PGXC
/* Do not need to do that on local Coordinator */
if (IsConnFromCoord())
#endif
if (expr != origexpr) {
/* Reinstall top CollateExpr */
CollateExpr* coll = (CollateExpr*)origexpr;
CollateExpr* newcoll = makeNode(CollateExpr);
newcoll->arg = (Expr*)result;
newcoll->collOid = coll->collOid;
newcoll->location = coll->location;
result = (Node*)newcoll;
}
return result;
}
/*
* user_defined variables only store integer, float, bit, string and null,
* therefor, we convert the constant to the corresponding type.
* atttypid: datatype
* isSelect: subquery flag
*/
Node *type_transfer(Node *node, Oid atttypid, bool isSelect)
{
Node *result = NULL;
Const *con = (Const *)node;
if (con->constisnull) {
return node;
}
switch (atttypid) {
case BOOLOID:
case INT1OID:
case INT2OID:
case INT4OID:
case INT8OID:
result = coerce_type(NULL, node, con->consttype,
INT8OID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
break;
case FLOAT4OID:
case FLOAT8OID:
case NUMERICOID:
result = coerce_type(NULL, node, con->consttype,
FLOAT8OID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
break;
case BITOID:
result = coerce_type(NULL, node, con->consttype,
BITOID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
break;
case VARBITOID:
result = coerce_type(NULL, node, con->consttype,
VARBITOID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
break;
default:
result = isSelect ? node :
coerce_type(NULL, node, con->consttype, TEXTOID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
break;
}
return result;
}
/*
* convert expression to const.
*/
Node *const_expression_to_const(Node *node)
{
Node *result = NULL;
Const *con = (Const *)node;
if (nodeTag(node) != T_Const) {
ereport(ERROR,
(errcode(ERRCODE_INVALID_OPERATION),
errmsg("The value of a user_defined variable must be convertible to a constant.")));
}
/* user_defined varibale only stores integer, float, bit, string, null. */
result = type_transfer(node, con->consttype, false);
return eval_const_expression_value(NULL, result, NULL);
}
/*
* coerce_type()
* Convert an expression to a different type.
*
* The caller should already have determined that the coercion is possible;
* see can_coerce_type.
*
* Normally, no coercion to a typmod (length) is performed here. The caller
* must call coerce_type_typmod as well, if a typmod constraint is wanted.
* (But if the target type is a domain, it may internally contain a
* typmod constraint, which will be applied inside coerce_to_domain.)
* In some cases pg_cast specifies a type coercion function that also
* applies length conversion, and in those cases only, the result will
* already be properly coerced to the specified typmod.
*
* pstate is only used in the case that we are able to resolve the type of
* a previously UNKNOWN Param. It is okay to pass pstate = NULL if the
* caller does not want type information updated for Params.
*
* Note: this function must not modify the given expression tree, only add
* decoration on top of it. See transformSetOperationTree, for example.
*/
Node* coerce_type(ParseState* pstate, Node* node, Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
CoercionContext ccontext, CoercionForm cformat, int location)
{
Node* result = NULL;
CoercionPathType pathtype;
Oid funcId;
if (targetTypeId == inputTypeId || node == NULL) {
/* no conversion needed */
return node;
}
if (targetTypeId == ANYOID || targetTypeId == ANYELEMENTOID || targetTypeId == ANYNONARRAYOID) {
/*
* Assume can_coerce_type verified that implicit coercion is okay.
*
* Note: by returning the unmodified node here, we are saying that
* it's OK to treat an UNKNOWN constant as a valid input for a
* function accepting ANY, ANYELEMENT, or ANYNONARRAY. This should be
* all right, since an UNKNOWN value is still a perfectly valid Datum.
*
* NB: we do NOT want a RelabelType here: the exposed type of the
* function argument must be its actual type, not the polymorphic
* pseudotype.
*/
return node;
}
if (targetTypeId == ANYARRAYOID || targetTypeId == ANYENUMOID || targetTypeId == ANYRANGEOID) {
/*
* Assume can_coerce_type verified that implicit coercion is okay.
*
* These cases are unlike the ones above because the exposed type of
* the argument must be an actual array, enum, or range type. In
* particular the argument must *not* be an UNKNOWN constant. If it
* is, we just fall through; below, we'll call anyarray_in,
* anyenum_in, or anyrange_in, which will produce an error. Also, if
* what we have is a domain over array, enum, or range, we have to
* relabel it to its base type.
*
* Note: currently, we can't actually see a domain-over-enum here,
* since the other functions in this file will not match such a
* parameter to ANYENUM. But that should get changed eventually.
*/
if (inputTypeId != UNKNOWNOID) {
Oid baseTypeId = getBaseType(inputTypeId);
if (baseTypeId != inputTypeId) {
RelabelType* r = makeRelabelType((Expr*)node, baseTypeId, -1, InvalidOid, cformat);
r->location = location;
return (Node*)r;
}
/* Not a domain type, so return it as-is */
return node;
}
}
if (inputTypeId == UNKNOWNOID && IsA(node, Const)) {
/*
* Input is a string constant with previously undetermined type. Apply
* the target type's typinput function to it to produce a constant of
* the target type.
*
* NOTE: this case cannot be folded together with the other
* constant-input case, since the typinput function does not
* necessarily behave the same as a type conversion function. For
* example, int4's typinput function will reject "1.2", whereas
* float-to-int type conversion will round to integer.
*
* XXX if the typinput function is not immutable, we really ought to
* postpone evaluation of the function call until runtime. But there
* is no way to represent a typinput function call as an expression
* tree, because C-string values are not Datums. (XXX This *is*
* possible as of 7.3, do we want to do it?)
*/
Const* con = (Const*)node;
Const* newcon = makeNode(Const);
Oid baseTypeId;
int32 baseTypeMod;
int32 inputTypeMod;
Type targetType;
ParseCallbackState pcbstate;
/*
* If the target type is a domain, we want to call its base type's
* input routine, not domain_in(). This is to avoid premature failure
* when the domain applies a typmod: existing input routines follow
* implicit-coercion semantics for length checks, which is not always
* what we want here. The needed check will be applied properly
* inside coerce_to_domain().
*/
baseTypeMod = targetTypeMod;
baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
/*
* For most types we pass typmod -1 to the input routine, because
* existing input routines follow implicit-coercion semantics for
* length checks, which is not always what we want here. Any length
* constraint will be applied later by our caller. An exception
* however is the INTERVAL type, for which we *must* pass the typmod
* or it won't be able to obey the bizarre SQL-spec input rules. (Ugly
* as sin, but so is this part of the spec...)
*/
if (baseTypeId == INTERVALOID) {
inputTypeMod = baseTypeMod;
} else {
inputTypeMod = -1;
}
targetType = typeidType(baseTypeId);
newcon->consttype = baseTypeId;
newcon->consttypmod = inputTypeMod;
newcon->constcollid = typeTypeCollation(targetType);
newcon->constlen = typeLen(targetType);
newcon->constbyval = typeByVal(targetType);
newcon->constisnull = con->constisnull;
newcon->cursor_data.cur_dno = -1;
/*
* We use the original literal's location regardless of the position
* of the coercion. This is a change from pre-9.2 behavior, meant to
* simplify life for pg_stat_statements.
*/
newcon->location = con->location;
/*
* Set up to point at the constant's text if the input routine throws
* an error.
*/
setup_parser_errposition_callback(&pcbstate, pstate, con->location);
/*
* We assume here that UNKNOWN's internal representation is the same
* as CSTRING.
*/
if (!con->constisnull) {
newcon->constvalue = stringTypeDatum(targetType, DatumGetCString(con->constvalue), inputTypeMod);
} else {
newcon->constvalue = stringTypeDatum(targetType, NULL, inputTypeMod);
}
cancel_parser_errposition_callback(&pcbstate);
result = (Node*)newcon;
/* If target is a domain, apply constraints. */
if (baseTypeId != targetTypeId) {
result = coerce_to_domain(result, baseTypeId, baseTypeMod, targetTypeId, cformat, location, false, false);
}
ReleaseSysCache(targetType);
return result;
}
if (IsA(node, Param) && pstate != NULL && pstate->p_coerce_param_hook != NULL) {
/*
* Allow the CoerceParamHook to decide what happens. It can return a
* transformed node (very possibly the same Param node), or return
* NULL to indicate we should proceed with normal coercion.
*/
result = (*pstate->p_coerce_param_hook)(pstate, (Param*)node, targetTypeId, targetTypeMod, location);
if (result != NULL) {
return result;
}
}
if (IsA(node, CollateExpr)) {
/*
* If we have a COLLATE clause, we have to push the coercion
* underneath the COLLATE. This is really ugly, but there is little
* choice because the above hacks on Consts and Params wouldn't happen
* otherwise. This kluge has consequences in coerce_to_target_type.
*/
CollateExpr* coll = (CollateExpr*)node;
CollateExpr* newcoll = makeNode(CollateExpr);
newcoll->arg = (Expr*)coerce_type(
pstate, (Node*)coll->arg, inputTypeId, targetTypeId, targetTypeMod, ccontext, cformat, location);
newcoll->collOid = coll->collOid;
newcoll->location = coll->location;
return (Node*)newcoll;
}
if (UNKNOWNOID == inputTypeId && COERCION_IMPLICIT == ccontext) {
/*
* force to convert unknown expression to target type, since there is
* no implicit coercion method for UNKNOWNOID type, or it will throw
* an exception
*/
ccontext = COERCION_ASSIGNMENT;
}
pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, &funcId);
if (pathtype != COERCION_PATH_NONE) {
if (pathtype != COERCION_PATH_RELABELTYPE) {
/*
* Generate an expression tree representing run-time application
* of the conversion function. If we are dealing with a domain
* target type, the conversion function will yield the base type,
* and we need to extract the correct typmod to use from the
* domain's typtypmod.
*/
Oid baseTypeId;
int32 baseTypeMod;
baseTypeMod = targetTypeMod;
baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
result = build_coercion_expression(
node, pathtype, funcId, baseTypeId, baseTypeMod, cformat, location, (cformat != COERCE_IMPLICIT_CAST));
/*
* If domain, coerce to the domain type and relabel with domain
* type ID. We can skip the internal length-coercion step if the
* selected coercion function was a type-and-length coercion.
*/
if (targetTypeId != baseTypeId)
result = coerce_to_domain(result,
baseTypeId,
baseTypeMod,
targetTypeId,
cformat,
location,
true,
exprIsLengthCoercion(result, NULL));
} else {
/*
* We don't need to do a physical conversion, but we do need to
* attach a RelabelType node so that the expression will be seen
* to have the intended type when inspected by higher-level code.
*
* Also, domains may have value restrictions beyond the base type
* that must be accounted for. If the destination is a domain
* then we won't need a RelabelType node.
*/
result = coerce_to_domain(node, InvalidOid, -1, targetTypeId, cformat, location, false, false);
if (result == node) {
/*
* XXX could we label result with exprTypmod(node) instead of
* default -1 typmod, to save a possible length-coercion
* later? Would work if both types have same interpretation of
* typmod, which is likely but not certain.
*/
RelabelType* r = makeRelabelType((Expr*)result, targetTypeId, -1, InvalidOid, cformat);
r->location = location;
result = (Node*)r;
}
}
return result;
}
if (inputTypeId == RECORDOID && ISCOMPLEX(targetTypeId)) {
/* Coerce a RECORD to a specific complex type */
return coerce_record_to_complex(pstate, node, targetTypeId, ccontext, cformat, location);
}
if (targetTypeId == RECORDOID && ISCOMPLEX(inputTypeId)) {
/* Coerce a specific complex type to RECORD */
/* NB: we do NOT want a RelabelType here */
return node;
}
#ifdef NOT_USED
if (inputTypeId == RECORDARRAYOID && is_complex_array(targetTypeId)) {
/* Coerce record[] to a specific complex array type */
/* not implemented yet ... */
}
#endif
if (targetTypeId == RECORDARRAYOID && is_complex_array(inputTypeId)) {
/* Coerce a specific complex array type to record[] */
/* NB: we do NOT want a RelabelType here */
return node;
}
if (typeInheritsFrom(inputTypeId, targetTypeId) || typeIsOfTypedTable(inputTypeId, targetTypeId)) {
/*
* Input class type is a subclass of target, so generate an
* appropriate runtime conversion (removing unneeded columns and
* possibly rearranging the ones that are wanted).
*/
ConvertRowtypeExpr* r = makeNode(ConvertRowtypeExpr);
r->arg = (Expr*)node;
r->resulttype = targetTypeId;
r->convertformat = cformat;
r->location = location;
return (Node*)r;
}
if (targetTypeId == ANYSETOID && type_is_set(inputTypeId)) {
return node;
}
if (type_is_set(inputTypeId) && type_is_set(targetTypeId)) {
return node;
}
/* If we get here, caller blew it */
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("failed to find conversion function from %s to %s",
format_type_be(inputTypeId),
format_type_be(targetTypeId))));
return NULL; /* keep compiler quiet */
}
/*
* can_coerce_type()
* Can input_typeids be coerced to target_typeids?
*
* We must be told the context (CAST construct, assignment, implicit coercion)
* as this determines the set of available casts.
*/
bool can_coerce_type(int nargs, Oid* input_typeids, Oid* target_typeids, CoercionContext ccontext)
{
bool have_generics = false;
int i;
/* run through argument list... */
for (i = 0; i < nargs; i++) {
Oid inputTypeId = input_typeids[i];
Oid targetTypeId = target_typeids[i];
CoercionPathType pathtype;
Oid funcId;
/* no problem if same type */
if (inputTypeId == targetTypeId) {
continue;
}
/* accept if target is ANY */
if (targetTypeId == ANYOID) {
continue;
}
/* accept if target is polymorphic, for now */
if (IsPolymorphicType(targetTypeId)) {
have_generics = true; /* do more checking later */
continue;
}
/*
* If input is an untyped string constant, assume we can convert it to
* anything.
*/
if (inputTypeId == UNKNOWNOID) {
continue;
}
/*
* If pg_cast shows that we can coerce, accept. This test now covers
* both binary-compatible and coercion-function cases.
*/
pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, &funcId);
if (pathtype != COERCION_PATH_NONE) {
continue;
}
/*
* If input is RECORD and target is a composite type, assume we can
* coerce (may need tighter checking here)
*/
if (inputTypeId == RECORDOID && ISCOMPLEX(targetTypeId)) {
continue;
}
/*
* If input is a composite type and target is RECORD, accept
*/
if (targetTypeId == RECORDOID && ISCOMPLEX(inputTypeId)) {
continue;
}
#ifdef NOT_USED /* not implemented yet */
/*
* If input is record[] and target is a composite array type, assume
* we can coerce (may need tighter checking here)
*/
if (inputTypeId == RECORDARRAYOID && is_complex_array(targetTypeId)) {
continue;
}
#endif
/*
* If input is a composite array type and target is record[], accept
*/
if (targetTypeId == RECORDARRAYOID && is_complex_array(inputTypeId)) {
continue;
}
/*
* If input is a class type that inherits from target, accept
*/
if (typeInheritsFrom(inputTypeId, targetTypeId) || typeIsOfTypedTable(inputTypeId, targetTypeId)) {
continue;
}
/*
* If input or target type is a actual set type, accept if the other is of number or char type value.
*/
if (targetTypeId == ANYSETOID && type_is_set(inputTypeId)) {
continue;
}
/*
* If input and target type are different actual set type, accept
*/
if (type_is_set(targetTypeId) && type_is_set(inputTypeId)) {
continue;
}
/*
* Else, cannot coerce at this argument position
*/
return false;
}
/* If we found any generic argument types, cross-check them */
if (have_generics) {
if (!check_generic_type_consistency(input_typeids, target_typeids, nargs)) {
return false;
}
}
return true;
}
/*
* Create an expression tree to represent coercion to a domain type.
*
* 'arg': input expression
* 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
* has not bothered to look this up)
* 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
* has not bothered to look this up)
* 'typeId': target type to coerce to
* 'cformat': coercion format
* 'location': coercion request location
* 'hideInputCoercion': if true, hide the input coercion under this one.
* 'lengthCoercionDone': if true, caller already accounted for length,
* ie the input is already of baseTypMod as well as baseTypeId.
*
* If the target type isn't a domain, the given 'arg' is returned as-is.
*/
Node* coerce_to_domain(Node* arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, CoercionForm cformat, int location,
bool hideInputCoercion, bool lengthCoercionDone)
{
CoerceToDomain* result = NULL;
/* Get the base type if it hasn't been supplied */
if (baseTypeId == InvalidOid) {
baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);
}
/* If it isn't a domain, return the node as it was passed in */
if (baseTypeId == typeId) {
return arg;
}
/* Suppress display of nested coercion steps */
if (hideInputCoercion) {
hide_coercion_node(arg);
}
/*
* If the domain applies a typmod to its base type, build the appropriate
* coercion step. Mark it implicit for display purposes, because we don't
* want it shown separately by ruleutils.c; but the isExplicit flag passed
* to the conversion function depends on the manner in which the domain
* coercion is invoked, so that the semantics of implicit and explicit
* coercion differ. (Is that really the behavior we want?)
*
* NOTE: because we apply this as part of the fixed expression structure,
* ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that
* would be safe to do anyway, without lots of knowledge about what the
* base type thinks the typmod means.
*/
if (!lengthCoercionDone) {
if (baseTypeMod >= 0) {
arg = coerce_type_typmod(
arg, baseTypeId, baseTypeMod, COERCE_IMPLICIT_CAST, location, (cformat != COERCE_IMPLICIT_CAST), false);
}
}
/*
* Now build the domain coercion node. This represents run-time checking
* of any constraints currently attached to the domain. This also ensures
* that the expression is properly labeled as to result type.
*/
result = makeNode(CoerceToDomain);
result->arg = (Expr*)arg;
result->resulttype = typeId;
result->resulttypmod = -1; /* currently, always -1 for domains */
/* resultcollid will be set by parse_collate.c */
result->coercionformat = cformat;
result->location = location;
return (Node*)result;
}
/*
* coerce_type_typmod()
* Force a value to a particular typmod, if meaningful and possible.
*
* This is applied to values that are going to be stored in a relation
* (where we have an atttypmod for the column) as well as values being
* explicitly CASTed (where the typmod comes from the target type spec).
*
* The caller must have already ensured that the value is of the correct
* type, typically by applying coerce_type.
*
* cformat determines the display properties of the generated node (if any),
* while isExplicit may affect semantics. If hideInputCoercion is true
* *and* we generate a node, the input node is forced to IMPLICIT display
* form, so that only the typmod coercion node will be visible when
* displaying the expression.
*
* NOTE: this does not need to work on domain types, because any typmod
* coercion for a domain is considered to be part of the type coercion
* needed to produce the domain value in the first place. So, no getBaseType.
*/
static Node* coerce_type_typmod(Node* node, Oid targetTypeId, int32 targetTypMod, CoercionForm cformat, int location,
bool isExplicit, bool hideInputCoercion)
{
CoercionPathType pathtype;
Oid funcId;
/*
* A negative typmod is assumed to mean that no coercion is wanted. Also,
* skip coercion if already done.
*/
if (targetTypMod < 0 || targetTypMod == exprTypmod(node)) {
return node;
}
pathtype = find_typmod_coercion_function(targetTypeId, &funcId);
if (pathtype != COERCION_PATH_NONE) {
/* Suppress display of nested coercion steps */
if (hideInputCoercion) {
hide_coercion_node(node);
}
node = build_coercion_expression(
node, pathtype, funcId, targetTypeId, targetTypMod, cformat, location, isExplicit);
}
return node;
}
/*
* Mark a coercion node as IMPLICIT so it will never be displayed by
* ruleutils.c. We use this when we generate a nest of coercion nodes
* to implement what is logically one conversion; the inner nodes are
* forced to IMPLICIT_CAST format. This does not change their semantics,
* only display behavior.
*
* It is caller error to call this on something that doesn't have a
* CoercionForm field.
*/
static void hide_coercion_node(Node* node)
{
if (IsA(node, FuncExpr)) {
((FuncExpr*)node)->funcformat = COERCE_IMPLICIT_CAST;
} else if (IsA(node, RelabelType)) {
((RelabelType*)node)->relabelformat = COERCE_IMPLICIT_CAST;
} else if (IsA(node, CoerceViaIO)) {
((CoerceViaIO*)node)->coerceformat = COERCE_IMPLICIT_CAST;
} else if (IsA(node, ArrayCoerceExpr)) {
((ArrayCoerceExpr*)node)->coerceformat = COERCE_IMPLICIT_CAST;
} else if (IsA(node, ConvertRowtypeExpr)) {
((ConvertRowtypeExpr*)node)->convertformat = COERCE_IMPLICIT_CAST;
} else if (IsA(node, RowExpr)) {
((RowExpr*)node)->row_format = COERCE_IMPLICIT_CAST;
} else if (IsA(node, CoerceToDomain)) {
((CoerceToDomain*)node)->coercionformat = COERCE_IMPLICIT_CAST;
} else {
ereport(
ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized node type: %d", (int)nodeTag(node))));
}
}
/*
* build_coercion_expression()
* Construct an expression tree for applying a pg_cast entry.
*
* This is used for both type-coercion and length-coercion operations,
* since there is no difference in terms of the calling convention.
*/
static Node* build_coercion_expression(Node* node, CoercionPathType pathtype, Oid funcId, Oid targetTypeId,
int32 targetTypMod, CoercionForm cformat, int location, bool isExplicit)
{
int nargs = 0;
if (OidIsValid(funcId)) {
HeapTuple tp;
Form_pg_proc procstruct;
tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcId));
if (!HeapTupleIsValid(tp)) {
ereport(
ERROR, (errcode(ERRCODE_CACHE_LOOKUP_FAILED), errmsg("cache lookup failed for function %u", funcId)));
}
procstruct = (Form_pg_proc)GETSTRUCT(tp);
// No need to check Anum_pg_proc_proargtypesext attribute, because cast function
// will not have more than FUNC_MAX_ARGS_INROW parameters
Assert(procstruct->pronargs <= FUNC_MAX_ARGS_INROW);
/*
* These Asserts essentially check that function is a legal coercion
* function. We can't make the seemingly obvious tests on prorettype
* and proargtypes[0], even in the COERCION_PATH_FUNC case, because of
* various binary-compatibility cases.
*/
AssertEreport(!procstruct->proretset, MOD_OPT, "function is not return set");
AssertEreport(!procstruct->proisagg, MOD_OPT, "function is not agg");
AssertEreport(!procstruct->proiswindow, MOD_OPT, "function is not window function");
nargs = procstruct->pronargs;
AssertEreport((nargs >= 1 && nargs <= 3), MOD_OPT, "The number of parameters in the function is incorrect.");
AssertEreport((nargs < 2 || procstruct->proargtypes.values[1] == INT4OID),
MOD_OPT,
"The number or type of parameters in the function is incorrect.");
AssertEreport((nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID),
MOD_OPT,
"The number or type of parameters in the function is incorrect.");
ReleaseSysCache(tp);
}
if (pathtype == COERCION_PATH_FUNC) {
/* We build an ordinary FuncExpr with special arguments */
FuncExpr* fexpr = NULL;
List* args = NIL;
Const* cons = NULL;
AssertEreport(OidIsValid(funcId), MOD_OPT, "The OID of the function is invalid.");
args = list_make1(node);
if (nargs >= 2) {
if (type_is_set(targetTypeId)) {
/* Pass actual set id as Oid type */
cons = makeConst(OIDOID, -1, InvalidOid, sizeof(Oid), ObjectIdGetDatum(targetTypeId), false, true);
} else {
/* Pass target typmod as an int4 constant */
cons = makeConst(INT4OID, -1, InvalidOid, sizeof(int32), Int32GetDatum(targetTypMod), false, true);
}
args = lappend(args, cons);
}
if (nargs == 3) {
/* Pass it a boolean isExplicit parameter, too */
cons = makeConst(BOOLOID, -1, InvalidOid, sizeof(bool), BoolGetDatum(isExplicit), false, true);
args = lappend(args, cons);
}
fexpr = makeFuncExpr(funcId, targetTypeId, args, InvalidOid, InvalidOid, cformat);
fexpr->location = location;
return (Node*)fexpr;
} else if (pathtype == COERCION_PATH_ARRAYCOERCE) {
/* We need to build an ArrayCoerceExpr */
ArrayCoerceExpr* acoerce = makeNode(ArrayCoerceExpr);
acoerce->arg = (Expr*)node;
acoerce->elemfuncid = funcId;
acoerce->resulttype = targetTypeId;
/*
* Label the output as having a particular typmod only if we are
* really invoking a length-coercion function, ie one with more than
* one argument.
*/
acoerce->resulttypmod = (nargs >= 2) ? targetTypMod : -1;
/* resultcollid will be set by parse_collate.c */
acoerce->isExplicit = isExplicit;
acoerce->coerceformat = cformat;
acoerce->location = location;
return (Node*)acoerce;
} else if (pathtype == COERCION_PATH_COERCEVIAIO) {
/* We need to build a CoerceViaIO node */
CoerceViaIO* iocoerce = makeNode(CoerceViaIO);
AssertEreport(!OidIsValid(funcId), MOD_OPT, "The OID of the function is invalid.");
iocoerce->arg = (Expr*)node;
iocoerce->resulttype = targetTypeId;
/* resultcollid will be set by parse_collate.c */
iocoerce->coerceformat = cformat;
iocoerce->location = location;
return (Node*)iocoerce;
} else {
ereport(ERROR,
(errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE),
errmsg("unsupported pathtype %d in build_coercion_expression", (int)pathtype)));
return NULL; /* keep compiler quiet */
}
}
/*
* coerce_record_to_complex
* Coerce a RECORD to a specific composite type.
*
* Currently we only support this for inputs that are RowExprs or whole-row
* Vars.
*/
static Node* coerce_record_to_complex(
ParseState* pstate, Node* node, Oid targetTypeId, CoercionContext ccontext, CoercionForm cformat, int location)
{
RowExpr* rowexpr = NULL;
TupleDesc tupdesc;
List* args = NIL;
List* newargs = NIL;
int i;
int ucolno;
ListCell* arg = NULL;
if (node && IsA(node, RowExpr)) {
/*
* Since the RowExpr must be of type RECORD, we needn't worry about it
* containing any dropped columns.
*/
args = ((RowExpr*)node)->args;
} else if (node && IsA(node, Var) && ((Var*)node)->varattno == InvalidAttrNumber) {
int rtindex = ((Var*)node)->varno;
int sublevels_up = ((Var*)node)->varlevelsup;
int vlocation = ((Var*)node)->location;
RangeTblEntry* rte = NULL;
rte = GetRTEByRangeTablePosn(pstate, rtindex, sublevels_up);
expandRTE(rte, rtindex, sublevels_up, vlocation, false, NULL, &args);
} else {
bool isParamExtenRecord = node && IsA(node, Param) && ((Param*)node)->paramkind == PARAM_EXTERN
&& ((Param*)node)->paramtype == RECORDOID;
if (isParamExtenRecord) {
/* package record var'type same with target type, no need cast, just return */
if (((Param*)node)->recordVarTypOid == targetTypeId) {
return node;
}
}
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s", format_type_be(RECORDOID), format_type_be(targetTypeId)),
parser_coercion_errposition(pstate, location, node)));
}
tupdesc = lookup_rowtype_tupdesc(targetTypeId, -1);
newargs = NIL;
ucolno = 1;
arg = list_head(args);
for (i = 0; i < tupdesc->natts; i++) {
Node* expr = NULL;
Node* cexpr = NULL;
Oid exprtype;
/* Fill in NULLs for dropped columns in rowtype */
if (tupdesc->attrs[i]->attisdropped) {
/*
* can't use atttypid here, but it doesn't really matter what type
* the Const claims to be.
*/
newargs = lappend(newargs, makeNullConst(INT4OID, -1, InvalidOid));
continue;
}
if (arg == NULL) {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s", format_type_be(RECORDOID), format_type_be(targetTypeId)),
errdetail("Input has too few columns."),
parser_coercion_errposition(pstate, location, node)));
}
expr = (Node*)lfirst(arg);
exprtype = exprType(expr);
cexpr = coerce_to_target_type(pstate,
expr,
exprtype,
tupdesc->attrs[i]->atttypid,
tupdesc->attrs[i]->atttypmod,
ccontext,
COERCE_IMPLICIT_CAST,
-1);
if (cexpr == NULL) {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s", format_type_be(RECORDOID), format_type_be(targetTypeId)),
errdetail("Cannot cast type %s to %s in column %d.",
format_type_be(exprtype),
format_type_be(tupdesc->attrs[i]->atttypid),
ucolno),
parser_coercion_errposition(pstate, location, expr)));
}
newargs = lappend(newargs, cexpr);
ucolno++;
arg = lnext(arg);
}
if (arg != NULL) {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s", format_type_be(RECORDOID), format_type_be(targetTypeId)),
errdetail("Input has too many columns."),
parser_coercion_errposition(pstate, location, node)));
}
ReleaseTupleDesc(tupdesc);
rowexpr = makeNode(RowExpr);
rowexpr->args = newargs;
rowexpr->row_typeid = targetTypeId;
rowexpr->row_format = cformat;
rowexpr->colnames = NIL; /* not needed for named target type */
rowexpr->location = location;
return (Node*)rowexpr;
}
/*
* coerce_to_boolean()
* Coerce an argument of a construct that requires boolean input
* (AND, OR, NOT, etc). Also check that input is not a set.
*
* Returns the possibly-transformed node tree.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node* coerce_to_boolean(ParseState* pstate, Node* node, const char* constructName)
{
Oid inputTypeId = exprType(node);
if (inputTypeId != BOOLOID) {
Node* newnode = NULL;
newnode = coerce_to_target_type(
pstate, node, inputTypeId, BOOLOID, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1);
if (newnode == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: first %s is name of a SQL construct, eg WHERE */
errmsg(
"argument of %s must be type boolean, not type %s", constructName, format_type_be(inputTypeId)),
parser_errposition(pstate, exprLocation(node))));
node = newnode;
}
if (expression_returns_set(node)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: %s is name of a SQL construct, eg WHERE */
errmsg("argument of %s must not return a set", constructName),
parser_errposition(pstate, exprLocation(node))));
}
return node;
}
/*
* coerce_to_specific_type()
* Coerce an argument of a construct that requires a specific data type.
* Also check that input is not a set.
*
* Returns the possibly-transformed node tree.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node* coerce_to_specific_type(ParseState* pstate, Node* node, Oid targetTypeId, const char* constructName)
{
Oid inputTypeId = exprType(node);
if (inputTypeId != targetTypeId) {
Node* newnode = NULL;
newnode = coerce_to_target_type(
pstate, node, inputTypeId, targetTypeId, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1);
if (newnode == NULL) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: first %s is name of a SQL construct, eg LIMIT */
errmsg("argument of %s must be type %s, not type %s",
constructName,
format_type_be(targetTypeId),
format_type_be(inputTypeId)),
parser_errposition(pstate, exprLocation(node))));
}
node = newnode;
}
if (expression_returns_set(node)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: %s is name of a SQL construct, eg LIMIT */
errmsg("argument of %s must not return a set", constructName),
parser_errposition(pstate, exprLocation(node))));
}
return node;
}
/*
* parser_coercion_errposition - report coercion error location, if possible
*
* We prefer to point at the coercion request (CAST, ::, etc) if possible;
* but there may be no such location in the case of an implicit coercion.
* In that case point at the input expression.
*
* XXX possibly this is more generally useful than coercion errors;
* if so, should rename and place with parser_errposition.
*/
int parser_coercion_errposition(ParseState* pstate, int coerce_location, Node* input_expr)
{
if (coerce_location >= 0) {
return parser_errposition(pstate, coerce_location);
} else {
return parser_errposition(pstate, exprLocation(input_expr));
}
}
/* choose_decode_result1_type
* Choose case when and decode return value type in A_FORMAT.
*/
static Oid choose_decode_result1_type(ParseState* pstate, List* exprs, const char* context)
{
Node* preferExpr = NULL;
Oid preferType = UNKNOWNOID;
TYPCATEGORY preferCategory = TYPCATEGORY_UNKNOWN;
ListCell* lc = NULL;
/* result1 is the first expr, treat result1 type (or category) as return value type */
foreach (lc, exprs) {
preferExpr = (Node*)lfirst(lc);
/* if first expr is "null", treat it as unknown type */
if (IsA(preferExpr, Const) && ((Const*)preferExpr)->constisnull) {
break;
}
preferType = getBaseType(exprType(preferExpr));
preferCategory = get_typecategory(preferType);
break;
}
if (lc == NULL) {
return preferType;
}
lc = lnext(lc);
for_each_cell(lc, lc)
{
Node* nextExpr = (Node*)lfirst(lc);
Oid nextType = getBaseType(exprType(nextExpr));
/* skip "null" */
if (IsA(nextExpr, Const) && ((Const*)nextExpr)->constisnull) {
continue;
}
/* no need to check if nextType the same as preferType */
if (nextType != preferType) {
TYPCATEGORY nextCategory = get_typecategory(nextType);
/*
* Both types in different categories, we check if nextCategory/nextType can be implicitly
* converted to preferCategory/preferType. Here we will treat unknow type as text type.
*/
if (nextCategory != preferCategory) {
handle_diff_category(pstate, nextExpr, context, preferCategory, nextCategory, preferType, nextType);
}
/* both types is same categories, we choose a priority higher. */
else if (GetPriority(preferType) < GetPriority(nextType)) {
preferType = nextType;
}
}
}
/*
* If preferCategory is TYPCATEGORY_NUMERIC, choose NUMERICOID as preferType.
* To compatible with a string representing a large number needs to be converted to a number type.
* e.g., "select decode(1, 2, 2, '63274723794832454677432493248593478549543535453'::text);"
*/
if (preferCategory == TYPCATEGORY_NUMERIC) {
preferType = NUMERICOID;
}
return preferType;
}
/*
* Handle the case where nextCategory and preferCategory are different.
* Check whether nextCategory can be converted to preferCategory,
* or nextType can be converted to preferType.
*/
static void handle_diff_category(ParseState* pstate, Node* nextExpr, const char* context,
TYPCATEGORY preferCategory, TYPCATEGORY nextCategory, Oid preferType, Oid nextType)
{
if (!category_can_be_matched(preferCategory, nextCategory) &&
!type_can_be_matched(preferType, nextType)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("%s types %s and %s cannot be matched",
context,
format_type_be(preferType == UNKNOWNOID ? TEXTOID : preferType),
format_type_be(nextType == UNKNOWNOID ? TEXTOID : nextType)),
parser_errposition(pstate, exprLocation(nextExpr))));
}
}
/*
* Check whether nextCategory can be converted to preferCategory.
*/
static bool category_can_be_matched(TYPCATEGORY preferCategory, TYPCATEGORY nextCategory)
{
bool can_be_matched = false;
static TYPCATEGORY categoryMatchedList[][2] = {
{TYPCATEGORY_STRING, TYPCATEGORY_UNKNOWN}, {TYPCATEGORY_STRING, TYPCATEGORY_NUMERIC},
{TYPCATEGORY_UNKNOWN, TYPCATEGORY_STRING}, {TYPCATEGORY_UNKNOWN, TYPCATEGORY_NUMERIC},
{TYPCATEGORY_NUMERIC, TYPCATEGORY_STRING}, {TYPCATEGORY_NUMERIC, TYPCATEGORY_UNKNOWN},
{TYPCATEGORY_STRING, TYPCATEGORY_DATETIME}, {TYPCATEGORY_STRING, TYPCATEGORY_TIMESPAN},
{TYPCATEGORY_UNKNOWN, TYPCATEGORY_DATETIME}, {TYPCATEGORY_UNKNOWN, TYPCATEGORY_TIMESPAN}};
for (unsigned int i = 0; i < sizeof(categoryMatchedList) / sizeof(categoryMatchedList[0]); i++) {
if (preferCategory == categoryMatchedList[i][0] && nextCategory == categoryMatchedList[i][1]) {
can_be_matched = true;
break;
}
}
return can_be_matched;
}
/*
* Check whether nextType can be converted to preferType.
*/
static bool type_can_be_matched(Oid preferType, Oid nextType)
{
bool can_be_matched = false;
static Oid typeMatchedList[][2] = {
{RAWOID, VARCHAROID}, {RAWOID, TEXTOID}, {VARCHAROID, RAWOID}, {TEXTOID, RAWOID}};
for (unsigned int i = 0; i < sizeof(typeMatchedList) / sizeof(typeMatchedList[0]); i++) {
if (preferType == typeMatchedList[i][0] && nextType == typeMatchedList[i][1]) {
can_be_matched = true;
break;
}
}
return can_be_matched;
}
/* choose_specific_expr_type
* Choose case when and coalesce return value type in C_FORMAT.
*/
static Oid choose_specific_expr_type(ParseState* pstate, List* exprs, const char* context)
{
Node* preferExpr = NULL;
Oid preferType = UNKNOWNOID;
TYPCATEGORY preferCategory;
bool pispreferred = false;
ListCell* lc = NULL;
/* locate first not "null" expr */
foreach (lc, exprs) {
preferExpr = (Node*)lfirst(lc);
if (IsA(preferExpr, Const) && ((Const*)preferExpr)->constisnull) {
continue;
}
preferType = getBaseType(exprType(preferExpr));
get_type_category_preferred(preferType, &preferCategory, &pispreferred);
break;
}
if (lc == NULL) {
return preferType;
}
lc = lnext(lc);
for_each_cell(lc, lc)
{
Node* nextExpr = (Node*)lfirst(lc);
Oid nextType = getBaseType(exprType(nextExpr));
/* skip "null" */
if (IsA(nextExpr, Const) && ((Const*)nextExpr)->constisnull) {
continue;
}
/* move on to next one if no new information... */
if (nextType != preferType) {
TYPCATEGORY nextCategory;
bool nispreferred = false;
get_type_category_preferred(nextType, &nextCategory, &nispreferred);
/*
* Both types in different categories, if they are numeric and string type
* expr will return string type. Here we will treat unknow type as text type.
*/
if (nextCategory != preferCategory) {
/* Number and string mix, will return string type*/
if (preferCategory == TYPCATEGORY_NUMERIC &&
(nextCategory == TYPCATEGORY_STRING || nextCategory == TYPCATEGORY_UNKNOWN)) {
preferType = nextType;
preferCategory = nextCategory;
}
/* Unknown and string mix, we will choose unknown type, Finally unknow will be treated as text type*/
else if (preferCategory == TYPCATEGORY_STRING && nextCategory == TYPCATEGORY_UNKNOWN) {
preferType = nextType;
preferCategory = nextCategory;
} else {
/* Number and string mix, will return string type.
* Unknown and string mix, we will choose unknown type, Finally unknow will be treated as text type.
* we nothing to do when othercondition is true, current preferCategory is prefer type.
*/
bool othercondition =
((preferCategory == TYPCATEGORY_STRING || preferCategory == TYPCATEGORY_UNKNOWN) &&
nextCategory == TYPCATEGORY_NUMERIC) ||
(preferCategory == TYPCATEGORY_UNKNOWN && nextCategory == TYPCATEGORY_STRING);
/* Not to deal with other categories mix*/
if (!othercondition) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("%s types %s and %s cannot be matched",
context,
format_type_be(preferType == UNKNOWNOID ? TEXTOID : preferType),
format_type_be(nextType == UNKNOWNOID ? TEXTOID : nextType)),
parser_errposition(pstate, exprLocation(nextExpr))));
}
}
}
/* Both types is same categories, we choose a priority higher*/
else if (GetPriority(preferType) < GetPriority(nextType)) {
/* take new type if can coerce to it implicitly but not the
* other way; but if we have a preferred type, stay on it.
*/
preferType = nextType;
preferCategory = nextCategory;
}
}
}
return preferType;
}
/* choose_nvl_type
* Get the datatype of the return value of nvl.
*/
static Oid choose_nvl_type(ParseState* pstate, List* exprs, const char* context)
{
Node* pexpr = NULL;
Oid ptype;
TYPCATEGORY pcategory;
bool pispreferred = false;
Node* nexpr = NULL;
Oid ntype;
TYPCATEGORY ncategory;
bool nispreferred = false;
AssertEreport((list_length(exprs) == 2), MOD_OPT, "The length of the expression is not equal to 2");
pexpr = (Node*)linitial(exprs);
ptype = getBaseType(exprType(pexpr));
nexpr = (Node*)lsecond(exprs);
ntype = getBaseType(exprType(nexpr));
get_type_category_preferred(ptype, &pcategory, &pispreferred);
get_type_category_preferred(ntype, &ncategory, &nispreferred);
if (ptype == UNKNOWNOID || ntype == UNKNOWNOID) {
/* Return the datatype of first parameter */
return ptype;
} else if (pcategory != ncategory) {
/* supports implicit convert */
if (can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT)) {
/* nothing to do, we will return ptype */
} else if (can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT)) {
ptype = ntype;
pcategory = ncategory;
} else {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg(
"%s types %s and %s cannot be matched", context, format_type_be(ptype), format_type_be(ntype)),
parser_errposition(pstate, exprLocation(nexpr))));
}
} else if (!pispreferred && can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT)) {
if (!can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT) ||
(TYPCATEGORY_NUMERIC == ncategory && GetPriority(ptype) < GetPriority(ntype))) {
ptype = ntype;
pcategory = ncategory;
}
}
return ptype;
}
/* choose_expr_type
* Get the datatype of union, case, and related Constructs.
*/
static Oid choose_expr_type(ParseState* pstate, List* exprs, const char* context, Node** which_expr)
{
Node* pexpr = NULL;
Oid ptype;
TYPCATEGORY pcategory;
bool pispreferred = false;
ListCell* lc = NULL;
AssertEreport((exprs != NIL), MOD_OPT, "The expression is not NULL");
pexpr = (Node*)linitial(exprs);
lc = lnext(list_head(exprs));
ptype = exprType(pexpr);
/*
* Nope, so set up for the full algorithm. Note that at this point, lc
* points to the first list item with type different from pexpr's; we need
* not re-examine any items the previous loop advanced over.
*/
ptype = getBaseType(ptype);
get_type_category_preferred(ptype, &pcategory, &pispreferred);
for_each_cell(lc, lc)
{
Node* nexpr = (Node*)lfirst(lc);
Oid ntype = getBaseType(exprType(nexpr));
/* move on to next one if no new information... */
if (ntype != UNKNOWNOID && ntype != ptype) {
TYPCATEGORY ncategory;
bool nispreferred = false;
get_type_category_preferred(ntype, &ncategory, &nispreferred);
if (ptype == UNKNOWNOID) {
/* so far, only unknowns so take anything... */
pexpr = nexpr;
ptype = ntype;
pcategory = ncategory;
pispreferred = nispreferred;
} else if (ncategory != pcategory) {
/*
* both types in different categories? then not much hope...
*/
if (context == NULL)
return InvalidOid;
else
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* ------
translator: first %s is name of a SQL construct, eg CASE */
errmsg("%s types %s and %s cannot be matched",
context,
format_type_be(ptype),
format_type_be(ntype)),
parser_errposition(pstate, exprLocation(nexpr))));
}
/* To same categories, we choose a priority higher*/
else if (!pispreferred && can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT)) {
if (!can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT) ||
(TYPCATEGORY_NUMERIC == ncategory && GetPriority(ptype) < GetPriority(ntype))) {
/*
* take new type if can coerce to it implicitly but not the
* other way; but if we have a preferred type, stay on it.
*/
pexpr = nexpr;
ptype = ntype;
pcategory = ncategory;
pispreferred = nispreferred;
}
}
}
}
if (which_expr != NULL) {
*which_expr = pexpr;
}
return ptype;
}
/*
* To maintain forward compatibility, decode type conversion rules compatible with O is
* only valid for a few specific type categories. Save these type categories in the form
* of a whitelist. If any one is not in the whitelist, allInWhitelist is set to false.
*/
bool check_all_in_whitelist(List* resultexprs)
{
bool allInWhitelist = true;
Node* exprTmp = NULL;
ListCell* lc = NULL;
Oid exprTypeTmp = UNKNOWNOID;
TYPCATEGORY exprCategoryTmp = TYPCATEGORY_UNKNOWN;
foreach (lc, resultexprs) {
exprTmp = (Node*)lfirst(lc);
/* if exprTmp is "null", treat it as unknown type, can skip it. */
if (IsA(exprTmp, Const) && ((Const*)exprTmp)->constisnull) {
continue;
}
exprTypeTmp = getBaseType(exprType(exprTmp));
exprCategoryTmp = get_typecategory(exprTypeTmp);
if (!check_category_in_whitelist(exprCategoryTmp, exprTypeTmp)) {
allInWhitelist = false;
break;
}
}
return allInWhitelist;
}
/*
* Check whether the given category and type is in the whitelist.
*/
static bool check_category_in_whitelist(TYPCATEGORY category, Oid type)
{
bool categoryInWhitelist = false;
static TYPCATEGORY categoryWhitelist[] = {TYPCATEGORY_BOOLEAN, TYPCATEGORY_NUMERIC, TYPCATEGORY_STRING,
TYPCATEGORY_UNKNOWN, TYPCATEGORY_DATETIME, TYPCATEGORY_TIMESPAN, TYPCATEGORY_USER};
for (unsigned int i = 0; i < sizeof(categoryWhitelist) / sizeof(categoryWhitelist[0]); i++) {
if (category == categoryWhitelist[i]) {
/*
* For TYPCATEGORY_USER, just RAW in the whitelist.
* For TYPCATEGORY_NUMERIC, some numeric type not in the whitelist.
*/
if ((category == TYPCATEGORY_USER && type != RAWOID) ||
(category == TYPCATEGORY_NUMERIC && check_numeric_type_in_blacklist(type))) {
break;
}
categoryInWhitelist = true;
break;
}
}
return categoryInWhitelist;
}
/*
* Check whether the given numeric type is in the blacklist.
*/
static bool check_numeric_type_in_blacklist(Oid type)
{
bool typeInBlacklist = false;
static Oid numericTypeBlacklist[] = {CASHOID, INT16OID, REGPROCOID, OIDOID, REGPROCEDUREOID,
REGOPEROID, REGOPERATOROID, REGCLASSOID, REGTYPEOID, REGCONFIGOID, REGDICTIONARYOID};
for (unsigned int i = 0; i < sizeof(numericTypeBlacklist) / sizeof(numericTypeBlacklist[0]); i++) {
if (type == numericTypeBlacklist[i]) {
typeInBlacklist = true;
break;
}
}
return typeInBlacklist;
}
/*
* select_common_type()
* Determine the common supertype of a list of input expressions.
* This is used for determining the output type of CASE, UNION,
* and similar constructs.
*
* 'exprs' is a *nonempty* list of expressions. Note that earlier items
* in the list will be preferred if there is doubt.
* 'context' is a phrase to use in the error message if we fail to select
* a usable type. Pass NULL to have the routine return InvalidOid
* rather than throwing an error on failure.
* 'which_expr': if not NULL, receives a pointer to the particular input
* expression from which the result type was taken.
*/
Oid select_common_type(ParseState* pstate, List* exprs, const char* context, Node** which_expr)
{
Node* pexpr = NULL;
Oid ptype;
ListCell* lc = NULL;
AssertEreport((exprs != NIL), MOD_OPT, "The expression is not NULL");
pexpr = (Node*)linitial(exprs);
lc = lnext(list_head(exprs));
ptype = exprType(pexpr);
if (meet_set_type_compatibility(exprs, context, &ptype)) {
if (which_expr != NULL)
*which_expr = pexpr;
/* need return textoid even all the set types are the same */
return ptype;
}
/*
* If all input types are valid and exactly the same, just pick that type.
* This is the only way that we will resolve the result as being a domain
* type; otherwise domains are smashed to their base types for comparison.
*/
if (ptype != UNKNOWNOID) {
for_each_cell(lc, lc)
{
Node* nexpr = (Node*)lfirst(lc);
Oid ntype = exprType(nexpr);
if (ntype != ptype) {
break;
}
}
/* got to the end of the list? */
if (lc == NULL) {
if (which_expr != NULL) {
*which_expr = pexpr;
}
return ptype;
}
}
if (meet_decode_compatibility(exprs, context)) {
/*
* For A format, result1 is considered the most significant type in determining preferred type.
* In this function, try to choose a higher priority type of the same category as result1.
* And check whether other parameters can be implicitly converted to the data type of result1.
*/
ptype = choose_decode_result1_type(pstate, exprs, context);
} else if (meet_c_format_compatibility(exprs, context)) {
/*
* To C format, we need handle numeric and string mix situation.
* For A format, type should be coerced by the first case, therefore, it can accept cases like
* select decode(1, 2, 'a', 3);
* where the default value 3 will be cast to the first value "a"'s type category. We temporarily fix this by
* using C format coercion.
*/
ptype = choose_specific_expr_type(pstate, exprs, context);
} else if (context != NULL && 0 == strncmp(context, "NVL", sizeof("NVL"))) {
/* Follow A db nvl*/
ptype = choose_nvl_type(pstate, exprs, context);
} else {
ptype = choose_expr_type(pstate, exprs, context, which_expr);
}
/*
* If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
* then resolve as type TEXT. This situation comes up with constructs
* like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
* UNION SELECT 'bar'; It might seem desirable to leave the construct's
* output type as UNKNOWN, but that really doesn't work, because we'd
* probably end up needing a runtime coercion from UNKNOWN to something
* else, and we usually won't have it. We need to coerce the unknown
* literals while they are still literals, so a decision has to be made
* now.
*/
if (ptype == UNKNOWNOID) {
ptype = TEXTOID;
}
if (which_expr != NULL) {
*which_expr = pexpr;
}
return ptype;
}
/*
* Check meet the decode type conversion rules compatibility or not.
*/
static bool meet_decode_compatibility(List* exprs, const char* context)
{
bool res = u_sess->attr.attr_sql.sql_compatibility == A_FORMAT && ENABLE_SQL_BETA_FEATURE(A_STYLE_COERCE) &&
context != NULL && 0 == strncmp(context, "CASE", sizeof("CASE")) && check_all_in_whitelist(exprs);
return res;
}
/*
* Check meet the c format compatibility or not.
* For A format, some temporary are also in it.
*/
static bool meet_c_format_compatibility(List* exprs, const char* context)
{
bool res = (u_sess->attr.attr_sql.sql_compatibility == C_FORMAT && context != NULL &&
(0 == strncmp(context, "CASE", sizeof("CASE")) || 0 == strncmp(context, "COALESCE", sizeof("COALESCE")))) ||
(ENABLE_SQL_BETA_FEATURE(A_STYLE_COERCE) && context != NULL &&
(0 == strncmp(context, "CASE", sizeof("CASE"))));
return res;
}
/*
* Check the expression list contains set type or not.
* If true, common type is text for CASE/GREATEST/LEAST/NVL/COALESCE/VALUES/DECODE,
* but we do not need common type for IN/NOT IN expression, left expression compares
* each in list.
*/
static bool meet_set_type_compatibility(List* exprs, const char* context, Oid *retOid)
{
Node* expr = NULL;
ListCell* lc = NULL;
Oid typOid = UNKNOWNOID;
bool inCtx = (context != NULL && strcmp(context, "IN") == 0);
foreach (lc, exprs) {
expr = (Node*)lfirst(lc);
typOid = getBaseType(exprType(expr));
if (type_is_set(typOid)) {
*retOid = inCtx ? InvalidOid : TEXTOID;
return true;
}
}
return false;
}
/*
* coerce_to_common_type()
* Coerce an expression to the given type.
*
* This is used following select_common_type() to coerce the individual
* expressions to the desired type. 'context' is a phrase to use in the
* error message if we fail to coerce.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node* coerce_to_common_type(ParseState* pstate, Node* node, Oid targetTypeId, const char* context)
{
Oid inputTypeId = exprType(node);
if (inputTypeId == targetTypeId) {
return node; /* no work */
}
if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT)) {
node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
} else {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
/* translator: first %s is name of a SQL construct, eg CASE */
errmsg("%s could not convert type %s to %s",
context,
format_type_be(inputTypeId),
format_type_be(targetTypeId)),
parser_errposition(pstate, exprLocation(node))));
}
return node;
}
/*
* check_generic_type_consistency()
* Are the actual arguments potentially compatible with a
* polymorphic function?
*
* The argument consistency rules are:
*
* 1) All arguments declared ANYELEMENT must have the same datatype.
* 2) All arguments declared ANYARRAY must have the same datatype,
* which must be a varlena array type.
* 3) All arguments declared ANYRANGE must have the same datatype,
* which must be a range type.
* 4) If there are arguments of both ANYELEMENT and ANYARRAY, make sure the
* actual ANYELEMENT datatype is in fact the element type for the actual
* ANYARRAY datatype.
* 5) Similarly, if there are arguments of both ANYELEMENT and ANYRANGE,
* make sure the actual ANYELEMENT datatype is in fact the subtype for
* the actual ANYRANGE type.
* 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
* (alone or in combination with plain ANYELEMENT), we add the extra
* condition that the ANYELEMENT type must be an enum.
* 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
* we add the extra condition that the ANYELEMENT type must not be an array.
* (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
* is an extra restriction if not.)
*
* Domains over arrays match ANYARRAY, and are immediately flattened to their
* base type. (Thus, for example, we will consider it a match if one ANYARRAY
* argument is a domain over int4[] while another one is just int4[].) Also
* notice that such a domain does *not* match ANYNONARRAY.
*
* Similarly, domains over ranges match ANYRANGE, and are immediately
* flattened to their base type.
*
* Note that domains aren't currently considered to match ANYENUM,
* even if their base type would match.
*
* If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
* argument, assume it is okay.
*
* If an input is of type ANYARRAY (ie, we know it's an array, but not
* what element type), we will accept it as a match to an argument declared
* ANYARRAY, so long as we don't have to determine an element type ---
* that is, so long as there is no use of ANYELEMENT. This is mostly for
* backwards compatibility with the pre-7.4 behavior of ANYARRAY.
*
* We do not ereport here, but just return FALSE if a rule is violated.
*/
bool check_generic_type_consistency(Oid* actual_arg_types, Oid* declared_arg_types, int nargs)
{
int j;
Oid elem_typeid = InvalidOid;
Oid array_typeid = InvalidOid;
Oid array_typelem;
Oid range_typeid = InvalidOid;
Oid range_typelem;
bool have_anyelement = false;
bool have_anynonarray = false;
bool have_anyenum = false;
bool have_anyset = false;
/*
* Loop through the arguments to see if we have any that are polymorphic.
* If so, require the actual types to be consistent.
*/
for (j = 0; j < nargs; j++) {
Oid decl_type = declared_arg_types[j];
Oid actual_type = actual_arg_types[j];
if (decl_type == ANYELEMENTOID || decl_type == ANYNONARRAYOID ||
decl_type == ANYENUMOID || decl_type == ANYSETOID) {
have_anyelement = true;
if (decl_type == ANYNONARRAYOID) {
have_anynonarray = true;
} else if (decl_type == ANYENUMOID) {
have_anyenum = true;
} else if (decl_type == ANYSETOID) {
have_anyset = true;
}
if (actual_type == UNKNOWNOID) {
continue;
}
if (OidIsValid(elem_typeid) && actual_type != elem_typeid) {
return false;
}
elem_typeid = actual_type;
} else if (decl_type == ANYARRAYOID) {
if (actual_type == UNKNOWNOID) {
continue;
}
actual_type = getBaseType(actual_type); /* flatten domains */
if (OidIsValid(array_typeid) && actual_type != array_typeid) {
return false;
}
array_typeid = actual_type;
} else if (decl_type == ANYRANGEOID) {
if (actual_type == UNKNOWNOID) {
continue;
}
actual_type = getBaseType(actual_type); /* flatten domains */
if (OidIsValid(range_typeid) && actual_type != range_typeid) {
return false;
}
range_typeid = actual_type;
}
}
/* Get the element type based on the array type, if we have one */
if (OidIsValid(array_typeid)) {
if (array_typeid == ANYARRAYOID) {
/* Special case for ANYARRAY input: okay iff no ANYELEMENT */
if (have_anyelement) {
return false;
}
return true;
}
array_typelem = get_element_type(array_typeid);
if (!OidIsValid(array_typelem)) {
return false; /* should be an array, but isn't */
}
if (!OidIsValid(elem_typeid)) {
/*
* if we don't have an element type yet, use the one we just got
*/
elem_typeid = array_typelem;
} else if (array_typelem != elem_typeid) {
/* otherwise, they better match */
return false;
}
}
/* Get the element type based on the range type, if we have one */
if (OidIsValid(range_typeid)) {
range_typelem = get_range_subtype(range_typeid);
if (!OidIsValid(range_typelem)) {
return false; /* should be a range, but isn't */
}
if (!OidIsValid(elem_typeid)) {
/*
* if we don't have an element type yet, use the one we just got
*/
elem_typeid = range_typelem;
} else if (range_typelem != elem_typeid) {
/* otherwise, they better match */
return false;
}
}
if (have_anynonarray) {
/* require the element type to not be an array or domain over array */
if (type_is_array_domain(elem_typeid)) {
return false;
}
}
if (have_anyenum) {
/* require the element type to be an enum */
if (!type_is_enum(elem_typeid)) {
return false;
}
}
if (have_anyset) {
/* require the element type to be an set */
if (!type_is_set(elem_typeid)) {
return false;
}
}
/* Looks valid */
return true;
}
/*
* enforce_generic_type_consistency()
* Make sure a polymorphic function is legally callable, and
* deduce actual argument and result types.
*
* If any polymorphic pseudotype is used in a function's arguments or
* return type, we make sure the actual data types are consistent with
* each other. The argument consistency rules are shown above for
* check_generic_type_consistency().
*
* If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
* argument, we attempt to deduce the actual type it should have. If
* successful, we alter that position of declared_arg_types[] so that
* make_fn_arguments will coerce the literal to the right thing.
*
* Rules are applied to the function's return type (possibly altering it)
* if it is declared as a polymorphic type:
*
* 1) If return type is ANYARRAY, and any argument is ANYARRAY, use the
* argument's actual type as the function's return type.
* 2) Similarly, if return type is ANYRANGE, and any argument is ANYRANGE,
* use the argument's actual type as the function's return type.
* 3) If return type is ANYARRAY, no argument is ANYARRAY, but any argument is
* ANYELEMENT, use the actual type of the argument to determine the
* function's return type, i.e. the element type's corresponding array
* type. (Note: similar behavior does not exist for ANYRANGE, because it's
* impossible to determine the range type from the subtype alone.)
* 4) If return type is ANYARRAY, but no argument is ANYARRAY or ANYELEMENT,
* generate an error. Similarly, if return type is ANYRANGE, but no
* argument is ANYRANGE, generate an error. (These conditions are
* prevented by CREATE FUNCTION and therefore are not expected here.)
* 5) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
* argument's actual type as the function's return type.
* 6) If return type is ANYELEMENT, no argument is ANYELEMENT, but any argument
* is ANYARRAY or ANYRANGE, use the actual type of the argument to determine
* the function's return type, i.e. the array type's corresponding element
* type or the range type's corresponding subtype (or both, in which case
* they must match).
* 7) If return type is ANYELEMENT, no argument is ANYELEMENT, ANYARRAY, or
* ANYRANGE, generate an error. (This condition is prevented by CREATE
* FUNCTION and therefore is not expected here.)
* 8) ANYENUM is treated the same as ANYELEMENT except that if it is used
* (alone or in combination with plain ANYELEMENT), we add the extra
* condition that the ANYELEMENT type must be an enum.
* 9) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
* we add the extra condition that the ANYELEMENT type must not be an array.
* (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
* is an extra restriction if not.)
*
* Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
* respectively, and are immediately flattened to their base type. (In
* particular, if the return type is also ANYARRAY or ANYRANGE, we'll set it
* to the base type not the domain type.)
*
* When allow_poly is false, we are not expecting any of the actual_arg_types
* to be polymorphic, and we should not return a polymorphic result type
* either. When allow_poly is true, it is okay to have polymorphic "actual"
* arg types, and we can return ANYARRAY, ANYRANGE, or ANYELEMENT as the
* result. (This case is currently used only to check compatibility of an
* aggregate's declaration with the underlying transfn.)
*
* A special case is that we could see ANYARRAY as an actual_arg_type even
* when allow_poly is false (this is possible only because pg_statistic has
* columns shown as anyarray in the catalogs). We allow this to match a
* declared ANYARRAY argument, but only if there is no ANYELEMENT argument
* or result (since we can't determine a specific element type to match to
* ANYELEMENT). Note this means that functions taking ANYARRAY had better
* behave sanely if applied to the pg_statistic columns; they can't just
* assume that successive inputs are of the same actual element type.
*/
Oid enforce_generic_type_consistency(
Oid* actual_arg_types, Oid* declared_arg_types, int nargs, Oid rettype, bool allow_poly)
{
int j;
bool have_generics = false;
bool have_unknowns = false;
Oid elem_typeid = InvalidOid;
Oid array_typeid = InvalidOid;
Oid range_typeid = InvalidOid;
Oid array_typelem;
Oid range_typelem;
bool have_anyelement = (rettype == ANYELEMENTOID || rettype == ANYNONARRAYOID || rettype == ANYENUMOID);
bool have_anynonarray = (rettype == ANYNONARRAYOID);
bool have_anyenum = (rettype == ANYENUMOID);
/*
* Loop through the arguments to see if we have any that are polymorphic.
* If so, require the actual types to be consistent.
*/
for (j = 0; j < nargs; j++) {
Oid decl_type = declared_arg_types[j];
Oid actual_type = actual_arg_types[j];
if (decl_type == ANYELEMENTOID || decl_type == ANYNONARRAYOID || decl_type == ANYENUMOID) {
have_generics = have_anyelement = true;
if (decl_type == ANYNONARRAYOID) {
have_anynonarray = true;
} else if (decl_type == ANYENUMOID) {
have_anyenum = true;
}
if (actual_type == UNKNOWNOID) {
have_unknowns = true;
continue;
}
if (allow_poly && decl_type == actual_type) {
continue; /* no new information here */
}
if (OidIsValid(elem_typeid) && actual_type != elem_typeid) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("arguments declared \"anyelement\" are not all alike"),
errdetail("%s versus %s", format_type_be(elem_typeid), format_type_be(actual_type))));
}
elem_typeid = actual_type;
} else if (decl_type == ANYARRAYOID || decl_type == ANYRANGEOID) {
have_generics = true;
if (actual_type == UNKNOWNOID) {
have_unknowns = true;
continue;
}
if (allow_poly && decl_type == actual_type) {
continue; /* no new information here */
}
actual_type = getBaseType(actual_type); /* flatten domains */
if (decl_type == ANYARRAYOID) {
if (OidIsValid(array_typeid) && (actual_type != array_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("arguments declared \"anyarray\" are not all alike"),
errdetail("%s versus %s", format_type_be(array_typeid), format_type_be(actual_type))));
}
array_typeid = actual_type;
} else if (decl_type == ANYRANGEOID) {
if (OidIsValid(range_typeid) && (actual_type != range_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("arguments declared \"anyrange\" are not all alike"),
errdetail("%s versus %s", format_type_be(range_typeid), format_type_be(actual_type))));
}
range_typeid = actual_type;
}
}
}
/*
* Fast Track: if none of the arguments are polymorphic, return the
* unmodified rettype. We assume it can't be polymorphic either.
*/
if (!have_generics) {
return rettype;
}
/* Get the element type based on the array type, if we have one */
if (OidIsValid(array_typeid)) {
if (array_typeid == ANYARRAYOID && !have_anyelement) {
/* Special case for ANYARRAY input: okay iff no ANYELEMENT */
array_typelem = ANYELEMENTOID;
} else {
array_typelem = get_valid_element_type(array_typeid);
}
if (!OidIsValid(elem_typeid)) {
/*
* if we don't have an element type yet, use the one we just got
*/
elem_typeid = array_typelem;
} else if (array_typelem != elem_typeid) {
/* otherwise, they better match */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not consistent with argument declared \"anyelement\""),
errdetail("%s versus %s", format_type_be(array_typeid), format_type_be(elem_typeid))));
}
}
/* Get the element type based on the range type, if we have one */
if (OidIsValid(range_typeid)) {
if (range_typeid == ANYRANGEOID && !have_anyelement) {
/* Special case for ANYRANGE input: okay iff no ANYELEMENT */
range_typelem = ANYELEMENTOID;
} else {
range_typelem = get_range_subtype(range_typeid);
if (!OidIsValid(range_typelem)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyrange\" is not a range but type %s",
format_type_be(range_typeid))));
}
}
if (!OidIsValid(elem_typeid)) {
/*
* if we don't have an element type yet, use the one we just got
*/
elem_typeid = range_typelem;
} else if (range_typelem != elem_typeid) {
/* otherwise, they better match */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyrange\" is not consistent with argument declared \"anyelement\""),
errdetail("%s versus %s", format_type_be(range_typeid), format_type_be(elem_typeid))));
}
}
if (!OidIsValid(elem_typeid)) {
if (allow_poly) {
elem_typeid = ANYELEMENTOID;
array_typeid = ANYARRAYOID;
range_typeid = ANYRANGEOID;
} else {
/* Only way to get here is if all the generic args are UNKNOWN */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not determine polymorphic type because input has type \"unknown\"")));
}
}
if (have_anynonarray && elem_typeid != ANYELEMENTOID) {
/* require the element type to not be an array or domain over array */
if (type_is_array_domain(elem_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("type matched to anynonarray is an array type: %s", format_type_be(elem_typeid))));
}
}
if (have_anyenum && elem_typeid != ANYELEMENTOID) {
/* require the element type to be an enum */
if (!type_is_enum(elem_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("type matched to anyenum is not an enum type: %s", format_type_be(elem_typeid))));
}
}
/*
* If we had any unknown inputs, re-scan to assign correct types
*/
if (have_unknowns) {
for (j = 0; j < nargs; j++) {
Oid decl_type = declared_arg_types[j];
Oid actual_type = actual_arg_types[j];
if (actual_type != UNKNOWNOID) {
continue;
}
if (decl_type == ANYELEMENTOID || decl_type == ANYNONARRAYOID || decl_type == ANYENUMOID) {
declared_arg_types[j] = elem_typeid;
} else if (decl_type == ANYARRAYOID) {
if (!OidIsValid(array_typeid)) {
array_typeid = get_valid_array_type(elem_typeid);
}
declared_arg_types[j] = array_typeid;
} else if (decl_type == ANYRANGEOID) {
if (!OidIsValid(range_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find range type for data type %s", format_type_be(elem_typeid))));
}
declared_arg_types[j] = range_typeid;
}
}
}
/* if we return ANYARRAY use the appropriate argument type */
if (rettype == ANYARRAYOID) {
if (!OidIsValid(array_typeid)) {
array_typeid = get_valid_array_type(elem_typeid);
}
return array_typeid;
}
/* if we return ANYRANGE use the appropriate argument type */
if (rettype == ANYRANGEOID) {
if (!OidIsValid(range_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find range type for data type %s", format_type_be(elem_typeid))));
}
return range_typeid;
}
/* if we return ANYELEMENT use the appropriate argument type */
if (rettype == ANYELEMENTOID || rettype == ANYNONARRAYOID || rettype == ANYENUMOID || rettype == ANYSETOID) {
return elem_typeid;
}
/* we don't return a generic type; send back the original return type */
return rettype;
}
/*
* resolve_generic_type()
* Deduce an individual actual datatype on the assumption that
* the rules for polymorphic types are being followed.
*
* declared_type is the declared datatype we want to resolve.
* context_actual_type is the actual input datatype to some argument
* that has declared datatype context_declared_type.
*
* If declared_type isn't polymorphic, we just return it. Otherwise,
* context_declared_type must be polymorphic, and we deduce the correct
* return type based on the relationship of the two polymorphic types.
*/
Oid resolve_generic_type(Oid declared_type, Oid context_actual_type, Oid context_declared_type)
{
if (declared_type == ANYARRAYOID) {
if (context_declared_type == ANYARRAYOID) {
/*
* Use actual type, but it must be an array; or if it's a domain
* over array, use the base array type.
*/
Oid context_base_type = getBaseType(context_actual_type);
Oid array_typelem = get_element_type(context_base_type);
if (!OidIsValid(array_typelem)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not an array but type %s",
format_type_be(context_base_type))));
}
return context_base_type;
} else if (context_declared_type == ANYELEMENTOID || context_declared_type == ANYNONARRAYOID ||
context_declared_type == ANYENUMOID || context_declared_type == ANYRANGEOID) {
/* Use the array type corresponding to actual type */
Oid array_typeid = get_array_type(context_actual_type);
if (!OidIsValid(array_typeid)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find array type for data type %s", format_type_be(context_actual_type))));
}
return array_typeid;
}
} else if (declared_type == ANYELEMENTOID || declared_type == ANYNONARRAYOID || declared_type == ANYENUMOID ||
declared_type == ANYRANGEOID) {
if (context_declared_type == ANYARRAYOID) {
/* Use the element type corresponding to actual type */
Oid context_base_type = getBaseType(context_actual_type);
Oid array_typelem = get_valid_element_type(context_base_type);
return array_typelem;
} else if (context_declared_type == ANYRANGEOID) {
/* Use the element type corresponding to actual type */
Oid context_base_type = getBaseType(context_actual_type);
Oid range_typelem = get_range_subtype(context_base_type);
if (!OidIsValid(range_typelem)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyrange\" is not a range but type %s",
format_type_be(context_base_type))));
}
return range_typelem;
} else if (context_declared_type == ANYELEMENTOID || context_declared_type == ANYNONARRAYOID ||
context_declared_type == ANYENUMOID) {
/* Use the actual type; it doesn't matter if array or not */
return context_actual_type;
}
} else {
/* declared_type isn't polymorphic, so return it as-is */
return declared_type;
}
/* If we get here, declared_type is polymorphic and context isn't */
/* NB: this is a calling-code logic error, not a user error */
ereport(ERROR,
(errcode(ERRCODE_INDETERMINATE_DATATYPE),
errmsg("could not determine polymorphic type because context isn't polymorphic")));
return InvalidOid; /* keep compiler quiet */
}
/* TypeCategory()
* Assign a category to the specified type OID.
*
* NB: this must not return TYPCATEGORY_INVALID.
*/
TYPCATEGORY TypeCategory(Oid type)
{
char typcategory;
bool typispreferred = false;
get_type_category_preferred(type, &typcategory, &typispreferred);
AssertEreport((typcategory != TYPCATEGORY_INVALID), MOD_OPT, "The type category is valid");
return (TYPCATEGORY)typcategory;
}
/* IsPreferredType()
* Check if this type is a preferred type for the given category.
*
* If category is TYPCATEGORY_INVALID, then we'll return TRUE for preferred
* types of any category; otherwise, only for preferred types of that
* category.
*/
bool IsPreferredType(TYPCATEGORY category, Oid type)
{
char typcategory;
bool typispreferred = false;
get_type_category_preferred(type, &typcategory, &typispreferred);
if (category == typcategory || category == TYPCATEGORY_INVALID) {
return typispreferred;
} else {
return false;
}
}
/* IsBinaryCoercible()
* Check if srctype is binary-coercible to targettype.
*
* This notion allows us to cheat and directly exchange values without
* going through the trouble of calling a conversion function. Note that
* in general, this should only be an implementation shortcut. Before 7.4,
* this was also used as a heuristic for resolving overloaded functions and
* operators, but that's basically a bad idea.
*
* As of 7.3, binary coercibility isn't hardwired into the code anymore.
* We consider two types binary-coercible if there is an implicitly
* invokable, no-function-needed pg_cast entry. Also, a domain is always
* binary-coercible to its base type, though *not* vice versa (in the other
* direction, one must apply domain constraint checks before accepting the
* value as legitimate). We also need to special-case various polymorphic
* types.
*
* This function replaces IsBinaryCompatible(), which was an inherently
* symmetric test. Since the pg_cast entries aren't necessarily symmetric,
* the order of the operands is now significant.
*/
bool IsBinaryCoercible(Oid srctype, Oid targettype)
{
HeapTuple tuple;
Form_pg_cast castForm;
bool result = false;
/* Fast path if same type */
if (srctype == targettype) {
return true;
}
/* Anything is coercible to ANY or ANYELEMENT */
if (targettype == ANYOID || targettype == ANYELEMENTOID) {
return true;
}
/* If srctype is a domain, reduce to its base type */
if (OidIsValid(srctype)) {
srctype = getBaseType(srctype);
}
/* Somewhat-fast path for domain -> base type case */
if (srctype == targettype) {
return true;
}
/* Also accept any array type as coercible to ANYARRAY */
if (targettype == ANYARRAYOID) {
if (type_is_array_domain(srctype)) {
return true;
}
}
/* Also accept any non-array type as coercible to ANYNONARRAY */
if (targettype == ANYNONARRAYOID) {
if (!type_is_array_domain(srctype)) {
return true;
}
}
/* Also accept any enum type as coercible to ANYENUM */
if (targettype == ANYENUMOID) {
if (type_is_enum(srctype)) {
return true;
}
}
/* Also accept any set type as coercible to ANYSET */
if (targettype == ANYSETOID) {
if (type_is_set(srctype)) {
return true;
}
}
/* Also accept any range type as coercible to ANYRANGE */
if (targettype == ANYRANGEOID) {
if (type_is_range(srctype)) {
return true;
}
}
/* Also accept any composite type as coercible to RECORD */
if (targettype == RECORDOID) {
if (ISCOMPLEX(srctype)) {
return true;
}
}
/* Also accept any composite array type as coercible to RECORD[] */
if (targettype == RECORDARRAYOID) {
if (is_complex_array(srctype)) {
return true;
}
}
/* Else look in pg_cast */
tuple = SearchSysCache2(CASTSOURCETARGET, ObjectIdGetDatum(srctype), ObjectIdGetDatum(targettype));
if (!HeapTupleIsValid(tuple)) {
return false; /* no cast */
}
castForm = (Form_pg_cast)GETSTRUCT(tuple);
result = (castForm->castmethod == COERCION_METHOD_BINARY && castForm->castcontext == COERCION_CODE_IMPLICIT);
ReleaseSysCache(tuple);
return result;
}
/*
* find_coercion_pathway
* Look for a coercion pathway between two types.
*
* Currently, this deals only with scalar-type cases; it does not consider
* polymorphic types nor casts between composite types. (Perhaps fold
* those in someday?)
*
* ccontext determines the set of available casts.
*
* The possible result codes are:
* COERCION_PATH_NONE: failed to find any coercion pathway
* *funcid is set to InvalidOid
* COERCION_PATH_FUNC: apply the coercion function returned in *funcid
* COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed
* *funcid is set to InvalidOid
* COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node
* *funcid is set to the element cast function, or InvalidOid
* if the array elements are binary-compatible
* COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node
* *funcid is set to InvalidOid
*
* Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is
* needed to do the coercion; if the target is a domain then we may need to
* apply domain constraint checking. If you want to check for a zero-effort
* conversion then use IsBinaryCoercible().
*/
CoercionPathType find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, CoercionContext ccontext, Oid* funcid)
{
CoercionPathType result = COERCION_PATH_NONE;
HeapTuple tuple;
*funcid = InvalidOid;
/* Perhaps the types are domains; if so, look at their base types */
if (OidIsValid(sourceTypeId)) {
sourceTypeId = getBaseType(sourceTypeId);
}
if (OidIsValid(targetTypeId)) {
targetTypeId = getBaseType(targetTypeId);
}
/* Domains are always coercible to and from their base type */
if (sourceTypeId == targetTypeId) {
return COERCION_PATH_RELABELTYPE;
}
/* target is an actual set type, change it to anyset to find the path */
if (targetTypeId != ANYSETOID && type_is_set(targetTypeId)) {
targetTypeId = ANYSETOID;
}
if (sourceTypeId != ANYSETOID && type_is_set(sourceTypeId)) {
sourceTypeId = ANYSETOID;
}
/* Look in pg_cast */
tuple = SearchSysCache2(CASTSOURCETARGET, ObjectIdGetDatum(sourceTypeId), ObjectIdGetDatum(targetTypeId));
if (HeapTupleIsValid(tuple)) {
Form_pg_cast castForm = (Form_pg_cast)GETSTRUCT(tuple);
CoercionContext castcontext;
/* convert char value for castcontext to CoercionContext enum */
switch (castForm->castcontext) {
case COERCION_CODE_IMPLICIT:
castcontext = COERCION_IMPLICIT;
break;
case COERCION_CODE_ASSIGNMENT:
castcontext = COERCION_ASSIGNMENT;
break;
case COERCION_CODE_EXPLICIT:
castcontext = COERCION_EXPLICIT;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_UNEXPECTED_NODE_STATE),
errmsg("unrecognized castcontext: %d", (int)castForm->castcontext)));
castcontext = (CoercionContext)0; /* keep compiler quiet */
break;
}
/* Rely on ordering of enum for correct behavior here */
if (ccontext >= castcontext) {
switch (castForm->castmethod) {
case COERCION_METHOD_FUNCTION:
result = COERCION_PATH_FUNC;
*funcid = castForm->castfunc;
break;
case COERCION_METHOD_INOUT:
result = COERCION_PATH_COERCEVIAIO;
break;
case COERCION_METHOD_BINARY:
result = COERCION_PATH_RELABELTYPE;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_UNEXPECTED_NODE_STATE),
errmsg("unrecognized castmethod: %d", (int)castForm->castmethod)));
break;
}
}
ReleaseSysCache(tuple);
} else {
/*
* If there's no pg_cast entry, perhaps we are dealing with a pair of
* array types. If so, and if the element types have a suitable cast,
* report that we can coerce with an ArrayCoerceExpr.
*
* Note that the source type can be a domain over array, but not the
* target, because ArrayCoerceExpr won't check domain constraints.
*
* Hack: disallow coercions to oidvector and int2vector, which
* otherwise tend to capture coercions that should go to "real" array
* types. We want those types to be considered "real" arrays for many
* purposes, but not this one. (Also, ArrayCoerceExpr isn't
* guaranteed to produce an output that meets the restrictions of
* these datatypes, such as being 1-dimensional.)
*/
if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID) {
Oid targetElem;
Oid sourceElem;
if ((targetElem = get_element_type(targetTypeId)) != InvalidOid &&
(sourceElem = get_base_element_type(sourceTypeId)) != InvalidOid) {
CoercionPathType elempathtype;
Oid elemfuncid;
elempathtype = find_coercion_pathway(targetElem, sourceElem, ccontext, &elemfuncid);
if (elempathtype != COERCION_PATH_NONE && elempathtype != COERCION_PATH_ARRAYCOERCE) {
*funcid = elemfuncid;
if (elempathtype == COERCION_PATH_COERCEVIAIO) {
result = COERCION_PATH_COERCEVIAIO;
} else {
result = COERCION_PATH_ARRAYCOERCE;
}
}
}
}
/*
* If we still haven't found a possibility, consider automatic casting
* using I/O functions. We allow assignment casts to string types and
* explicit casts from string types to be handled this way. (The
* CoerceViaIO mechanism is a lot more general than that, but this is
* all we want to allow in the absence of a pg_cast entry.) It would
* probably be better to insist on explicit casts in both directions,
* but this is a compromise to preserve something of the pre-8.3
* behavior that many types had implicit (yipes!) casts to text.
*/
if (result == COERCION_PATH_NONE) {
if (ccontext >= COERCION_ASSIGNMENT && TypeCategory(targetTypeId) == TYPCATEGORY_STRING) {
result = COERCION_PATH_COERCEVIAIO;
} else if (ccontext >= COERCION_EXPLICIT && TypeCategory(sourceTypeId) == TYPCATEGORY_STRING) {
result = COERCION_PATH_COERCEVIAIO;
}
}
}
return result;
}
/*
* find_typmod_coercion_function -- does the given type need length coercion?
*
* If the target type possesses a pg_cast function from itself to itself,
* it must need length coercion.
*
* "bpchar" (ie, char(N)) and "numeric" are examples of such types.
*
* If the given type is a varlena array type, we do not look for a coercion
* function associated directly with the array type, but instead look for
* one associated with the element type. An ArrayCoerceExpr node must be
* used to apply such a function.
*
* We use the same result enum as find_coercion_pathway, but the only possible
* result codes are:
* COERCION_PATH_NONE: no length coercion needed
* COERCION_PATH_FUNC: apply the function returned in *funcid
* COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr
*/
CoercionPathType find_typmod_coercion_function(Oid typeId, Oid* funcid)
{
CoercionPathType result;
Type targetType;
Form_pg_type typeForm;
HeapTuple tuple;
*funcid = InvalidOid;
result = COERCION_PATH_FUNC;
targetType = typeidType(typeId);
typeForm = (Form_pg_type)GETSTRUCT(targetType);
/* Check for a varlena array type */
if (typeForm->typelem != InvalidOid && typeForm->typlen == -1) {
/* Yes, switch our attention to the element type */
typeId = typeForm->typelem;
result = COERCION_PATH_ARRAYCOERCE;
}
ReleaseSysCache(targetType);
/* Look in pg_cast */
tuple = SearchSysCache2(CASTSOURCETARGET, ObjectIdGetDatum(typeId), ObjectIdGetDatum(typeId));
if (HeapTupleIsValid(tuple)) {
Form_pg_cast castForm = (Form_pg_cast)GETSTRUCT(tuple);
*funcid = castForm->castfunc;
ReleaseSysCache(tuple);
}
if (!OidIsValid(*funcid)) {
result = COERCION_PATH_NONE;
}
return result;
}
/*
* is_complex_array
* Is this type an array of composite?
*
* Note: this will not return true for record[]; check for RECORDARRAYOID
* separately if needed.
*/
static bool is_complex_array(Oid typid)
{
Oid elemtype = get_element_type(typid);
return (OidIsValid(elemtype) && ISCOMPLEX(elemtype));
}
/*
* Check whether reltypeId is the row type of a typed table of type
* reloftypeId. (This is conceptually similar to the subtype
* relationship checked by typeInheritsFrom().)
*/
static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
{
Oid relid = typeidTypeRelid(reltypeId);
bool result = false;
if (relid) {
HeapTuple tp;
Form_pg_class reltup;
tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
if (!HeapTupleIsValid(tp)) {
ereport(
ERROR, (errcode(ERRCODE_CACHE_LOOKUP_FAILED), errmsg("cache lookup failed for relation %u", relid)));
}
reltup = (Form_pg_class)GETSTRUCT(tp);
if (reltup->reloftype == reloftypeId) {
result = true;
}
ReleaseSysCache(tp);
}
return result;
}
void expression_error_callback(void* arg)
{
char* colname = (char*)arg;
if (colname != NULL && strcmp(colname, "?column?")) {
errcontext("referenced column: %s", colname);
}
}
Node *transferConstToAconst(Node *node)
{
Node *result = NULL;
if(!IsA(node, Const)) {
ereport(ERROR,
(errcode(ERRCODE_INVALID_OPERATION),
errmsg("The variable value expr must be convertible to a constant.")));
}
Datum constval = ((Const*)node)->constvalue;
Oid consttype = ((Const*)node)->consttype;
Value* val = NULL;
if (((Const*)node)->constisnull) {
ereport(ERROR,
(errcode(ERRCODE_INVALID_OPERATION),
errmsg("The variable value expr can't be a null value.")));
}
switch(consttype) {
case INT1OID:
case INT2OID:
case INT4OID:
case INT8OID:
{
int64 val_int64 = DatumGetInt64(constval);
val = makeInteger(val_int64);
} break;
case TEXTOID:
{
char* constr = TextDatumGetCString(constval);
val = makeString(constr);
} break;
case FLOAT4OID:
case FLOAT8OID:
{
float8 value = DatumGetFloat8(constval);
char *value_str = DatumGetCString(DirectFunctionCall1(float8out, Float8GetDatum(value)));
val = makeFloat(value_str);
} break;
case NUMERICOID:
{
Numeric value = DatumGetNumeric(constval);
char* str_val = DatumGetCString(DirectFunctionCall1(numeric_out, NumericGetDatum(value)));
val = makeFloat(str_val);
} break;
case BOOLOID:
{
bool value = DatumGetBool(constval);
const char *constr = value ? "t" : "f";
val = makeString((char*)constr);
} break;
/*
* set configuration only support types above.
* if assigned value are not types above, will attempt to convert the type to text.
* if the type connot be converted to text also, an error is reported.
*/
default:
{
PG_TRY();
{
Const* con = (Const *)node;
Node* expr = coerce_type(NULL,(Node*)con , con->consttype, TEXTOID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
if (IsA(expr, Const) && (((Const*)expr)->consttype = TEXTOID)) {
char* constr = TextDatumGetCString(((Const*)expr)->constvalue);
val = makeString(constr);
} else {
ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("set value cannot be assigned to the %s type", format_type_be(consttype))));
}
}
PG_CATCH();
{
ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("set value cannot be assigned to the %s type", format_type_be(consttype))));
}
PG_END_TRY();
} break;
}
result = makeAConst(val, -1);
return result;
}
Const* setValueToConstExpr(SetVariableExpr* set)
{
Const* result = NULL;
Value* value;
/* initial value is null Const */
Datum val = (Datum)0;
Oid typid = UNKNOWNOID;
int typelen = -2;
bool typebyval = false;
struct config_generic* record = NULL;
record = find_option(set->name, false, ERROR);
char* variable_str = SetVariableExprGetConfigOption(set);
switch (record->vartype) {
case PGC_BOOL:
{
bool variable_bool = false;
if (strcmp(variable_str,"true") || strcmp(variable_str,"on")) {
variable_bool = true;
}
val = BoolGetDatum(variable_bool);
typid = BOOLOID;
typelen = 1;
typebyval = true;
} break;
case PGC_INT:
{
int variable = (int32)strtol((const char*)variable_str, (char**)NULL,10);
value = makeInteger(variable);
val = Int64GetDatum(intVal(value));
typid = INT8OID;
typelen = sizeof(int64);
typebyval = true;
} break;
case PGC_INT64:
{
int variable = (int64)strtol((const char*)variable_str, (char**)NULL,10);
value = makeInteger(variable);
val = Int64GetDatum(intVal(value));
typid = INT8OID;
typelen = sizeof(int64);
typebyval = true;
} break;
case PGC_REAL:
{
value = makeFloat(variable_str);
val = Float8GetDatum(floatVal(value));
typid = FLOAT8OID;
typelen = sizeof(float8);
typebyval = true;
} break;
case PGC_STRING:
{
value = makeString(variable_str);
val = CStringGetDatum(strVal(value));
typid = UNKNOWNOID; /* will be coerced later */
typelen = -2; /* cstring-style varwidth type */
typebyval = false;
} break;
case PGC_ENUM:
{
value = makeString(variable_str);
val = CStringGetDatum(strVal(value));
typid = UNKNOWNOID; /* will be coerced later */
typelen = -2; /* cstring-style varwidth type */
typebyval = false;
} break;
default:
break;
}
result = makeConst(typid,
-1, /* typmod -1 is OK for all cases */
InvalidOid, /* all cases are uncollatable types */
typelen,
val,
false,
typebyval);
result->location = -1;
return result;
}