Files
openGauss-server/src/common/backend/utils/adt/timestamp.cpp

5960 lines
189 KiB
C++

/* -------------------------------------------------------------------------
*
* timestamp.c
* Functions for the built-in SQL92 types "timestamp" and "interval".
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
* Portions Copyright (c) 2021, openGauss Contributors
*
*
* IDENTIFICATION
* src/backend/utils/adt/timestamp.c
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "knl/knl_variable.h"
#include <math.h>
#include <float.h>
#include <limits.h>
#include <sys/time.h>
#include "access/hash.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "commands/copy.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "parser/scansup.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/datetime.h"
#include "utils/formatting.h"
#include "common/int.h"
#ifdef PGXC
#include "pgxc/pgxc.h"
#endif
#if defined(ENABLE_UT) || defined(ENABLE_QUNIT)
#define static
#endif
/*
* gcc's -ffast-math switch breaks routines that expect exact results from
* expressions like timeval / SECS_PER_HOUR, where timeval is double.
*/
#ifdef __FAST_MATH__
#error -ffast-math is known to break this code
#endif
#define DATE_WITHOUT_SPC_LEN 14
#define FOUR_DIGIT_LEN 4 /* year is 4 */
#define TWO_DIGIT_LEN 2 /*month,day,hour,minute and second*/
#define MAXLEN_DATE 10 /* with separator, without time-string*/
#define MINLEN_DATE 8 /* without separator, without time-string */
#define MAXLEN_TIME 8
#define MAXLEN_TIME_WITHOUT_SPRTR 6
#define MINLEN_TIME 5
#define UNIT_LEN 10
#define DATESTR_LEN 20
#define TIMESTR_LEN 20
#define TYPMODOUT_LEN 64
#define JANUARY 1
#define FEBRUARY 2
#define MARCH 3
#define APRIL 4
#define MAY 5
#define JUNE 6
#define JULY 7
#define AUGEST 8
#define SEPTEMBER 9
#define OCTOBER 10
#define NOVEMBER 11
#define DECEMBER 12
#define MAXYEAR 9999
#define DAYNUM_FEB_LEAPYEAR 29
#define DAYNUM_FEB_NONLEAPYEAR 28
#define DAYNUM_BIGMON 31
#define DAYNUM_LITTLEMON 30
#define MAXNUM_HOUR 24
#define MAXNUM_MIN 60
#define MAXNUM_SEC 60
#define DAYS_PER_COMMON_YEAR 365
#define DAYS_PER_LEAP_YEAR 366
/* NaN and Infinity Macro used in interval_mul and interval_div*/
/*
* Actually, when this macro is used, it probabily means interval overflow/underflow.
* However, we have to keep this behavior in order to maintain compatibility.
*/
#define BIT_NUM_PER_CHAR 8
#define NAN_IFINITY_CONVERT_TO_INT 0x8000000000000000
#define INTERVAL_CONVERT_INFINITY_NAN(result) \
do { \
(result)->time = NAN_IFINITY_CONVERT_TO_INT; \
(result)->month = NAN_IFINITY_CONVERT_TO_INT >> (sizeof(int32) * BIT_NUM_PER_CHAR); \
(result)->day = 0; \
} while (0)
/*
* all stuffs used for bulkload(end).
*/
typedef struct {
Timestamp current;
Timestamp finish;
Interval step;
int step_sign;
} generate_series_timestamp_fctx;
typedef struct {
TimestampTz current;
TimestampTz finish;
Interval step;
int step_sign;
} generate_series_timestamptz_fctx;
static TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec);
static void EncodeSpecialTimestamp(Timestamp dt, char* str);
static Timestamp dt2local(Timestamp dt, int timezone);
static void AdjustTimestampForTypmod(Timestamp* time, int32 typmod);
static void AdjustIntervalForTypmod(Interval* interval, int32 typmod);
static void interval_format_adjust(Interval* interval, char type_mode);
static void interval_result_adjust(Interval* result);
struct pg_tm* GetDateDetail(const char* dateString);
void SplitWholeStrWithoutSeparator(const char* dateString, struct pg_tm* tm);
void AnalyseDate(const char* dateString, struct pg_tm* tm_date);
void SplitDatestrBySeparator(
const char* dateString, int strLength, const int* separatorPosition, struct pg_tm* tm_date);
void SplitDatestrWithoutSeparator(const char* dateString, struct pg_tm* tm_time);
void AnalyseTime(const char* timeString, struct pg_tm* tm_time);
void SplitTimestrWithoutSeparator(const char* timeString, struct pg_tm* tm_time);
void SplitTimestrBySeparator(
const char* timeString, int strLength, const int* separatorPosition, struct pg_tm* tm_time);
void CheckDateValidity(struct pg_tm* tm);
void CheckMonthAndDay(struct pg_tm* tm);
void CheckTimeValidity(struct pg_tm* tm);
static int WhetherFebLeapYear(struct pg_tm* tm);
static int WhetherSmallMon(struct pg_tm* tm);
static int WhetherBigMon(struct pg_tm* tm);
static int daydiff_timestamp(const struct pg_tm* tm, const struct pg_tm* tm1, const struct pg_tm* tm2,
bool day_fix = false);
void timestamp_FilpSign(pg_tm* tm);
void timestamp_CalculateFields(TimestampTz* dt1, TimestampTz* dt2, fsec_t* fsec, pg_tm* tm, pg_tm* tm1, pg_tm* tm2);
/* common code for timestamptypmodin and timestamptztypmodin */
static int32 anytimestamp_typmodin(bool istz, ArrayType* ta)
{
int32 typmod;
int32* tl = NULL;
int n;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* we're not too tense about good error message here because grammar
* shouldn't allow wrong number of modifiers for TIMESTAMP
*/
if (n != 1)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid type modifier")));
if (*tl < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIMESTAMP(%d)%s precision must not be negative", *tl, (istz ? " WITH TIME ZONE" : ""))));
if (*tl > MAX_TIMESTAMP_PRECISION) {
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIMESTAMP(%d)%s precision reduced to maximum allowed, %d",
*tl,
(istz ? " WITH TIME ZONE" : ""),
MAX_TIMESTAMP_PRECISION)));
typmod = MAX_TIMESTAMP_PRECISION;
} else
typmod = *tl;
return typmod;
}
/* common code for timestamptypmodout and timestamptztypmodout */
static char* anytimestamp_typmodout(bool istz, int32 typmod)
{
char* res = (char*)palloc(TYPMODOUT_LEN);
const char* tz = istz ? " with time zone" : " without time zone";
int rc = 0;
if (typmod >= 0) {
rc = snprintf_s(res, TYPMODOUT_LEN, 63, "(%d)%s", (int)typmod, tz);
securec_check_ss(rc, "\0", "\0");
} else {
rc = snprintf_s(res, TYPMODOUT_LEN, 63, "%s", tz);
securec_check_ss(rc, "\0", "\0");
}
return res;
}
/*****************************************************************************
* USER I/O ROUTINES *
*****************************************************************************/
/* TimestampTypeCheck()
* Check timestamp format, and convert to internal timestamp format.
*/
bool TimestampTypeCheck(char* str, bool can_ignore, struct pg_tm* tm, Timestamp &result, fsec_t &fsec, int &dterr)
{
int tz;
int dtype;
int nf;
char* field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + MAXDATEFIELDS];
dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
if (dterr != 0) {
DateTimeParseError(dterr, str, "timestamp", can_ignore);
/*
* if error ignorable, function DateTimeParseError reports warning instead, then return current timestamp.
*/
return true;
}
switch (dtype) {
case DTK_DATE:
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%s\"", str)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
case DTK_INVALID:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"%s\" is no longer supported", str)));
TIMESTAMP_NOEND(result);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("unexpected dtype %d while parsing timestamp \"%s\"", dtype, str)));
TIMESTAMP_NOEND(result);
}
return false;
}
/* timestamp_in()
* Convert a string to internal form.
*/
Datum timestamp_in(PG_FUNCTION_ARGS)
{
char* str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp result;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
int dterr;
char* timestamp_fmt = NULL;
/*
* this case is used for timestamp format is specified.
*/
if (4 == PG_NARGS()) {
timestamp_fmt = PG_GETARG_CSTRING(3);
if (timestamp_fmt == NULL) {
ereport(ERROR, (errcode(ERRCODE_INVALID_DATETIME_FORMAT), errmsg("specified timestamp format is null")));
}
/* the following logic shared from to_timestamp(). */
int tz = 0;
to_timestamp_from_format(tm, &fsec, str, (void*)timestamp_fmt);
if (tm2timestamp(tm, fsec, &tz, &result) != 0) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
} else if (TimestampTypeCheck(str, fcinfo->can_ignore, tm, result, fsec, dterr)){
PG_RETURN_TIMESTAMP(GetCurrentTimestamp());
}
/*
* the following logic is unified for timestamp parsing.
*/
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
Datum input_timestamp_in(char* str, Oid typioparam, int32 typmod, bool can_ignore)
{
if (str == NULL) {
return (Datum)0;
}
#ifdef NOT_USED
Oid typelem = typioparam;
#endif
Timestamp result;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
int dterr;
if (u_sess->attr.attr_common.enable_iud_fusion) {
dterr = ParseIudDateTime(str, tm, &fsec);
if (dterr == 0) {
if (tm2timestamp(tm, fsec, NULL, &result) != 0) {
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%s\"", str)));
}
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
}
if (TimestampTypeCheck(str, can_ignore, tm, result, fsec, dterr)){
PG_RETURN_TIMESTAMP(GetCurrentTimestamp());
}
/*
* the following logic is unified for timestamp parsing.
*/
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
/* timestamp_out()
* Convert a timestamp to external form.
*/
Datum timestamp_out(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
char* result = NULL;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
char buf[MAXDATELEN + 1];
if (TIMESTAMP_NOT_FINITE(timestamp))
EncodeSpecialTimestamp(timestamp, buf);
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0)
EncodeDateTime(tm, fsec, false, 0, NULL, u_sess->time_cxt.DateStyle, buf);
else
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamp_recv - converts external binary format to timestamp
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum timestamp_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo)PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp timestamp;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (Timestamp)pq_getmsgint64(buf);
#else
timestamp = (Timestamp)pq_getmsgfloat8(buf);
if (isnan(timestamp))
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp cannot be NaN")));
#endif
/* rangecheck: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */;
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMP(timestamp);
}
/*
* timestamp_send - converts timestamp to binary format
*/
Datum timestamp_send(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum smalldatetime_smaller(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
/* use timestamp_cmp_internal to be sure this agrees with comparisons */
if (timestamp_cmp_internal(dt1, dt2) < 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum smalldatetime_larger(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
if (timestamp_cmp_internal(dt1, dt2) > 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum smalldatetime_in(PG_FUNCTION_ARGS)
{
char* str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp result;
fsec_t fsec = 0;
struct pg_tm tt, *tm = &tt;
int tz;
int dtype = 0;
int nf;
int dterr;
char* field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS] = {-1};
char workbuf[MAXDATELEN + MAXDATEFIELDS];
int sign = 0;
char* smalldatetime_fmt = NULL;
/*
* this case is used for timestamp format is specified.
*/
if (4 == PG_NARGS()) {
smalldatetime_fmt = PG_GETARG_CSTRING(3);
if (smalldatetime_fmt == NULL) {
ereport(
ERROR, (errcode(ERRCODE_INVALID_DATETIME_FORMAT), errmsg("specified smalldatetime format is null")));
}
/* the following logic shared from to_timestamp(). */
tz = 0;
to_timestamp_from_format(tm, &fsec, str, (void*)smalldatetime_fmt);
/*
* the following logic is shared from default smalldatetime formatting parsing.
*/
if (tm->tm_sec >= 30) {
sign = 1;
}
tm->tm_sec = 0;
if (tm2timestamp(tm, fsec, &tz, &result) != 0) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
} else {
/*
* default smalldatetime formatting parsing.
*/
dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0) {
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
fsec = 0;
}
if (dterr != 0) {
DateTimeParseError(dterr, str, "smalldatetime", fcinfo->can_ignore);
/* if error ignorable, return epoch time as result */
GetEpochTime(tm);
}
if (tm->tm_sec >= 30) {
sign = 1;
}
tm->tm_sec = 0;
switch (dtype) {
case DTK_DATE:
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("smalldatetime out of range: \"%s\"", str)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
case DTK_INVALID:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"%s\" is no longer supported", str)));
TIMESTAMP_NOEND(result);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("unexpected dtype %d while parsing smalldatetime \"%s\"", dtype, str)));
TIMESTAMP_NOEND(result);
}
}
/*
* the following logic is unified for smalldatetime parsing.
*/
AdjustTimestampForTypmod(&result, typmod);
/*minute add 1 if second >= 30*/
if (1 == sign) {
Interval spanTime;
Interval* span = NULL;
spanTime.time = 60000000;
spanTime.day = 0;
spanTime.month = 0;
span = &spanTime;
result = DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(result), PointerGetDatum(span));
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamp_out()
* Convert a timestamp to external form.
*/
Datum smalldatetime_out(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
char* result = NULL;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
char buf[MAXDATELEN + 1] = {'\0'};
if (TIMESTAMP_NOT_FINITE(timestamp))
EncodeSpecialTimestamp(timestamp, buf);
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0)
EncodeDateTime(tm, fsec, false, 0, NULL, u_sess->time_cxt.DateStyle, buf);
else
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("smalldatetime out of range")));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamp_recv - converts external binary format to timestamp
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum smalldatetime_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo)PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp timestamp;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (Timestamp)pq_getmsgint64(buf);
#else
timestamp = (Timestamp)pq_getmsgfloat8(buf);
if (isnan(timestamp))
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("smalldatetime cannot be NaN")));
#endif
/* rangecheck: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */;
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("smalldatetime out of range")));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMP(timestamp);
}
/*
* timestamp_send - converts timestamp to binary format
*/
Datum smalldatetime_send(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum smalldatetime_eq(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum smalldatetime_ne(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum smalldatetime_lt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum smalldatetime_gt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum smalldatetime_le(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum smalldatetime_ge(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum smalldatetime_cmp(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
Datum smalldatetime_hash(PG_FUNCTION_ARGS)
{
/* We can use either hashint8 or hashfloat8 directly */
#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
#else
return hashfloat8(fcinfo);
#endif
}
Datum timestamptypmodin(PG_FUNCTION_ARGS)
{
ArrayType* ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytimestamp_typmodin(false, ta));
}
Datum timestamptypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytimestamp_typmodout(false, typmod));
}
/* timestamp_transform()
* Flatten calls to timestamp_scale() and timestamptz_scale() that solely
* represent increases in allowed precision.
*/
Datum timestamp_transform(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER(TemporalTransform(MAX_TIMESTAMP_PRECISION, (Node*)PG_GETARG_POINTER(0)));
}
/* timestamp_scale()
* Adjust time type for specified scale factor.
* Used by openGauss type system to stuff columns.
*/
Datum timestamp_scale(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
int32 typmod = PG_GETARG_INT32(1);
Timestamp result;
result = timestamp;
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
static void AdjustTimestampForTypmod(Timestamp* time, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)};
static const int64 TimestampOffsets[MAX_TIMESTAMP_PRECISION + 1] = {INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)};
#else
static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {1, 10, 100, 1000, 10000, 100000, 1000000};
#endif
if (!TIMESTAMP_NOT_FINITE(*time) && (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION)) {
if (typmod < 0 || typmod > MAX_TIMESTAMP_PRECISION)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp(%d) precision must be between %d and %d", typmod, 0, MAX_TIMESTAMP_PRECISION)));
/*
* Note: this round-to-nearest code is not completely consistent about
* rounding values that are exactly halfway between integral values.
* On most platforms, rint() will implement round-to-nearest-even, but
* the integer code always rounds up (away from zero). Is it worth
* trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0)) {
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) * TimestampScales[typmod];
} else {
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod]) * TimestampScales[typmod]);
}
#else
*time = rint((double)*time * TimestampScales[typmod]) / TimestampScales[typmod];
#endif
}
}
/* timestamptz_in()
* Convert a string to internal form.
*/
Datum timestamptz_in(PG_FUNCTION_ARGS)
{
char* str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimestampTz result;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
int tz;
int dtype;
int nf;
int dterr;
char* field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + MAXDATEFIELDS];
dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
if (dterr != 0) {
DateTimeParseError(dterr, str, "timestamp with time zone", fcinfo->can_ignore);
/*
* if error ignorable, function DateTimeParseError reports warning instead, then return current timestamp.
*/
PG_RETURN_TIMESTAMP(GetCurrentTimestamp());
}
switch (dtype) {
case DTK_DATE:
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range: \"%s\"", str)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
case DTK_INVALID:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"%s\" is no longer supported", str)));
break;
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("unexpected dtype %d while parsing timestamptz \"%s\"", dtype, str)));
}
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMPTZ(result);
}
/* timestamptz_out()
* Convert a timestamp to external form.
*/
Datum timestamptz_out(PG_FUNCTION_ARGS)
{
TimestampTz dt = PG_GETARG_TIMESTAMPTZ(0);
char* result = NULL;
int tz;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
const char* tzn = NULL;
char buf[MAXDATELEN + 1];
if (TIMESTAMP_NOT_FINITE(dt))
EncodeSpecialTimestamp(dt, buf);
else if (timestamp2tm(dt, &tz, tm, &fsec, &tzn, NULL) == 0)
EncodeDateTime(tm, fsec, true, tz, tzn, u_sess->time_cxt.DateStyle, buf);
else
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamptz_recv - converts external binary format to timestamptz
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum timestamptz_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo)PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimestampTz timestamp;
int tz;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (TimestampTz)pq_getmsgint64(buf);
#else
timestamp = (TimestampTz)pq_getmsgfloat8(buf);
#endif
/* rangecheck: see if timestamptz_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */;
else if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMPTZ(timestamp);
}
/*
* timestamptz_send - converts timestamptz to binary format
*/
Datum timestamptz_send(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum timestamptztypmodin(PG_FUNCTION_ARGS)
{
ArrayType* ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytimestamp_typmodin(true, ta));
}
Datum timestamptztypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytimestamp_typmodout(true, typmod));
}
/* timestamptz_scale()
* Adjust time type for specified scale factor.
* Used by openGauss type system to stuff columns.
*/
Datum timestamptz_scale(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
int32 typmod = PG_GETARG_INT32(1);
TimestampTz result;
result = timestamp;
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMPTZ(result);
}
/* interval_in()
* Convert a string to internal form.
*
* External format(s):
* Uses the generic date/time parsing and decoding routines.
*/
Datum interval_in(PG_FUNCTION_ARGS)
{
char* str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Interval *result = NULL;
result = char_to_interval(str, typmod, fcinfo->can_ignore);
AdjustIntervalForTypmod(result, typmod);
PG_RETURN_INTERVAL_P(result);
}
/* interval_out()
* Convert a time span to external form.
*/
Datum interval_out(PG_FUNCTION_ARGS)
{
Interval* span = PG_GETARG_INTERVAL_P(0);
char* result = NULL;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
char buf[MAXDATELEN + 1];
if (interval2tm(*span, tm, &fsec) != 0)
ereport(ERROR, (errcode(ERRCODE_MOST_SPECIFIC_TYPE_MISMATCH), errmsg("could not convert interval to tm")));
EncodeInterval(tm, fsec, u_sess->attr.attr_common.IntervalStyle, buf);
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* interval_recv - converts external binary format to interval
*/
Datum interval_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo)PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Interval* interval = NULL;
interval = (Interval*)palloc(sizeof(Interval));
#ifdef HAVE_INT64_TIMESTAMP
interval->time = pq_getmsgint64(buf);
#else
interval->time = pq_getmsgfloat8(buf);
#endif
interval->day = pq_getmsgint(buf, sizeof(interval->day));
interval->month = pq_getmsgint(buf, sizeof(interval->month));
AdjustIntervalForTypmod(interval, typmod);
PG_RETURN_INTERVAL_P(interval);
}
/*
* interval_send - converts interval to binary format
*/
Datum interval_send(PG_FUNCTION_ARGS)
{
Interval* interval = PG_GETARG_INTERVAL_P(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, interval->time);
#else
pq_sendfloat8(&buf, interval->time);
#endif
pq_sendint32(&buf, interval->day);
pq_sendint32(&buf, interval->month);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
* The interval typmod stores a "range" in its high 16 bits and a "precision"
* in its low 16 bits. Both contribute to defining the resolution of the
* type. Range addresses resolution granules larger than one second, and
* precision specifies resolution below one second. This representation can
* express all SQL standard resolutions, but we implement them all in terms of
* truncating rightward from some position. Range is a bitmap of permitted
* fields, but only the temporally-smallest such field is significant to our
* calculations. Precision is a count of sub-second decimal places to retain.
* Setting all bits (INTERVAL_FULL_PRECISION) gives the same truncation
* semantics as choosing MAX_INTERVAL_PRECISION.
*/
Datum intervaltypmodin(PG_FUNCTION_ARGS)
{
ArrayType* ta = PG_GETARG_ARRAYTYPE_P(0);
int32* tl = NULL;
int n;
int32 typmod;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* tl[0] - interval range (fields bitmask) tl[1] - precision (optional)
*
* Note we must validate tl[0] even though it's normally guaranteed
* correct by the grammar --- consider SELECT 'foo'::"interval"(1000).
*/
if (n > 0) {
switch (tl[0]) {
case INTERVAL_MASK(YEAR):
case INTERVAL_MASK(MONTH):
case INTERVAL_MASK(DAY):
case INTERVAL_MASK(HOUR):
case INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(SECOND):
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_FULL_RANGE:
/* all OK */
break;
default:
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid INTERVAL type modifier")));
}
}
if (n == 1) {
if (tl[0] != INTERVAL_FULL_RANGE)
typmod = INTERVAL_TYPMOD(INTERVAL_FULL_PRECISION, (unsigned int)tl[0]);
else
typmod = -1;
} else if (n == 2) {
if (tl[1] < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("INTERVAL(%d) precision must not be negative", tl[1])));
if (tl[1] > MAX_INTERVAL_PRECISION) {
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("INTERVAL(%d) precision reduced to maximum allowed, %d", tl[1], MAX_INTERVAL_PRECISION)));
typmod = INTERVAL_TYPMOD(MAX_INTERVAL_PRECISION, (unsigned int)tl[0]);
} else
typmod = INTERVAL_TYPMOD((unsigned int)tl[1], (unsigned int)tl[0]);
} else {
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid INTERVAL type modifier")));
typmod = 0; /* keep compiler quiet */
}
PG_RETURN_INT32(typmod);
}
Datum intervaltypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
char* res = (char*)palloc(TYPMODOUT_LEN);
int fields;
int precision;
const char* fieldstr = NULL;
int rc = 0;
if (typmod < 0) {
*res = '\0';
PG_RETURN_CSTRING(res);
}
fields = INTERVAL_RANGE(typmod);
precision = INTERVAL_PRECISION(typmod);
switch (fields) {
case INTERVAL_MASK(YEAR):
fieldstr = " year";
break;
case INTERVAL_MASK(MONTH):
fieldstr = " month";
break;
case INTERVAL_MASK(DAY):
fieldstr = " day";
break;
case INTERVAL_MASK(HOUR):
fieldstr = " hour";
break;
case INTERVAL_MASK(MINUTE):
fieldstr = " minute";
break;
case INTERVAL_MASK(SECOND):
fieldstr = " second";
break;
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
fieldstr = " year to month";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
fieldstr = " day to hour";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
fieldstr = " day to minute";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " day to second";
break;
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
fieldstr = " hour to minute";
break;
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " hour to second";
break;
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " minute to second";
break;
case INTERVAL_FULL_RANGE:
fieldstr = "";
break;
default:
ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("invalid INTERVAL typmod: 0x%x", typmod)));
fieldstr = "";
break;
}
if (precision != INTERVAL_FULL_PRECISION) {
rc = snprintf_s(res, TYPMODOUT_LEN, 63, "%s(%d)", fieldstr, precision);
securec_check_ss(rc, "\0", "\0");
} else {
rc = snprintf_s(res, TYPMODOUT_LEN, 63, "%s", fieldstr);
securec_check_ss(rc, "\0", "\0");
}
PG_RETURN_CSTRING(res);
}
/*
* Given an interval typmod value, return a code for the least-significant
* field that the typmod allows to be nonzero, for instance given
* INTERVAL DAY TO HOUR we want to identify "hour".
*
* The results should be ordered by field significance, which means
* we can't use the dt.h macros YEAR etc, because for some odd reason
* they aren't ordered that way. Instead, arbitrarily represent
* SECOND = 0, MINUTE = 1, HOUR = 2, DAY = 3, MONTH = 4, YEAR = 5.
*/
static int intervaltypmodleastfield(int32 typmod)
{
if (typmod < 0)
return 0; /* SECOND */
switch (INTERVAL_RANGE(typmod)) {
case INTERVAL_MASK(YEAR):
return 5; /* YEAR */
case INTERVAL_MASK(MONTH):
return 4; /* MONTH */
case INTERVAL_MASK(DAY):
return 3; /* DAY */
case INTERVAL_MASK(HOUR):
return 2; /* HOUR */
case INTERVAL_MASK(MINUTE):
return 1; /* MINUTE */
case INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
return 4; /* MONTH */
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
return 2; /* HOUR */
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
return 1; /* MINUTE */
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
return 1; /* MINUTE */
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
return 0; /* SECOND */
default:
return 0;
}
return 0; /* can't get here, but keep compiler quiet */
}
/* interval_transform()
* Flatten superfluous calls to interval_scale(). The interval typmod is
* complex to permit accepting and regurgitating all SQL standard variations.
* For truncation purposes, it boils down to a single, simple granularity.
*/
Datum interval_transform(PG_FUNCTION_ARGS)
{
FuncExpr* expr = (FuncExpr*)PG_GETARG_POINTER(0);
Node* ret = NULL;
Node* typmod = NULL;
Assert(IsA(expr, FuncExpr));
Assert(list_length(expr->args) >= 2);
typmod = (Node*)lsecond(expr->args);
if (IsA(typmod, Const) && !((Const*)typmod)->constisnull) {
Node* source = (Node*)linitial(expr->args);
int32 new_typmod = DatumGetInt32(((Const*)typmod)->constvalue);
bool noop = false;
if (new_typmod < 0)
noop = true;
else {
int32 old_typmod = exprTypmod(source);
int old_least_field;
int new_least_field;
int old_precis;
int new_precis;
old_least_field = intervaltypmodleastfield(old_typmod);
new_least_field = intervaltypmodleastfield(new_typmod);
if (old_typmod < 0) {
old_precis = INTERVAL_FULL_PRECISION;
} else {
old_precis = INTERVAL_PRECISION(old_typmod);
}
new_precis = INTERVAL_PRECISION(new_typmod);
/*
* Cast is a no-op if least field stays the same or decreases
* while precision stays the same or increases. But precision,
* which is to say, sub-second precision, only affects ranges that
* include SECOND.
*/
noop =
(new_least_field <= old_least_field) &&
(old_least_field > 0 /* SECOND */ || new_precis >= MAX_INTERVAL_PRECISION || new_precis >= old_precis);
}
if (noop)
ret = relabel_to_typmod(source, new_typmod);
}
PG_RETURN_POINTER(ret);
}
/* interval_scale()
* Adjust interval type for specified fields.
* Used by openGauss type system to stuff columns.
*/
Datum interval_scale(PG_FUNCTION_ARGS)
{
Interval* interval = PG_GETARG_INTERVAL_P(0);
int32 typmod = PG_GETARG_INT32(1);
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
*result = *interval;
AdjustIntervalForTypmod(result, typmod);
PG_RETURN_INTERVAL_P(result);
}
/*
* Adjust interval for specified precision, in both YEAR to SECOND
* range and sub-second precision.
*/
static void AdjustIntervalForTypmod(Interval* interval, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)};
static const int64 IntervalOffsets[MAX_INTERVAL_PRECISION + 1] = {INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)};
#else
static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = {1, 10, 100, 1000, 10000, 100000, 1000000};
#endif
/*
* Unspecified range and precision? Then not necessary to adjust. Setting
* typmod to -1 is the convention for all data types.
*/
if (typmod >= 0) {
int range = INTERVAL_RANGE(typmod);
int precision = INTERVAL_PRECISION(typmod);
// mode character decided by typmod
char type_mode = ' ';
/*
* Our interpretation of intervals with a limited set of fields is
* that fields to the right of the last one specified are zeroed out,
* but those to the left of it remain valid. Thus for example there
* is no operational difference between INTERVAL YEAR TO MONTH and
* INTERVAL MONTH. In some cases we could meaningfully enforce that
* higher-order fields are zero; for example INTERVAL DAY could reject
* nonzero "month" field. However that seems a bit pointless when we
* can't do it consistently. (We cannot enforce a range limit on the
* highest expected field, since we do not have any equivalent of
* SQL's <interval leading field precision>.) If we ever decide to
* revisit this, interval_transform will likely require adjusting.
*
* Note: before PG 8.4 we interpreted a limited set of fields as
* actually causing a "modulo" operation on a given value, potentially
* losing high-order as well as low-order information. But there is
* no support for such behavior in the standard, and it seems fairly
* undesirable on data consistency grounds anyway. Now we only
* perform truncation or rounding of low-order fields.
*/
if (range == INTERVAL_FULL_RANGE) {
/* Do nothing... */
} else if (range == INTERVAL_MASK(YEAR)) {
interval->month = (interval->month / MONTHS_PER_YEAR) * MONTHS_PER_YEAR;
interval->day = 0;
interval->time = 0;
} else if (range == INTERVAL_MASK(MONTH)) {
interval->day = 0;
interval->time = 0;
}
/* YEAR TO MONTH */
else if (range == (INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH))) {
interval->day = 0;
interval->time = 0;
} else if (range == INTERVAL_MASK(DAY)) {
interval->time = 0;
} else if (range == INTERVAL_MASK(HOUR)) {
// set hour mode character
type_mode = 'H';
} else if (range == INTERVAL_MASK(MINUTE)) {
// set minute mode character
type_mode = 'M';
} else if (range == INTERVAL_MASK(SECOND)) {
/* fractional-second rounding will be dealt with below */
// set second mode character
type_mode = 'S';
}
/* DAY TO HOUR */
else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR))) {
// set hour mode character
type_mode = 'H';
}
/* DAY TO MINUTE */
else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE))) {
// set minute mode character
type_mode = 'M';
}
/* DAY TO SECOND */
else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) {
/* fractional-second rounding will be dealt with below */
// set second mode character
type_mode = 'S';
}
/* HOUR TO MINUTE */
else if (range == (INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE))) {
// set minute mode character
type_mode = 'M';
}
/* HOUR TO SECOND */
else if (range == (INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) {
/* fractional-second rounding will be dealt with below */
// set second mode character
type_mode = 'S';
}
/* MINUTE TO SECOND */
else if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) {
/* fractional-second rounding will be dealt with below */
// set second mode character
type_mode = 'S';
} else
ereport(
ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized interval typmod: %d", typmod)));
// adjust interval's format
interval_format_adjust(interval, type_mode);
/* Need to adjust subsecond precision? */
if (precision != INTERVAL_FULL_PRECISION) {
if (precision < 0 || precision > MAX_INTERVAL_PRECISION)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg(
"interval(%d) precision must be between %d and %d", precision, 0, MAX_INTERVAL_PRECISION)));
/*
* Note: this round-to-nearest code is not completely consistent
* about rounding values that are exactly halfway between integral
* values. On most platforms, rint() will implement
* round-to-nearest-even, but the integer code always rounds up
* (away from zero). Is it worth trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (interval->time >= INT64CONST(0)) {
interval->time = ((interval->time + IntervalOffsets[precision]) / IntervalScales[precision]) *
IntervalScales[precision];
} else {
interval->time = -(((-interval->time + IntervalOffsets[precision]) / IntervalScales[precision]) *
IntervalScales[precision]);
}
#else
interval->time = rint(((double)interval->time) * IntervalScales[precision]) / IntervalScales[precision];
#endif
}
}
}
/* EncodeSpecialTimestamp()
* Convert reserved timestamp data type to string.
*/
static void EncodeSpecialTimestamp(Timestamp dt, char* str)
{
int rc = 0;
if (TIMESTAMP_IS_NOBEGIN(dt)) {
rc = strcpy_s(str, MAXDATELEN + 1, EARLY);
securec_check(rc, "\0", "\0");
} else if (TIMESTAMP_IS_NOEND(dt)) {
rc = strcpy_s(str, MAXDATELEN + 1, LATE);
securec_check(rc, "\0", "\0");
} else {
/* shouldn't happen */
ereport(ERROR,
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_NTH_VALUE), errmsg("invalid argument for EncodeSpecialTimestamp")));
}
}
Datum now(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentTransactionStartTimestamp());
}
Datum statement_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentStmtsysTimestamp());
}
Datum clock_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentTimestamp());
}
Datum pg_system_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentStmtsysTimestamp());
}
Datum pg_postmaster_start_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(t_thrd.time_cxt.pg_start_time);
}
Datum get_node_stat_reset_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(g_instance.stat_cxt.NodeStatResetTime);
}
Datum pg_conf_load_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(t_thrd.time_cxt.pg_reload_time);
}
/*
* GetCurrentTimestamp -- get the current operating system time
*
* Result is in the form of a TimestampTz value, and is expressed to the
* full precision of the gettimeofday() syscall
*/
TimestampTz GetCurrentTimestamp(void)
{
TimestampTz result;
struct timeval tp;
gettimeofday(&tp, NULL);
result = (TimestampTz)tp.tv_sec - ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result = (result * USECS_PER_SEC) + tp.tv_usec;
#else
result = result + (tp.tv_usec / 1000000.0);
#endif
return result;
}
/*
* TimestampDifference -- convert the difference between two timestamps
* into integer seconds and microseconds
*
* Both inputs must be ordinary finite timestamps (in current usage,
* they'll be results from GetCurrentTimestamp()).
*
* We expect start_time <= stop_time. If not, we return zeroes; for current
* callers there is no need to be tense about which way division rounds on
* negative inputs.
*/
void TimestampDifference(TimestampTz start_time, TimestampTz stop_time, long* secs, int* microsecs)
{
TimestampTz diff = stop_time - start_time;
if (diff <= 0) {
*secs = 0;
*microsecs = 0;
} else {
#ifdef HAVE_INT64_TIMESTAMP
*secs = (long)(diff / USECS_PER_SEC);
*microsecs = (int)(diff % USECS_PER_SEC);
#else
*secs = (long)diff;
*microsecs = (int)((diff - *secs) * 1000000.0);
#endif
}
}
/* Compute time interval and milliseconds as result */
int ComputeTimeStamp(TimestampTz start)
{
TimestampTz end = GetCurrentTimestamp();
long secs = 0;
int usecs = 0;
int ms;
TimestampDifference(start, end, &secs, &usecs);
ms = ((int)secs * 1000) + (usecs / 1000);
return ms;
}
/*
* TimestampDifferenceExceeds -- report whether the difference between two
* timestamps is >= a threshold (expressed in milliseconds)
*
* Both inputs must be ordinary finite timestamps (in current usage,
* they'll be results from GetCurrentTimestamp()).
*/
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
{
TimestampTz diff = stop_time - start_time;
#ifdef HAVE_INT64_TIMESTAMP
return (diff >= msec * INT64CONST(1000));
#else
return (diff * 1000.0 >= msec);
#endif
}
/*
* Convert a time_t to TimestampTz.
*
* We do not use time_t internally in openGauss, but this is provided for use
* by functions that need to interpret, say, a stat(2) result.
*
* To avoid having the function's ABI vary depending on the width of time_t,
* we declare the argument as pg_time_t, which is cast-compatible with
* time_t but always 64 bits wide (unless the platform has no 64-bit type).
* This detail should be invisible to callers, at least at source code level.
*/
TimestampTz time_t_to_timestamptz(pg_time_t tm)
{
TimestampTz result;
result = (TimestampTz)tm - ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result *= USECS_PER_SEC;
#endif
return result;
}
/*
* Convert a TimestampTz to time_t.
*
* This too is just marginally useful, but some places need it.
*
* To avoid having the function's ABI vary depending on the width of time_t,
* we declare the result as pg_time_t, which is cast-compatible with
* time_t but always 64 bits wide (unless the platform has no 64-bit type).
* This detail should be invisible to callers, at least at source code level.
*/
pg_time_t timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
#ifdef HAVE_INT64_TIMESTAMP
result = (pg_time_t)(t / USECS_PER_SEC + ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#else
result = (pg_time_t)(t + ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#endif
return result;
}
/*
* Produce a C-string representation of a TimestampTz.
*
* This is mostly for use in emitting messages. The primary difference
* from timestamptz_out is that we force the output format to ISO. Note
* also that the result is in a static buffer, not pstrdup'd.
*/
const char* timestamptz_to_str(TimestampTz t)
{
static THR_LOCAL char buf[MAXDATELEN + 1];
int tz;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
const char* tzn = NULL;
if (TIMESTAMP_NOT_FINITE(t))
EncodeSpecialTimestamp(t, buf);
else if (timestamp2tm(t, &tz, tm, &fsec, &tzn, NULL) == 0)
EncodeDateTime(tm, fsec, true, tz, tzn, USE_ISO_DATES, buf);
else
strlcpy(buf, "(timestamp out of range)", sizeof(buf));
return buf;
}
void dt2time(Timestamp jd, int* hour, int* min, int* sec, fsec_t* fsec)
{
TimeOffset time;
time = jd;
#ifdef HAVE_INT64_TIMESTAMP
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
#else
*hour = time / SECS_PER_HOUR;
time -= (*hour) * SECS_PER_HOUR;
*min = time / SECS_PER_MINUTE;
time -= (*min) * SECS_PER_MINUTE;
*sec = time;
*fsec = time - *sec;
#endif
} /* dt2time() */
/*
* timestamp2tm() - Convert timestamp data type to POSIX time structure.
*
* Note that year is _not_ 1900-based, but is an explicit full value.
* Also, month is one-based, _not_ zero-based.
* Returns:
* 0 on success
* -1 on out of range
*
* If attimezone is NULL, the global timezone (including possibly brute forced
* timezone) will be used.
*/
int timestamp2tm(Timestamp dt, int* tzp, struct pg_tm* tm, fsec_t* fsec, const char** tzn, pg_tz* attimezone)
{
Timestamp date;
Timestamp time;
pg_time_t utime;
/*
* If u_sess->time_cxt.HasCTZSet is true then we have a brute force time zone specified. Go
* ahead and rotate to the local time zone since we will later bypass any
* calls which adjust the tm fields.
*/
if (attimezone == NULL && u_sess->time_cxt.HasCTZSet && tzp != NULL) {
#ifdef HAVE_INT64_TIMESTAMP
dt -= u_sess->time_cxt.CTimeZone * USECS_PER_SEC;
#else
dt -= u_sess->time_cxt.CTimeZone;
#endif
}
#ifdef HAVE_INT64_TIMESTAMP
time = dt;
TMODULO(time, date, USECS_PER_DAY);
if (time < INT64CONST(0)) {
time += USECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp)INT_MAX)
return -1;
j2date((int)date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#else
time = dt;
TMODULO(time, date, (double)SECS_PER_DAY);
if (time < 0) {
time += SECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
recalc_d:
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp)INT_MAX)
return -1;
j2date((int)date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
recalc_t:
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
*fsec = TSROUND(*fsec);
/* roundoff may need to propagate to higher-order fields */
if (*fsec >= 1.0) {
time = ceil(time);
if (time >= (double)SECS_PER_DAY) {
time = 0;
date += 1;
goto recalc_d;
}
goto recalc_t;
}
#endif
/* Done if no TZ conversion wanted */
if (tzp == NULL) {
tm->tm_isdst = -1;
tm->tm_gmtoff = 0;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
return 0;
}
/*
* We have a brute force time zone per SQL99? Then use it without change
* since we have already rotated to the time zone.
*/
if (attimezone == NULL && u_sess->time_cxt.HasCTZSet) {
*tzp = u_sess->time_cxt.CTimeZone;
tm->tm_isdst = 0;
tm->tm_gmtoff = u_sess->time_cxt.CTimeZone;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
return 0;
}
/*
* If the time falls within the range of pg_time_t, use pg_localtime() to
* rotate to the local time zone.
*
* First, convert to an integral timestamp, avoiding possibly
* platform-specific roundoff-in-wrong-direction errors, and adjust to
* Unix epoch. Then see if we can convert to pg_time_t without loss. This
* coding avoids hardwiring any assumptions about the width of pg_time_t,
* so it should behave sanely on machines without int64.
*/
#ifdef HAVE_INT64_TIMESTAMP
dt = (dt - *fsec) / USECS_PER_SEC + (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
#else
dt = rint(dt - *fsec + (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#endif
utime = (pg_time_t)dt;
if ((Timestamp)utime == dt) {
struct pg_tm* tx = pg_localtime(&utime, attimezone ? attimezone : session_timezone);
tm->tm_year = tx->tm_year + 1900;
tm->tm_mon = tx->tm_mon + 1;
tm->tm_mday = tx->tm_mday;
tm->tm_hour = tx->tm_hour;
tm->tm_min = tx->tm_min;
tm->tm_sec = tx->tm_sec;
tm->tm_isdst = tx->tm_isdst;
tm->tm_gmtoff = tx->tm_gmtoff;
tm->tm_zone = tx->tm_zone;
*tzp = -tm->tm_gmtoff;
if (tzn != NULL)
*tzn = tm->tm_zone;
} else {
/*
* When out of range of pg_time_t, treat as GMT
*/
*tzp = 0;
/* Mark this as *no* time zone available */
tm->tm_isdst = -1;
tm->tm_gmtoff = 0;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
}
return 0;
}
/* tm2timestamp()
* Convert a tm structure to a timestamp data type.
* Note that year is _not_ 1900-based, but is an explicit full value.
* Also, month is one-based, _not_ zero-based.
*
* Returns -1 on failure (value out of range).
*/
int tm2timestamp(struct pg_tm* tm, const fsec_t fsec, const int* tzp, Timestamp* result)
{
TimeOffset date;
TimeOffset time;
/* Julian day routines are not correct for negative Julian days */
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday)) {
*result = 0; /* keep compiler quiet */
return -1;
}
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
#ifdef HAVE_INT64_TIMESTAMP
*result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != date) {
*result = 0; /* keep compiler quiet */
return -1;
}
/* check for just-barely overflow (okay except time-of-day wraps) */
/* caution: we want to allow 1999-12-31 24:00:00 */
if ((*result < 0 && date > 0) || (*result > 0 && date < -1)) {
*result = 0; /* keep compiler quiet */
return -1;
}
#else
*result = date * SECS_PER_DAY + time;
#endif
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
return 0;
}
/* interval2tm()
* Convert a interval data type to a tm structure.
*/
int interval2tm(Interval span, struct pg_tm* tm, fsec_t* fsec)
{
TimeOffset time;
TimeOffset tfrac;
tm->tm_year = span.month / MONTHS_PER_YEAR;
tm->tm_mon = span.month % MONTHS_PER_YEAR;
tm->tm_mday = span.day;
time = span.time;
#ifdef HAVE_INT64_TIMESTAMP
tfrac = time / USECS_PER_HOUR;
time -= tfrac * USECS_PER_HOUR;
tm->tm_hour = tfrac; /* could overflow ... */
tfrac = time / USECS_PER_MINUTE;
time -= tfrac * USECS_PER_MINUTE;
tm->tm_min = tfrac;
tfrac = time / USECS_PER_SEC;
*fsec = time - (tfrac * USECS_PER_SEC);
tm->tm_sec = tfrac;
#else
recalc:
TMODULO(time, tfrac, (double)SECS_PER_HOUR);
tm->tm_hour = tfrac; /* could overflow ... */
TMODULO(time, tfrac, (double)SECS_PER_MINUTE);
tm->tm_min = tfrac;
TMODULO(time, tfrac, 1.0);
tm->tm_sec = tfrac;
time = TSROUND(time);
/* roundoff may need to propagate to higher-order fields */
if (time >= 1.0) {
time = ceil(span.time);
goto recalc;
}
*fsec = time;
#endif
return 0;
}
int tm2interval(struct pg_tm* tm, fsec_t fsec, Interval* span)
{
span->month = tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon;
span->day = tm->tm_mday;
#ifdef HAVE_INT64_TIMESTAMP
span->time =
(((((tm->tm_hour * INT64CONST(60)) + tm->tm_min) * INT64CONST(60)) + tm->tm_sec) * USECS_PER_SEC) + fsec;
#else
span->time = (((tm->tm_hour * (double)MINS_PER_HOUR) + tm->tm_min) * (double)SECS_PER_MINUTE) + tm->tm_sec + fsec;
#endif
return 0;
}
static inline TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
#else
return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
#endif
}
static Timestamp dt2local(Timestamp dt, int tz)
{
#ifdef HAVE_INT64_TIMESTAMP
dt -= (tz * USECS_PER_SEC);
#else
dt -= tz;
#endif
return dt;
}
/*****************************************************************************
* PUBLIC ROUTINES *
*****************************************************************************/
Datum timestamp_finite(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
PG_RETURN_BOOL(!TIMESTAMP_NOT_FINITE(timestamp));
}
Datum interval_finite(PG_FUNCTION_ARGS)
{
PG_RETURN_BOOL(true);
}
/* ----------------------------------------------------------
* Relational operators for timestamp.
* --------------------------------------------------------- */
void GetEpochTime(struct pg_tm* tm)
{
struct pg_tm* t0;
pg_time_t epoch = 0;
t0 = pg_gmtime(&epoch);
tm->tm_year = t0->tm_year;
tm->tm_mon = t0->tm_mon;
tm->tm_mday = t0->tm_mday;
tm->tm_hour = t0->tm_hour;
tm->tm_min = t0->tm_min;
tm->tm_sec = t0->tm_sec;
tm->tm_year += 1900;
tm->tm_mon++;
}
Timestamp SetEpochTimestamp(void)
{
Timestamp dt;
struct pg_tm tt, *tm = &tt;
GetEpochTime(tm);
/* we don't bother to test for failure ... */
tm2timestamp(tm, 0, NULL, &dt);
return dt;
} /* SetEpochTimestamp() */
/*
* We are currently sharing some code between timestamp and timestamptz.
* The comparison functions are among them. - thomas 2001-09-25
*
* timestamp_relop - is timestamp1 relop timestamp2
*
* collate invalid timestamp at the end
*/
int timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
{
#ifdef HAVE_INT64_TIMESTAMP
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
#else
/*
* When using float representation, we have to be wary of NaNs.
*
* We consider all NANs to be equal and larger than any non-NAN. This is
* somewhat arbitrary; the important thing is to have a consistent sort
* order.
*/
if (isnan(dt1)) {
if (isnan(dt2))
return 0; /* NAN = NAN */
else
return 1; /* NAN > non-NAN */
} else if (isnan(dt2)) {
return -1; /* non-NAN < NAN */
} else {
if (dt1 > dt2)
return 1;
else if (dt1 < dt2)
return -1;
else
return 0;
}
#endif
}
Datum timestamp_eq(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum timestamp_ne(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum timestamp_lt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum timestamp_gt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum timestamp_le(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum timestamp_ge(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum timestamp_cmp(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
/* note: this is used for timestamptz also */
static int timestamp_fastcmp(Datum x, Datum y, SortSupport ssup)
{
Timestamp a = DatumGetTimestamp(x);
Timestamp b = DatumGetTimestamp(y);
return timestamp_cmp_internal(a, b);
}
Datum timestamp_sortsupport(PG_FUNCTION_ARGS)
{
SortSupport ssup = (SortSupport)PG_GETARG_POINTER(0);
ssup->comparator = timestamp_fastcmp;
PG_RETURN_VOID();
}
Datum timestamp_hash(PG_FUNCTION_ARGS)
{
/* We can use either hashint8 or hashfloat8 directly */
#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
#else
return hashfloat8(fcinfo);
#endif
}
/*
* Crosstype comparison functions for timestamp vs timestamptz
*/
Datum timestamp_eq_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum timestamp_ne_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum timestamp_lt_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum timestamp_gt_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum timestamp_le_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum timestamp_ge_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum timestamp_cmp_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
Datum timestamptz_eq_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum timestamptz_ne_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum timestamptz_lt_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum timestamptz_gt_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum timestamptz_le_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum timestamptz_ge_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
/*
* interval_relop - is interval1 relop interval2
*
* collate invalid interval at the end
*/
static inline TimeOffset interval_cmp_value(const Interval* interval)
{
TimeOffset span;
span = interval->time;
#ifdef HAVE_INT64_TIMESTAMP
span += interval->month * INT64CONST(30) * USECS_PER_DAY;
span += interval->day * INT64CONST(24) * USECS_PER_HOUR;
#else
span += interval->month * ((double)DAYS_PER_MONTH * SECS_PER_DAY);
span += interval->day * ((double)HOURS_PER_DAY * SECS_PER_HOUR);
#endif
return span;
}
int interval_cmp_internal(Interval* interval1, Interval* interval2)
{
TimeOffset span1 = interval_cmp_value(interval1);
TimeOffset span2 = interval_cmp_value(interval2);
return ((span1 < span2) ? -1 : (span1 > span2) ? 1 : 0);
}
Datum interval_eq_withhead(PG_FUNCTION_ARGS)
{
Interval* interval1 = (Interval*)((char*)PG_GETARG_DATUM(0) + VARHDRSZ_SHORT);
Interval* interval2 = (Interval*)((char*)PG_GETARG_DATUM(1) + VARHDRSZ_SHORT);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0);
}
Datum interval_eq(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0);
}
Datum interval_ne(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) != 0);
}
Datum interval_lt(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) < 0);
}
Datum interval_gt(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) > 0);
}
Datum interval_le(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) <= 0);
}
Datum interval_ge(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) >= 0);
}
Datum interval_cmp(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_INT32(interval_cmp_internal(interval1, interval2));
}
/*
* Hashing for intervals
*
* We must produce equal hashvals for values that interval_cmp_internal()
* considers equal. So, compute the net span the same way it does,
* and then hash that, using either int64 or float8 hashing.
*/
Datum interval_hash(PG_FUNCTION_ARGS)
{
Interval* interval = PG_GETARG_INTERVAL_P(0);
TimeOffset span = interval_cmp_value(interval);
#ifdef HAVE_INT64_TIMESTAMP
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span));
#else
return DirectFunctionCall1(hashfloat8, Float8GetDatumFast(span));
#endif
}
/* overlaps_timestamp() --- implements the SQL92 OVERLAPS operator.
*
* Algorithm is per SQL92 spec. This is much harder than you'd think
* because the spec requires us to deliver a non-null answer in some cases
* where some of the inputs are null.
*/
Datum overlaps_timestamp(PG_FUNCTION_ARGS)
{
/*
* The arguments are Timestamps, but we leave them as generic Datums to
* avoid unnecessary conversions between value and reference forms --- not
* to mention possible dereferences of null pointers.
*/
Datum ts1 = PG_GETARG_DATUM(0);
Datum te1 = PG_GETARG_DATUM(1);
Datum ts2 = PG_GETARG_DATUM(2);
Datum te2 = PG_GETARG_DATUM(3);
bool ts1IsNull = PG_ARGISNULL(0);
bool te1IsNull = PG_ARGISNULL(1);
bool ts2IsNull = PG_ARGISNULL(2);
bool te2IsNull = PG_ARGISNULL(3);
#define TIMESTAMP_GT(t1, t2) DatumGetBool(DirectFunctionCall2(timestamp_gt, t1, t2))
#define TIMESTAMP_LT(t1, t2) DatumGetBool(DirectFunctionCall2(timestamp_lt, t1, t2))
/*
* If both endpoints of interval 1 are null, the result is null (unknown).
* If just one endpoint is null, take ts1 as the non-null one. Otherwise,
* take ts1 as the lesser endpoint.
*/
if (ts1IsNull) {
if (te1IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts1 = te1;
te1IsNull = true;
} else if (!te1IsNull) {
if (TIMESTAMP_GT(ts1, te1)) {
Datum tt = ts1;
ts1 = te1;
te1 = tt;
}
}
/* Likewise for interval 2. */
if (ts2IsNull) {
if (te2IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts2 = te2;
te2IsNull = true;
} else if (!te2IsNull) {
if (TIMESTAMP_GT(ts2, te2)) {
Datum tt = ts2;
ts2 = te2;
te2 = tt;
}
}
/*
* At this point neither ts1 nor ts2 is null, so we can consider three
* cases: ts1 > ts2, ts1 < ts2, ts1 = ts2
*/
if (TIMESTAMP_GT(ts1, ts2)) {
/*
* This case is ts1 < te2 OR te1 < te2, which may look redundant but
* in the presence of nulls it's not quite completely so.
*/
if (te2IsNull)
PG_RETURN_NULL();
if (TIMESTAMP_LT(ts1, te2))
PG_RETURN_BOOL(true);
if (te1IsNull)
PG_RETURN_NULL();
/*
* If te1 is not null then we had ts1 <= te1 above, and we just found
* ts1 >= te2, hence te1 >= te2.
*/
PG_RETURN_BOOL(false);
} else if (TIMESTAMP_LT(ts1, ts2)) {
/* This case is ts2 < te1 OR te2 < te1 */
if (te1IsNull)
PG_RETURN_NULL();
if (TIMESTAMP_LT(ts2, te1))
PG_RETURN_BOOL(true);
if (te2IsNull)
PG_RETURN_NULL();
/*
* If te2 is not null then we had ts2 <= te2 above, and we just found
* ts2 >= te1, hence te2 >= te1.
*/
PG_RETURN_BOOL(false);
} else {
/*
* For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a
* rather silly way of saying "true if both are nonnull, else null".
*/
if (te1IsNull || te2IsNull)
PG_RETURN_NULL();
PG_RETURN_BOOL(true);
}
#undef TIMESTAMP_GT
#undef TIMESTAMP_LT
}
/* ----------------------------------------------------------
* "Arithmetic" operators on date/times.
* --------------------------------------------------------- */
Datum timestamp_smaller(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
/* use timestamp_cmp_internal to be sure this agrees with comparisons */
if (timestamp_cmp_internal(dt1, dt2) < 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum timestamp_larger(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
if (timestamp_cmp_internal(dt1, dt2) > 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum timestamp_mi(Timestamp dt1, Timestamp dt2)
{
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2))
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("cannot subtract infinite timestamps")));
result->time = dt1 - dt2;
result->month = 0;
result->day = 0;
/* ----------
* This is wrong, but removing it breaks a lot of regression tests.
* For example:
*
* test=> SET timezone = 'EST5EDT';
* test=> SELECT
* test-> ('2005-10-30 13:22:00-05'::timestamptz -
* test(> '2005-10-29 13:22:00-04'::timestamptz);
* ?column?
* ----------------
* 1 day 01:00:00
* (1 row)
*
* so adding that to the first timestamp gets:
*
* test=> SELECT
* test-> ('2005-10-29 13:22:00-04'::timestamptz +
* test(> ('2005-10-30 13:22:00-05'::timestamptz -
* test(> '2005-10-29 13:22:00-04'::timestamptz)) at time zone 'EST';
* timezone
* --------------------
* 2005-10-30 14:22:00
* (1 row)
* ----------
*/
result = DatumGetIntervalP(DirectFunctionCall1(interval_justify_hours, IntervalPGetDatum(result)));
PG_RETURN_INTERVAL_P(result);
}
Datum timestamp_mi(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
return timestamp_mi(dt1, dt2);
}
/*
* interval_justify_interval()
*
* Adjust interval so 'month', 'day', and 'time' portions are within
* customary bounds. Specifically:
*
* 0 <= abs(time) < 24 hours
* 0 <= abs(day) < 30 days
*
* Also, the sign bit on all three fields is made equal, so either
* all three fields are negative or all are positive.
*/
Datum interval_justify_interval(PG_FUNCTION_ARGS)
{
Interval* span = PG_GETARG_INTERVAL_P(0);
Interval* result = NULL;
TimeOffset wholeday;
int32 wholemonth;
result = (Interval*)palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double)SECS_PER_DAY);
#endif
if (pg_add_s32_overflow(result->day, wholeday, &result->day)) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
wholemonth = result->day / DAYS_PER_MONTH;
result->day -= wholemonth * DAYS_PER_MONTH;
result->month += wholemonth;
if (result->month > 0 && (result->day < 0 || (result->day == 0 && result->time < 0))) {
result->day += DAYS_PER_MONTH;
result->month--;
} else if (result->month < 0 && (result->day > 0 || (result->day == 0 && result->time > 0))) {
result->day -= DAYS_PER_MONTH;
result->month++;
}
if (result->day > 0 && result->time < 0) {
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double)SECS_PER_DAY;
#endif
result->day--;
} else if (result->day < 0 && result->time > 0) {
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double)SECS_PER_DAY;
#endif
result->day++;
}
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_hours()
*
* Adjust interval so 'time' contains less than a whole day, adding
* the excess to 'day'. This is useful for
* situations (such as non-TZ) where '1 day' = '24 hours' is valid,
* e.g. interval subtraction and division.
*/
Datum interval_justify_hours(PG_FUNCTION_ARGS)
{
Interval* span = PG_GETARG_INTERVAL_P(0);
Interval* result = NULL;
TimeOffset wholeday;
result = (Interval*)palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double)SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
if (result->day > 0 && result->time < 0) {
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double)SECS_PER_DAY;
#endif
result->day--;
} else if (result->day < 0 && result->time > 0) {
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double)SECS_PER_DAY;
#endif
result->day++;
}
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_days()
*
* Adjust interval so 'day' contains less than 30 days, adding
* the excess to 'month'.
*/
Datum interval_justify_days(PG_FUNCTION_ARGS)
{
Interval* span = PG_GETARG_INTERVAL_P(0);
Interval* result = NULL;
int32 wholemonth;
result = (Interval*)palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
wholemonth = result->day / DAYS_PER_MONTH;
result->day -= wholemonth * DAYS_PER_MONTH;
result->month += wholemonth;
if (result->month > 0 && result->day < 0) {
result->day += DAYS_PER_MONTH;
result->month--;
} else if (result->month < 0 && result->day > 0) {
result->day -= DAYS_PER_MONTH;
result->month++;
}
PG_RETURN_INTERVAL_P(result);
}
Datum timestamp_pl_interval(Timestamp timestamp, const Interval* span)
{
Timestamp result;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else {
if (span->month != 0) {
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
tm->tm_mon += span->month;
if (tm->tm_mon > MONTHS_PER_YEAR) {
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
} else if (tm->tm_mon < 1) {
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
/* adjust for end of month boundary problems... */
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
if (span->day != 0) {
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
int julian;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
/* Add days by converting to and from julian */
julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day;
j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
timestamp += span->time;
result = timestamp;
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamp_pl_interval()
* Add a interval to a timestamp data type.
* Note that interval has provisions for qualitative year/month and day
* units, so try to do the right thing with them.
* To add a month, increment the month, and use the same day of month.
* Then, if the next month has fewer days, set the day of month
* to the last day of month.
* To add a day, increment the mday, and use the same time of day.
* Lastly, add in the "quantitative time".
*/
Datum timestamp_pl_interval(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
Interval* span = PG_GETARG_INTERVAL_P(1);
return timestamp_pl_interval(timestamp, span);
}
Datum timestamp_mi_interval(Timestamp timestamp, const Interval* span)
{
Interval tspan;
tspan.month = -span->month;
tspan.day = -span->day;
tspan.time = -span->time;
return DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(timestamp), PointerGetDatum(&tspan));
}
Datum timestamp_mi_interval(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
Interval* span = PG_GETARG_INTERVAL_P(1);
return timestamp_mi_interval(timestamp, span);
}
/* timestamptz_pl_interval()
* Add a interval to a timestamp with time zone data type.
* Note that interval has provisions for qualitative year/month
* units, so try to do the right thing with them.
* To add a month, increment the month, and use the same day of month.
* Then, if the next month has fewer days, set the day of month
* to the last day of month.
* Lastly, add in the "quantitative time".
*/
Datum timestamptz_pl_interval(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Interval* span = PG_GETARG_INTERVAL_P(1);
TimestampTz result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else {
if (span->month != 0) {
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
tm->tm_mon += span->month;
if (tm->tm_mon > MONTHS_PER_YEAR) {
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
} else if (tm->tm_mon < 1) {
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
/* adjust for end of month boundary problems... */
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
if (span->day != 0) {
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
int julian;
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
/* Add days by converting to and from julian */
julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day;
j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
timestamp += span->time;
result = timestamp;
}
PG_RETURN_TIMESTAMP(result);
}
Datum timestamptz_mi_interval(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Interval* span = PG_GETARG_INTERVAL_P(1);
Interval tspan;
tspan.month = -span->month;
tspan.day = -span->day;
tspan.time = -span->time;
return DirectFunctionCall2(timestamptz_pl_interval, TimestampGetDatum(timestamp), PointerGetDatum(&tspan));
}
Datum interval_um(PG_FUNCTION_ARGS)
{
Interval* interval = PG_GETARG_INTERVAL_P(0);
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
result->time = -interval->time;
result->day = -interval->day;
result->month = -interval->month;
PG_RETURN_INTERVAL_P(result);
}
Datum interval_smaller(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
Interval* result = NULL;
/* use interval_cmp_internal to be sure this agrees with comparisons */
if (interval_cmp_internal(interval1, interval2) < 0)
result = interval1;
else
result = interval2;
PG_RETURN_INTERVAL_P(result);
}
Datum interval_larger(PG_FUNCTION_ARGS)
{
Interval* interval1 = PG_GETARG_INTERVAL_P(0);
Interval* interval2 = PG_GETARG_INTERVAL_P(1);
Interval* result = NULL;
if (interval_cmp_internal(interval1, interval2) > 0)
result = interval1;
else
result = interval2;
PG_RETURN_INTERVAL_P(result);
}
Datum interval_pl(PG_FUNCTION_ARGS)
{
Interval* span1 = PG_GETARG_INTERVAL_P(0);
Interval* span2 = PG_GETARG_INTERVAL_P(1);
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
result->month = span1->month + span2->month;
result->day = span1->day + span2->day;
result->time = span1->time + span2->time;
// adjust result's format
interval_result_adjust(result);
PG_RETURN_INTERVAL_P(result);
}
Datum interval_mi(PG_FUNCTION_ARGS)
{
Interval* span1 = PG_GETARG_INTERVAL_P(0);
Interval* span2 = PG_GETARG_INTERVAL_P(1);
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
result->month = span1->month - span2->month;
result->day = span1->day - span2->day;
result->time = span1->time - span2->time;
// adjust result's format
interval_result_adjust(result);
PG_RETURN_INTERVAL_P(result);
}
/*
* There is no interval_abs(): it is unclear what value to return:
* http://archives.postgresql.org/pgsql-general/2009-10/msg01031.php
* http://archives.postgresql.org/pgsql-general/2009-11/msg00041.php
*/
Datum interval_mul(const Interval* span, float8 factor)
{
double month_remainder_days, sec_remainder;
int32 orig_month = span->month, orig_day = span->day;
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
if (isnan(factor) || isinf(factor)) {
/* NaN and Infinity convert process */
INTERVAL_CONVERT_INFINITY_NAN(result);
} else {
float8 ans_month = span->month * factor;
float8 ans_day = span->day * factor;
if (ans_month > (float8)MAX_INT32 || ans_day > (float8)MAX_INT32 ||
ans_month < (float8)(-1 - MAX_INT32) || ans_day < (float8)(-1 - MAX_INT32)) {
ereport(ERROR, (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
errmsg("interval_mul result month: %lf, day: %lf overflow", ans_month, ans_day)));
}
result->month = (int32)ans_month;
result->day = (int32)ans_day;
/*
* The above correctly handles the whole-number part of the month and day
* products, but we have to do something with any fractional part
* resulting when the factor is nonintegral. We cascade the fractions
* down to lower units using the conversion factors DAYS_PER_MONTH and
* SECS_PER_DAY. Note we do NOT cascade up, since we are not forced to do
* so by the representation. The user can choose to cascade up later,
* using justify_hours and/or justify_days.
*/
/*
* Fractional months full days into days.
*
* Floating point calculation are inherently inprecise, so these
* calculations are crafted to produce the most reliable result possible.
* TSROUND() is needed to more accurately produce whole numbers where
* appropriate.
*/
month_remainder_days = (orig_month * factor - result->month) * DAYS_PER_MONTH;
month_remainder_days = TSROUND(month_remainder_days);
sec_remainder =
(orig_day * factor - result->day + month_remainder_days - (int)month_remainder_days) * SECS_PER_DAY;
sec_remainder = TSROUND(sec_remainder);
/*
* Might have 24:00:00 hours due to rounding, or >24 hours because of time
* cascade from months and days. It might still be >24 if the combination
* of cascade and the seconds factor operation itself.
*/
if (Abs(sec_remainder) >= SECS_PER_DAY) {
result->day += (int)(sec_remainder / SECS_PER_DAY);
sec_remainder -= (int)(sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
}
/* cascade units down */
result->day += (int32)month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
#else
result->time = span->time * factor + sec_remainder;
#endif
}
// adjust result's format
interval_result_adjust(result);
PG_RETURN_INTERVAL_P(result);
}
/*
* There is no interval_abs(): it is unclear what value to return:
* http://archives.postgresql.org/pgsql-general/2009-10/msg01031.php
* http://archives.postgresql.org/pgsql-general/2009-11/msg00041.php
*/
Datum interval_mul(PG_FUNCTION_ARGS)
{
Interval* span = PG_GETARG_INTERVAL_P(0);
float8 factor = PG_GETARG_FLOAT8(1);
return interval_mul(span, factor);
}
Datum mul_d_interval(PG_FUNCTION_ARGS)
{
/* Args are float8 and Interval *, but leave them as generic Datum */
Datum factor = PG_GETARG_DATUM(0);
Datum span = PG_GETARG_DATUM(1);
return DirectFunctionCall2(interval_mul, span, factor);
}
Datum interval_div(PG_FUNCTION_ARGS)
{
Interval* span = PG_GETARG_INTERVAL_P(0);
float8 factor = PG_GETARG_FLOAT8(1);
double month_remainder_days, sec_remainder;
int32 orig_month = span->month, orig_day = span->day;
Interval* result = NULL;
result = (Interval*)palloc(sizeof(Interval));
if (factor == 0.0)
ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero")));
if (isnan(factor)) {
/* NaN convert process. It differs from interval_mul to maintain compatibility. */
INTERVAL_CONVERT_INFINITY_NAN(result);
} else {
result->month = (int32)(span->month / factor);
result->day = (int32)(span->day / factor);
/*
* Fractional months full days into days. See comment in interval_mul().
*/
month_remainder_days = (orig_month / factor - result->month) * DAYS_PER_MONTH;
month_remainder_days = TSROUND(month_remainder_days);
sec_remainder =
(orig_day / factor - result->day + month_remainder_days - (int)month_remainder_days) * SECS_PER_DAY;
sec_remainder = TSROUND(sec_remainder);
if (Abs(sec_remainder) >= SECS_PER_DAY) {
result->day += (int)(sec_remainder / SECS_PER_DAY);
sec_remainder -= (int)(sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
}
/* cascade units down */
result->day += (int32)month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
#else
/* See TSROUND comment in interval_mul(). */
result->time = span->time / factor + sec_remainder;
#endif
}
// adjust result's format
interval_result_adjust(result);
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_accum and interval_avg implement the AVG(interval)
#ifdef PGXC
* as well as interval_collect
#endif
*
* The transition datatype for this aggregate is a 2-element array of
* intervals, where the first is the running sum and the second contains
* the number of values so far in its 'time' field. This is a bit ugly
* but it beats inventing a specialized datatype for the purpose.
*/
Datum interval_accum(PG_FUNCTION_ARGS)
{
ArrayType* transarray = PG_GETARG_ARRAYTYPE_P(0);
Interval* newval = PG_GETARG_INTERVAL_P(1);
Datum* transdatums = NULL;
int ndatums;
Interval sumX, N;
Interval* newsum = NULL;
ArrayType* result = NULL;
int rc = 0;
deconstruct_array(transarray, INTERVALOID, sizeof(Interval), false, 'd', &transdatums, NULL, &ndatums);
if (ndatums != 2)
ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("expected 2-element interval array")));
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
rc = memcpy_s((void*)&sumX, sizeof(Interval), DatumGetPointer(transdatums[0]), sizeof(Interval));
securec_check(rc, "\0", "\0");
rc = memcpy_s((void*)&N, sizeof(Interval), DatumGetPointer(transdatums[1]), sizeof(Interval));
securec_check(rc, "\0", "\0");
newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl, IntervalPGetDatum(&sumX), IntervalPGetDatum(newval)));
N.time += 1;
transdatums[0] = IntervalPGetDatum(newsum);
transdatums[1] = IntervalPGetDatum(&N);
result = construct_array(transdatums, 2, INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
Datum interval_avg(PG_FUNCTION_ARGS)
{
ArrayType* transarray = PG_GETARG_ARRAYTYPE_P(0);
Datum* transdatums = NULL;
int ndatums;
Interval sumX, N;
deconstruct_array(transarray, INTERVALOID, sizeof(Interval), false, 'd', &transdatums, NULL, &ndatums);
if (ndatums != 2)
ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("expected 2-element interval array")));
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
errno_t rc = memcpy_s((void*)&sumX, sizeof(Interval), DatumGetPointer(transdatums[0]), sizeof(Interval));
securec_check(rc, "", "");
rc = memcpy_s((void*)&N, sizeof(Interval), DatumGetPointer(transdatums[1]), sizeof(Interval));
securec_check(rc, "", "");
/* SQL92 defines AVG of no values to be NULL */
if (N.time == 0)
PG_RETURN_NULL();
return DirectFunctionCall2(interval_div, IntervalPGetDatum(&sumX), Float8GetDatum(N.time));
}
/*
* @Description: Calculate the difference of days between two date.
* may be positive or negative.
* @in tm : timestamp1 - timestamp2.
* @in tm1 : timestmap1
* @in tm2 : timestamp2
*/
static int daydiff_timestamp(const struct pg_tm* tm, const struct pg_tm* tm1, const struct pg_tm* tm2, bool day_fix)
{
int result = 0;
int tm1_days_of_year = 0, tm2_days_of_year = 0;
int i = 0, j = 0, k = 0;
if (tm1 == NULL || tm2 == NULL || tm == NULL) {
ereport(ERROR,
(errmodule(MOD_FUNCTION),
errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("the input timestamp must not be null.")));
return 0;
}
/*
* if tm2 > tm1, then
* tm1_days_of_year calc how many days have passed since the beginning of the tm1 year
* tm2_days_of_year calc how many days have passed since the beginning of the tm1 year
* if tm1 > tm2, then
* tm1_days_of_year calc how many days have passed since the beginning of the tm2 year
* tm2_days_of_year calc how many days have passed since the beginning of the tm2 year
*/
if (tm->tm_year > 0 || tm->tm_mon > 0 || tm->tm_mday > 0) {
i = tm2->tm_mon - 1;
while (i > 0) {
i = i - 1;
tm2_days_of_year += day_tab[isleap(tm2->tm_year)][i];
}
tm2_days_of_year += tm2->tm_mday;
j = tm1->tm_year - tm2->tm_year;
while (j > 0) {
j = j - 1;
tm1_days_of_year += isleap(j + tm2->tm_year) ? DAYS_PER_LEAP_YEAR : DAYS_PER_COMMON_YEAR;
}
k = tm1->tm_mon - 1;
while (k > 0) {
k = k - 1;
tm1_days_of_year += day_tab[isleap(tm1->tm_year)][k];
}
tm1_days_of_year += tm1->tm_mday;
} else {
i = tm1->tm_mon - 1;
while (i > 0) {
i = i - 1;
tm1_days_of_year += day_tab[isleap(tm1->tm_year)][i];
}
tm1_days_of_year += tm1->tm_mday;
j = tm2->tm_year - tm1->tm_year;
while (j > 0) {
j = j - 1;
tm2_days_of_year += isleap(j + tm1->tm_year) ? DAYS_PER_LEAP_YEAR : DAYS_PER_COMMON_YEAR;
}
k = tm2->tm_mon - 1;
while (k > 0) {
k = k - 1;
tm2_days_of_year += day_tab[isleap(tm2->tm_year)][k];
}
tm2_days_of_year += tm2->tm_mday;
}
result = tm1_days_of_year - tm2_days_of_year;
if (!day_fix) {
return result;
}
int tm1_secs_of_day = tm1->tm_hour * 60 * 60 + tm1->tm_min * 60 + tm1->tm_sec;
int tm2_secs_of_day = tm2->tm_hour * 60 * 60 + tm2->tm_min * 60 + tm2->tm_sec;
if (result < 0 && tm1_secs_of_day > tm2_secs_of_day) {
return result + 1;
} else if (result > 0 && tm1_secs_of_day < tm2_secs_of_day) {
return result - 1;
}
return result;
}
/* timestamp_diff()
* Calculate the difference of timestamp with time zone
* while retaining units fields.
*/
Datum timestamp_diff(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
TimestampTz dt1 = PG_GETARG_TIMESTAMP(2);
TimestampTz dt2 = PG_GETARG_TIMESTAMP(1);
int64 result = PointerGetDatum(0);
result = timestamp_diff_internal(units, dt1, dt2);
PG_RETURN_INT64(result);
}
int64 timestamp_diff_internal(text *units, TimestampTz dt1, TimestampTz dt2, bool day_fix)
{
char* lowunits = NULL;
int64 result = PointerGetDatum(0);
int64 sec_result;
fsec_t fsec, fsec1, fsec2;
struct pg_tm tt, *tm = &tt;
struct pg_tm tt1, *tm1 = &tt1;
struct pg_tm tt2, *tm2 = &tt2;
int type, val, tz1, tz2;
/* calculate the difference between two timestamp */
if (timestamp2tm(dt1, &tz1, tm1, &fsec1, NULL, NULL) == 0 &&
timestamp2tm(dt2, &tz2, tm2, &fsec2, NULL, NULL) == 0) {
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
timestamp_CalculateFields(&dt1, &dt2, &fsec, tm, tm1, tm2);
} else
ereport(ERROR,
(errmodule(MOD_FUNCTION),
errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range, negative Julian days is not supported")));
/* decode timestamp_units */
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS) {
switch (val) {
case DTK_YEAR:
result = tm->tm_year;
break;
case DTK_MONTH:
result = tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon) / 3;
break;
case DTK_DAY:
result = daydiff_timestamp(tm, tm1, tm2, day_fix);
break;
case DTK_WEEK:
result = daydiff_timestamp(tm, tm1, tm2, day_fix) / 7;
break;
case DTK_HOUR:
#ifdef HAVE_INT64_TIMESTAMP
result = daydiff_timestamp(tm, tm1, tm2, day_fix) * INT64CONST(24) + tm->tm_hour;
#else
result = daydiff_timestamp(tm, tm1, tm2, day_fix) * HOURS_PER_DAY + tm->tm_hour;
#endif
break;
case DTK_MINUTE: {
#ifdef HAVE_INT64_TIMESTAMP
result = (daydiff_timestamp(tm, tm1, tm2, day_fix) * INT64CONST(24) + tm->tm_hour) *
INT64CONST(60) + tm->tm_min;
#else
result = (daydiff_timestamp(tm, tm1, tm2, day_fix) * HOURS_PER_DAY + tm->tm_hour) *
(double)MINS_PER_HOUR + tm->tm_min;
#endif
} break;
case DTK_SECOND: {
#ifdef HAVE_INT64_TIMESTAMP
result = ((daydiff_timestamp(tm, tm1, tm2, day_fix) * INT64CONST(24) + tm->tm_hour) *
INT64CONST(60) + tm->tm_min) *
INT64CONST(60) + tm->tm_sec;
#else
result = ((daydiff_timestamp(tm, tm1, tm2, day_fix) * HOURS_PER_DAY + tm->tm_hour) *
(double)MINS_PER_HOUR + tm->tm_min) *
(double)SECS_PER_MINUTE + tm->tm_sec;
#endif
} break;
case DTK_MICROSEC:
/*
* max timestamp is 294276AD, min timestamp is 4713BC,
* if timestampdiff function output in seconds, it will not integer overflow.
* but if function output in microseconds, integer overflow will occur.
*/
{
#ifdef HAVE_INT64_TIMESTAMP
sec_result = ((daydiff_timestamp(tm, tm1, tm2, day_fix) * INT64CONST(24) + tm->tm_hour) *
INT64CONST(60) + tm->tm_min) * INT64CONST(60) +
tm->tm_sec;
if (unlikely((int128)sec_result * INT64CONST(1000000) > (int128)INT64_MAX ||
(int128)sec_result * INT64CONST(1000000) + (int128)fsec > (int128)INT64_MAX ||
(int128)sec_result * INT64CONST(1000000) < (int128)INT64_MIN ||
(int128)sec_result * INT64CONST(1000000) + (int128)fsec < (int128)INT64_MIN)) {
ereport(ERROR,
(errmodule(MOD_FUNCTION),
errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("The result of timestampdiff out of range.")));
}
result = sec_result * INT64CONST(1000000) + fsec;
#else
sec_result = ((daydiff_timestamp(tm, tm1, tm2, day_fix) * HOURS_PER_DAY + tm->tm_hour) *
(double)MINS_PER_HOUR + tm->tm_min) *
(double)SECS_PER_MINUTE + tm->tm_sec;
if (unlikely((int128)sec_result * (double)USECS_PER_SEC > (int128)INT64_MAX ||
(int128)sec_result * (double)USECS_PER_SEC + (int128)fsec > (int128)INT64_MAX ||
(int128)sec_result * (double)USECS_PER_SEC < (int128)INT64_MIN ||
(int128)sec_result * (double)USECS_PER_SEC + (int128)fsec < (int128)INT64_MIN)) {
ereport(ERROR,
(errmodule(MOD_FUNCTION),
errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("The result of timestampdiff out of range.")));
}
result = sec_result * (double)USECS_PER_SEC + fsec;
#endif
}
break;
default:
ereport(ERROR,
(errmodule(MOD_FUNCTION),
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported", lowunits)));
}
} else {
ereport(ERROR,
(errmodule(MOD_FUNCTION),
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized", lowunits)));
}
return result;
}
/* timestamp_age()
* Calculate time difference while retaining year/month fields.
* Note that this does not result in an accurate absolute time span
* since year and month are out of context once the arithmetic
* is done.
*/
Datum timestamp_age(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Interval* result = NULL;
fsec_t fsec, fsec1, fsec2;
struct pg_tm tt, *tm = &tt;
struct pg_tm tt1, *tm1 = &tt1;
struct pg_tm tt2, *tm2 = &tt2;
result = (Interval*)palloc(sizeof(Interval));
if (timestamp2tm(dt1, NULL, tm1, &fsec1, NULL, NULL) == 0 &&
timestamp2tm(dt2, NULL, tm2, &fsec2, NULL, NULL) == 0) {
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
timestamp_CalculateFields(&dt1, &dt2, &fsec, tm, tm1, tm2);
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range")));
} else
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
PG_RETURN_INTERVAL_P(result);
}
/* timestamptz_age()
* Calculate time difference while retaining year/month fields.
* Note that this does not result in an accurate absolute time span
* since year and month are out of context once the arithmetic
* is done.
*/
Datum timestamptz_age(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
Interval* result = NULL;
fsec_t fsec, fsec1, fsec2;
struct pg_tm tt, *tm = &tt;
struct pg_tm tt1, *tm1 = &tt1;
struct pg_tm tt2, *tm2 = &tt2;
int tz1;
int tz2;
result = (Interval*)palloc(sizeof(Interval));
if (timestamp2tm(dt1, &tz1, tm1, &fsec1, NULL, NULL) == 0 &&
timestamp2tm(dt2, &tz2, tm2, &fsec2, NULL, NULL) == 0) {
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
timestamp_CalculateFields(&dt1, &dt2, &fsec, tm, tm1, tm2);
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range")));
} else
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
PG_RETURN_INTERVAL_P(result);
}
/* ----------------------------------------------------------
* Conversion operators.
* --------------------------------------------------------- */
/* timestamp_trunc()
* Truncate timestamp to specified units.
*/
Datum timestamp_trunc(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
Timestamp result;
int type, val;
char* lowunits = NULL;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS) {
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
switch (val) {
case DTK_WEEK: {
int woy;
woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* If it is week 52/53 and the month is January, then the
* week must belong to the previous year. Also, some
* December dates belong to the next year.
*/
if (woy >= 52 && tm->tm_mon == 1)
--tm->tm_year;
if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
++tm->tm_year;
isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
break;
}
case DTK_MILLENNIUM:
/* see comments in timestamptz_trunc */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
else
tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
/* fall through */
case DTK_CENTURY:
/* see comments in timestamptz_trunc */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
else
tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
/* fall through */
case DTK_DECADE:
/* see comments in timestamptz_trunc */
if (val != DTK_MILLENNIUM && val != DTK_CENTURY) {
if (tm->tm_year > 0)
tm->tm_year = (tm->tm_year / 10) * 10;
else
tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
}
/* fall through */
case DTK_YEAR:
tm->tm_mon = 1;
/* fall through */
case DTK_QUARTER:
tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
/* fall through */
case DTK_MONTH:
tm->tm_mday = 1;
/* fall through */
case DTK_DAY:
tm->tm_hour = 0;
/* fall through */
case DTK_HOUR:
tm->tm_min = 0;
/* fall through */
case DTK_MINUTE:
tm->tm_sec = 0;
/* fall through */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits)));
result = 0;
}
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
} else {
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp units \"%s\" not recognized", lowunits)));
result = 0;
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_trunc()
* Truncate timestamp to specified units.
*/
Datum timestamptz_trunc(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz result;
int tz;
int type, val;
bool redotz = false;
char* lowunits = NULL;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS) {
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
switch (val) {
case DTK_WEEK: {
int woy;
woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* If it is week 52/53 and the month is January, then the
* week must belong to the previous year. Also, some
* December dates belong to the next year.
*/
if (woy >= 52 && tm->tm_mon == 1)
--tm->tm_year;
if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
++tm->tm_year;
isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
redotz = true;
break;
}
/* one may consider DTK_THOUSAND and DTK_HUNDRED... */
case DTK_MILLENNIUM:
/*
* truncating to the millennium? what is this supposed to
* mean? let us put the first year of the millennium... i.e.
* -1000, 1, 1001, 2001...
*/
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
else
tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
/* FALL THRU */
case DTK_CENTURY:
/* truncating to the century? as above: -100, 1, 101... */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
else
tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
/* FALL THRU */
case DTK_DECADE:
/*
* truncating to the decade? first year of the decade. must
* not be applied if year was truncated before!
*/
if (val != DTK_MILLENNIUM && val != DTK_CENTURY) {
if (tm->tm_year > 0)
tm->tm_year = (tm->tm_year / 10) * 10;
else
tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
}
/* FALL THRU */
case DTK_YEAR:
tm->tm_mon = 1;
/* FALL THRU */
case DTK_QUARTER:
tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
/* FALL THRU */
case DTK_MONTH:
tm->tm_mday = 1;
/* FALL THRU */
case DTK_DAY:
tm->tm_hour = 0;
redotz = true; /* for all cases >= DAY */
/* FALL THRU */
case DTK_HOUR:
tm->tm_min = 0;
/* FALL THRU */
case DTK_MINUTE:
tm->tm_sec = 0;
/* FALL THRU */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not "
"supported",
lowunits)));
result = 0;
}
if (redotz)
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
} else {
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized", lowunits)));
result = 0;
}
PG_RETURN_TIMESTAMPTZ(result);
}
/* interval_trunc()
* Extract specified field from interval.
*/
Datum interval_trunc(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
Interval* interval = PG_GETARG_INTERVAL_P(1);
Interval* result = NULL;
int type, val;
char* lowunits = NULL;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
result = (Interval*)palloc(sizeof(Interval));
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS) {
if (interval2tm(*interval, tm, &fsec) == 0) {
switch (val) {
/* fall through */
case DTK_MILLENNIUM:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 1000) * 1000;
/* fall through */
case DTK_CENTURY:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 100) * 100;
/* fall through */
case DTK_DECADE:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 10) * 10;
/* fall through */
case DTK_YEAR:
tm->tm_mon = 0;
/* fall through */
case DTK_QUARTER:
tm->tm_mon = 3 * (tm->tm_mon / 3);
/* fall through */
case DTK_MONTH:
tm->tm_mday = 0;
/* fall through */
case DTK_DAY:
tm->tm_hour = 0;
/* fall through */
case DTK_HOUR:
tm->tm_min = 0;
/* fall through */
case DTK_MINUTE:
tm->tm_sec = 0;
/* fall through */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported", lowunits)));
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("interval out of range")));
} else
ereport(ERROR, (errcode(ERRCODE_MOST_SPECIFIC_TYPE_MISMATCH), errmsg("could not convert interval to tm")));
} else {
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval units \"%s\" not recognized", lowunits)));
}
PG_RETURN_INTERVAL_P(result);
}
/* timestamp_trunc_alias()
* truncate timestamp to specified units
*
* reuse from timestamp_trunc and
* provide "trunc" interface for truncating date
*/
Datum timestamp_trunc_alias(PG_FUNCTION_ARGS)
{
return DirectFunctionCall2(timestamp_trunc, PG_GETARG_DATUM(1), PG_GETARG_DATUM(0));
}
/* timestamptz_trunc_alias()
* truncate timestamptz to specified units
*
* reuse from timestamptz_trunc and
* provide "trunc" interface for truncating date
*/
Datum timestamptz_trunc_alias(PG_FUNCTION_ARGS)
{
return DirectFunctionCall2(timestamptz_trunc, PG_GETARG_DATUM(1), PG_GETARG_DATUM(0));
}
/* interval_trunc_alias()
* extract specified field from interval
*
* reuse from interval_trunc and
* provide "trunc" interface for extracting interval
*/
Datum interval_trunc_alias(PG_FUNCTION_ARGS)
{
return DirectFunctionCall2(interval_trunc, PG_GETARG_DATUM(1), PG_GETARG_DATUM(0));
}
/* isoweek2j()
*
* Return the Julian day which corresponds to the first day (Monday) of the given ISO 8601 year and week.
* Julian days are used to convert between ISO week dates and Gregorian dates.
*/
int isoweek2j(int year, int week)
{
int day0, day4;
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
return ((week - 1) * 7) + (day4 - day0);
}
/* isoweek2date()
* Convert ISO week of year number to date.
* The year field must be specified with the ISO year!
* karel 2000/08/07
*/
void isoweek2date(int woy, int* year, int* mon, int* mday)
{
j2date(isoweek2j(*year, woy), year, mon, mday);
}
/* isoweekdate2date()
*
* Convert an ISO 8601 week date (ISO year, ISO week and day of week) into a Gregorian date.
* Populates year, mon, and mday with the correct Gregorian values.
* year must be passed in as the ISO year.
*/
void isoweekdate2date(int isoweek, int isowday, int* year, int* mon, int* mday)
{
int jday;
jday = isoweek2j(*year, isoweek);
jday += isowday - 1;
j2date(jday, year, mon, mday);
}
/* date2isoweek()
*
* Returns ISO week number of year.
*/
int date2isoweek(int year, int mon, int mday)
{
float8 result;
int day0, day4, dayn;
/* current day */
dayn = date2j(year, mon, mday);
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
/*
* We need the first week containing a Thursday, otherwise this day falls
* into the previous year for purposes of counting weeks
*/
if (dayn < day4 - day0) {
day4 = date2j(year - 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
}
result = (dayn - (day4 - day0)) / 7 + 1;
/*
* Sometimes the last few days in a year will fall into the first week of
* the next year, so check for this.
*/
if (result >= 52) {
day4 = date2j(year + 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
if (dayn >= day4 - day0)
result = (dayn - (day4 - day0)) / 7 + 1;
}
return (int)result;
}
/* date2isoyear()
*
* Returns ISO 8601 year number.
*/
int date2isoyear(int year, int mon, int mday)
{
float8 result;
int day0, day4, dayn;
/* current day */
dayn = date2j(year, mon, mday);
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
/*
* We need the first week containing a Thursday, otherwise this day falls
* into the previous year for purposes of counting weeks
*/
if (dayn < day4 - day0) {
day4 = date2j(year - 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
year--;
}
result = (dayn - (day4 - day0)) / 7 + 1;
/*
* Sometimes the last few days in a year will fall into the first week of
* the next year, so check for this.
*/
if (result >= 52) {
day4 = date2j(year + 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
if (dayn >= day4 - day0)
year++;
}
return year;
}
/* date2isoyearday()
*
* Returns the ISO 8601 day-of-year, given a Gregorian year, month and day.
* Possible return values are 1 through 371 (364 in non-leap years).
*/
int date2isoyearday(int year, int mon, int mday)
{
return date2j(year, mon, mday) - isoweek2j(date2isoyear(year, mon, mday), 1) + 1;
}
/* timestamp_part()
* Extract specified field from timestamp.
*/
Datum timestamp_part(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
float8 result;
int type, val;
char* lowunits = NULL;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp)) {
result = 0;
PG_RETURN_FLOAT8(result);
}
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS) {
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
switch (val) {
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon - 1) / 3 + 1;
break;
case DTK_WEEK:
result = (float8)date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_YEAR:
if (tm->tm_year > 0)
result = tm->tm_year;
else
/* there is no year 0, just 1 BC and 1 AD */
result = tm->tm_year - 1;
break;
case DTK_DECADE:
/*
* what is a decade wrt dates? let us assume that decade 199
* is 1990 thru 1999... decade 0 starts on year 1 BC, and -1
* is 11 BC thru 2 BC...
*/
if (tm->tm_year >= 0)
result = tm->tm_year / 10;
else
result = -((8 - (tm->tm_year - 1)) / 10);
break;
case DTK_CENTURY:
/* ----
* centuries AD, c>0: year in [ (c-1)* 100 + 1 : c*100 ]
* centuries BC, c<0: year in [ c*100 : (c+1) * 100 - 1]
* there is no number 0 century.
* ----
*/
if (tm->tm_year > 0)
result = (tm->tm_year + 99) / 100;
else
/* caution: C division may have negative remainder */
result = -((99 - (tm->tm_year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments above. */
if (tm->tm_year > 0)
result = (tm->tm_year + 999) / 1000;
else
result = -((999 - (tm->tm_year - 1)) / 1000);
break;
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec +
(fsec / 1000000.0)) /
(double)SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec) /
(double)SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
result = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_DOW:
case DTK_ISODOW:
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday));
if (val == DTK_ISODOW && result == 0)
result = 7;
break;
case DTK_DOY:
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(tm->tm_year, 1, 1) + 1);
break;
case DTK_TZ:
case DTK_TZ_MINUTE:
case DTK_TZ_HOUR:
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits)));
result = 0;
}
} else if (type == RESERV) {
switch (val) {
case DTK_EPOCH:
#ifdef HAVE_INT64_TIMESTAMP
result = (timestamp - SetEpochTimestamp()) / 1000000.0;
#else
result = timestamp - SetEpochTimestamp();
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("timestamp units \"%s\" not supported", lowunits)));
result = 0;
}
} else {
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("timestamp units \"%s\" not recognized", lowunits)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* timestamptz_part()
* Extract specified field from timestamp with time zone.
*/
Datum timestamptz_part(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
float8 result;
int tz;
int type, val;
char* lowunits = NULL;
double dummy;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp)) {
result = 0;
PG_RETURN_FLOAT8(result);
}
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS) {
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
switch (val) {
case DTK_TZ:
result = -tz;
break;
case DTK_TZ_MINUTE:
result = -tz;
result /= MINS_PER_HOUR;
FMODULO(result, dummy, (double)MINS_PER_HOUR);
break;
case DTK_TZ_HOUR:
dummy = -tz;
FMODULO(dummy, result, (double)SECS_PER_HOUR);
break;
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon - 1) / 3 + 1;
break;
case DTK_WEEK:
result = (float8)date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_YEAR:
if (tm->tm_year > 0)
result = tm->tm_year;
else
/* there is no year 0, just 1 BC and 1 AD */
result = tm->tm_year - 1;
break;
case DTK_DECADE:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = tm->tm_year / 10;
else
result = -((8 - (tm->tm_year - 1)) / 10);
break;
case DTK_CENTURY:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = (tm->tm_year + 99) / 100;
else
result = -((99 - (tm->tm_year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = (tm->tm_year + 999) / 1000;
else
result = -((999 - (tm->tm_year - 1)) / 1000);
break;
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec +
(fsec / 1000000.0)) /
(double)SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec) /
(double)SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
result = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_DOW:
case DTK_ISODOW:
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday));
if (val == DTK_ISODOW && result == 0)
result = 7;
break;
case DTK_DOY:
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(tm->tm_year, 1, 1) + 1);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported", lowunits)));
result = 0;
}
} else if (type == RESERV) {
switch (val) {
case DTK_EPOCH:
#ifdef HAVE_INT64_TIMESTAMP
result = (timestamp - SetEpochTimestamp()) / 1000000.0;
#else
result = timestamp - SetEpochTimestamp();
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported", lowunits)));
result = 0;
}
} else {
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized", lowunits)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
static float8 get_interval_by_val(int val, struct pg_tm* tm, fsec_t fsec, char* lowunits)
{
float8 result;
switch (val) {
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon / 3) + 1;
break;
case DTK_YEAR:
result = tm->tm_year;
break;
case DTK_DECADE:
/* caution: C division may have negative remainder */
result = tm->tm_year / 10;
break;
case DTK_CENTURY:
/* caution: C division may have negative remainder */
result = tm->tm_year / 100;
break;
case DTK_MILLENNIUM:
/* caution: C division may have negative remainder */
result = tm->tm_year / 1000;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported", lowunits)));
result = 0;
}
return result;
}
/* interval_part()
* Extract specified field from interval.
*/
Datum interval_part(PG_FUNCTION_ARGS)
{
text* units = PG_GETARG_TEXT_PP(0);
Interval* interval = PG_GETARG_INTERVAL_P(1);
float8 result;
int type, val;
char* lowunits = NULL;
fsec_t fsec;
struct pg_tm tt, *tm = &tt;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units), VARSIZE_ANY_EXHDR(units), false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS) {
if (interval2tm(*interval, tm, &fsec) == 0) {
result = get_interval_by_val(val, tm, fsec, lowunits);
} else {
ereport(ERROR, (errcode(ERRCODE_MOST_SPECIFIC_TYPE_MISMATCH), errmsg("could not convert interval to tm")));
result = 0;
}
} else if (type == RESERV && val == DTK_EPOCH) {
#ifdef HAVE_INT64_TIMESTAMP
result = interval->time / 1000000.0;
#else
result = interval->time;
#endif
result += ((double)DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
result += ((double)DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
result += ((double)SECS_PER_DAY) * interval->day;
} else {
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("interval units \"%s\" not recognized", lowunits)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* timestamp_zone()
* Encode timestamp type with specified time zone.
* This function is just timestamp2timestamptz() except instead of
* shifting to the global timezone, we shift to the specified timezone.
* This is different from the other AT TIME ZONE cases because instead
* of shifting to a _to_ a new time zone, it sets the time to _be_ the
* specified timezone.
*/
Datum timestamp_zone(PG_FUNCTION_ARGS)
{
text* zone = PG_GETARG_TEXT_PP(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
TimestampTz result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
char* lowzone = NULL;
int type, val;
pg_tz* tzp = NULL;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
/*
* Look up the requested timezone. First we look in the date token table
* (to handle cases like "EST"), and if that fails, we look in the
* timezone database (to handle cases like "America/New_York"). (This
* matches the order in which timestamp input checks the cases; it's
* important because the timezone database unwisely uses a few zone names
* that are identical to offset abbreviations.)
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
lowzone = downcase_truncate_identifier(tzname, strlen(tzname), false);
type = DecodeSpecial(0, lowzone, &val);
if (type == TZ || type == DTZ) {
tz = -(val * MINS_PER_HOUR);
result = dt2local(timestamp, tz);
} else {
tzp = pg_tzset(tzname);
if (tzp != NULL) {
/* Apply the timezone change */
struct pg_tm tm;
fsec_t fsec;
if (timestamp2tm(timestamp, NULL, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
tz = DetermineTimeZoneOffset(&tm, tzp);
if (tm2timestamp(&tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("could not convert to time zone \"%s\"", tzname)));
} else {
ereport(
ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname)));
result = 0; /* keep compiler quiet */
}
}
PG_RETURN_TIMESTAMPTZ(result);
}
/* timestamp_izone()
* Encode timestamp type with specified time interval as time zone.
*/
Datum timestamp_izone(PG_FUNCTION_ARGS)
{
Interval* zone = PG_GETARG_INTERVAL_P(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
TimestampTz result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
if (zone->month != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not specify month",
DatumGetCString(DirectFunctionCall1(interval_out, PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = zone->time / USECS_PER_SEC;
#else
tz = zone->time;
#endif
result = dt2local(timestamp, tz);
PG_RETURN_TIMESTAMPTZ(result);
} /* timestamp_izone() */
/* timestamp_timestamptz()
* Convert local timestamp to timestamp at GMT
*/
Datum timestamp_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
PG_RETURN_TIMESTAMPTZ(timestamp2timestamptz(timestamp));
}
TimestampTz timestamp2timestamptz(Timestamp timestamp)
{
TimestampTz result;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else {
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
return result;
}
/* timestamptz_timestamp()
* Convert timestamp at GMT to local timestamp
*/
Datum timestamptz_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Timestamp result;
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else {
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_zone()
* Evaluate timestamp with time zone type at the specified time zone.
* Returns a timestamp without time zone.
*/
Datum timestamptz_zone(PG_FUNCTION_ARGS)
{
text* zone = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
Timestamp result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
char* lowzone = NULL;
int type, val;
pg_tz* tzp = NULL;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
/*
* Look up the requested timezone. First we look in the date token table
* (to handle cases like "EST"), and if that fails, we look in the
* timezone database (to handle cases like "America/New_York"). (This
* matches the order in which timestamp input checks the cases; it's
* important because the timezone database unwisely uses a few zone names
* that are identical to offset abbreviations.)
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
lowzone = downcase_truncate_identifier(tzname, strlen(tzname), false);
type = DecodeSpecial(0, lowzone, &val);
if (type == TZ || type == DTZ) {
tz = val * MINS_PER_HOUR;
result = dt2local(timestamp, tz);
} else {
tzp = pg_tzset(tzname);
if (tzp != NULL) {
/* Apply the timezone change */
struct pg_tm tm;
fsec_t fsec;
if (timestamp2tm(timestamp, &tz, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
if (tm2timestamp(&tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("could not convert to time zone \"%s\"", tzname)));
} else {
ereport(
ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", tzname)));
result = 0; /* keep compiler quiet */
}
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_izone()
* Encode timestamp with time zone type with specified time interval as time zone.
* Returns a timestamp without time zone.
*/
Datum timestamptz_izone(PG_FUNCTION_ARGS)
{
Interval* zone = PG_GETARG_INTERVAL_P(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
Timestamp result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
if (zone->month != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not specify month",
DatumGetCString(DirectFunctionCall1(interval_out, PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
#else
tz = -zone->time;
#endif
result = dt2local(timestamp, tz);
PG_RETURN_TIMESTAMP(result);
}
/* generate_series_timestamp()
* Generate the set of timestamps from start to finish by step
*/
Datum generate_series_timestamp(PG_FUNCTION_ARGS)
{
FuncCallContext* funcctx = NULL;
generate_series_timestamp_fctx* fctx = NULL;
Timestamp result;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL()) {
Timestamp start = PG_GETARG_TIMESTAMP(0);
Timestamp finish = PG_GETARG_TIMESTAMP(1);
Interval* step = PG_GETARG_INTERVAL_P(2);
MemoryContext oldcontext;
Interval interval_zero;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_timestamp_fctx*)palloc(sizeof(generate_series_timestamp_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = *step;
/* Determine sign of the interval */
errno_t rc = memset_s(&interval_zero, sizeof(Interval), 0, sizeof(Interval));
securec_check(rc, "", "");
fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero);
if (fctx->step_sign == 0)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("step size cannot equal zero")));
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = (generate_series_timestamp_fctx*)funcctx->user_fctx;
result = fctx->current;
if (fctx->step_sign > 0 ? timestamp_cmp_internal(result, fctx->finish) <= 0
: timestamp_cmp_internal(result, fctx->finish) >= 0) {
/* increment current in preparation for next iteration */
fctx->current = DatumGetTimestamp(
DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(fctx->current), PointerGetDatum(&fctx->step)));
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, TimestampGetDatum(result));
} else {
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
}
/* generate_series_timestamptz()
* Generate the set of timestamps from start to finish by step
*/
Datum generate_series_timestamptz(PG_FUNCTION_ARGS)
{
FuncCallContext* funcctx = NULL;
generate_series_timestamptz_fctx* fctx = NULL;
TimestampTz result;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL()) {
TimestampTz start = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz finish = PG_GETARG_TIMESTAMPTZ(1);
Interval* step = PG_GETARG_INTERVAL_P(2);
MemoryContext oldcontext;
Interval interval_zero;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_timestamptz_fctx*)palloc(sizeof(generate_series_timestamptz_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = *step;
/* Determine sign of the interval */
MemSet(&interval_zero, 0, sizeof(Interval));
fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero);
if (fctx->step_sign == 0)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("step size cannot equal zero")));
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = (generate_series_timestamptz_fctx*)funcctx->user_fctx;
result = fctx->current;
if (fctx->step_sign > 0 ? timestamp_cmp_internal(result, fctx->finish) <= 0
: timestamp_cmp_internal(result, fctx->finish) >= 0) {
/* increment current in preparation for next iteration */
fctx->current = DatumGetTimestampTz(DirectFunctionCall2(
timestamptz_pl_interval, TimestampTzGetDatum(fctx->current), PointerGetDatum(&fctx->step)));
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, TimestampTzGetDatum(result));
} else {
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
}
#ifdef PGXC
Datum interval_collect(PG_FUNCTION_ARGS)
{
ArrayType* collectarray = PG_GETARG_ARRAYTYPE_P(0);
ArrayType* transarray = PG_GETARG_ARRAYTYPE_P(1);
Datum* collectdatums = NULL;
Datum* transdatums = NULL;
int ndatums;
Interval sumX1, N1, sumX2, N2;
Interval* newsum = NULL;
ArrayType* result = NULL;
deconstruct_array(collectarray, INTERVALOID, sizeof(Interval), false, 'd', &collectdatums, NULL, &ndatums);
if (ndatums != 2)
ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("expected 2-element interval array")));
deconstruct_array(transarray, INTERVALOID, sizeof(Interval), false, 'd', &transdatums, NULL, &ndatums);
if (ndatums != 2)
ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("expected 2-element interval array")));
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
int rc = 0;
rc = memcpy_s((void*)&sumX1, sizeof(Interval), DatumGetPointer(collectdatums[0]), sizeof(Interval));
securec_check(rc, "\0", "\0");
rc = memcpy_s((void*)&N1, sizeof(Interval), DatumGetPointer(collectdatums[1]), sizeof(Interval));
securec_check(rc, "\0", "\0");
rc = memcpy_s((void*)&sumX2, sizeof(Interval), DatumGetPointer(transdatums[0]), sizeof(Interval));
securec_check(rc, "\0", "\0");
rc = memcpy_s((void*)&N2, sizeof(Interval), DatumGetPointer(transdatums[1]), sizeof(Interval));
securec_check(rc, "\0", "\0");
newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl, IntervalPGetDatum(&sumX1), IntervalPGetDatum(&sumX2)));
N1.time += N2.time;
collectdatums[0] = IntervalPGetDatum(newsum);
collectdatums[1] = IntervalPGetDatum(&N1);
result = construct_array(collectdatums, 2, INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
#endif
// In order to simulate A db's interval type, it need adjust interval's input string
// format according to input character of mode
static void interval_format_adjust(Interval* interval, char type_mode)
{
int32 extra_days = 0;
int64 seconds_per_unit = 1;
switch (type_mode) {
case 'H':
#ifdef HAVE_INT64_TIMESTAMP
seconds_per_unit = USECS_PER_HOUR;
#else
seconds_per_unit = SECS_PER_HOUR;
#endif
break;
case 'M':
#ifdef HAVE_INT64_TIMESTAMP
seconds_per_unit = USECS_PER_MINUTE;
#else
seconds_per_unit = SECS_PER_MINUTE;
#endif
break;
case 'S':
seconds_per_unit = 1;
break;
default:
return;
}
#ifdef HAVE_INT64_TIMESTAMP
extra_days = interval->time / USECS_PER_DAY;
interval->day += extra_days;
interval->time = ((interval->time / seconds_per_unit) * seconds_per_unit) - (extra_days * USECS_PER_DAY);
#else
extra_days = (int32)(interval->time / SECS_PER_DAY);
interval->day += extra_days;
interval->time =
(((int32)(interval->time / seconds_per_unit)) * (double)seconds_per_unit) - (extra_days * (double)SECS_PER_DAY);
#endif
}
// Used to adjust computing result of interval type.
static void interval_result_adjust(Interval* result)
{
while ((result->day > 0) && (result->time < 0)) {
#ifdef HAVE_INT64_TIMESTAMP
result->day -= (int32)1;
result->time += USECS_PER_DAY;
#else
result->day -= (int32)1;
result->time += (double)SECS_PER_DAY;
#endif
}
while ((result->day < 0) && (result->time > 0)) {
#ifdef HAVE_INT64_TIMESTAMP
result->day += (int32)1;
result->time -= USECS_PER_DAY;
#else
result->day += (int32)1;
result->time -= (double)SECS_PER_DAY;
#endif
}
if (result->time != 0)
interval_format_adjust(result, 'S');
}
/*
* split the a date-string into vary single units which is year,
* month, mday, hour, minute, second. And assign these unit values
* to the struct pg_tm, containing the date elements.
*/
struct pg_tm* GetDateDetail(const char* dateString)
{
struct pg_tm* tm = NULL;
int i;
/*the length of dateString*/
int strLength;
int spaceCount = 0;
/*
* if the format is correct, the spacePosition[0] will be the position of the
* space which is used to separate the dateString.The front part of the string
* is specific date and the back part is the specific time.
*/
int spacePosition[5] = {0};
/*the specific date in the string*/
char dateStr[DATESTR_LEN] = {0};
/*the specific time in the string*/
char timeStr[TIMESTR_LEN] = {0};
if (NULL == dateString) {
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
return NULL;
}
tm = (struct pg_tm*)palloc(sizeof(struct pg_tm));
tm->tm_year = 0;
tm->tm_mon = 0;
tm->tm_mday = 0;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
strLength = strlen(dateString);
int decimalPointIndex = -1;
for (i = 0; i < strLength; i++) {
if (' ' == dateString[i]) {
if (spaceCount >= 5) {
pfree(tm);
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
}
spacePosition[spaceCount] = i;
spaceCount++;
} else if ('.' == dateString[i]) {
if (decimalPointIndex != -1) {
pfree(tm);
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
}
decimalPointIndex = i;
}
}
/* there is no space in the date-string*/
if (0 == spaceCount) {
/*
* assume that the string is this kind of fommat like "19900304123045",
* or like "19900304123045.345" with decimal format of second
*/
#define DECIMAL_POINT_INDEX_IN_NO_SPACE_INPUT 14
if ((DATE_WITHOUT_SPC_LEN == strLength && decimalPointIndex == -1)
/* in condition like '19900304123045.345', make sure decimal point in position behind 'yyyymmddhhminss' */
|| (DATE_WITHOUT_SPC_LEN < strLength && decimalPointIndex == DECIMAL_POINT_INDEX_IN_NO_SPACE_INPUT)) {
SplitWholeStrWithoutSeparator(dateString, tm);
}
/* there is only specific date in the string but no time information in the string*/
else if ((MAXLEN_DATE >= strLength) && (MINLEN_DATE <= strLength)) {
AnalyseDate(dateString, tm);
} else {
pfree_ext(tm);
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
}
}
/* there is one space in the date-string*/
else if (1 == spaceCount) {
/* get the specific date*/
errno_t rc = strncpy_s(dateStr, DATESTR_LEN, dateString, spacePosition[0]);
securec_check(rc, "\0", "\0");
/* get the specific time*/
int count = strLength - spacePosition[0] <= TIMESTR_LEN ? strLength - spacePosition[0] : TIMESTR_LEN - 1;
rc = strncpy_s(timeStr, TIMESTR_LEN, dateString + spacePosition[0] + 1, count);
securec_check(rc, "\0", "\0");
AnalyseDate(dateStr, tm);
AnalyseTime(timeStr, tm);
}
/* there are more than one space in the string*/
else {
pfree_ext(tm);
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
}
CheckDateValidity(tm);
return tm;
}
/*
* analyse the whole string without the space and any separator,
* and split the string into year, month , day, hour, minute, second
*/
void SplitWholeStrWithoutSeparator(const char* dateString, struct pg_tm* tm)
{
char year[UNIT_LEN] = {0};
char month[UNIT_LEN] = {0};
char day[UNIT_LEN] = {0};
char hour[UNIT_LEN] = {0};
char minute[UNIT_LEN] = {0};
char second[UNIT_LEN] = {0};
int strLength = 0;
int i = 0;
int nonDigitCount = 0;
if (NULL == dateString || NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
strLength = strlen(dateString);
for (i = 0; i < strLength; i++) {
/* '.' will not count as nonDigit since we are now compatible with input format "19900304123045.345" */
if ((dateString[i] < '0' || dateString[i] > '9') && dateString[i] != '.') {
nonDigitCount++;
}
}
if (0 == nonDigitCount) {
/* get year*/
errno_t rc = strncpy_s(year, UNIT_LEN, dateString, FOUR_DIGIT_LEN);
securec_check(rc, "\0", "\0");
/* get month*/
rc = strncpy_s(month, UNIT_LEN, dateString + FOUR_DIGIT_LEN, TWO_DIGIT_LEN);
securec_check(rc, "\0", "\0");
/* get day*/
rc = strncpy_s(day, UNIT_LEN, dateString + FOUR_DIGIT_LEN + TWO_DIGIT_LEN, TWO_DIGIT_LEN);
securec_check(rc, "\0", "\0");
/* get hour*/
rc = strncpy_s(hour, UNIT_LEN, dateString + FOUR_DIGIT_LEN + TWO_DIGIT_LEN * 2, TWO_DIGIT_LEN);
securec_check(rc, "\0", "\0");
/* get minute*/
rc = strncpy_s(minute, UNIT_LEN, dateString + FOUR_DIGIT_LEN + TWO_DIGIT_LEN * 3, TWO_DIGIT_LEN);
securec_check(rc, "\0", "\0");
/* get second*/
int secondLength = (int)strlen(dateString + FOUR_DIGIT_LEN + TWO_DIGIT_LEN * 4);
int count = UNIT_LEN <= secondLength ? UNIT_LEN - 1 : secondLength;
rc = strncpy_s(second, UNIT_LEN, dateString + FOUR_DIGIT_LEN + TWO_DIGIT_LEN * 4, count);
securec_check(rc, "\0", "\0");
tm->tm_year = atoi(year);
tm->tm_mon = atoi(month);
tm->tm_mday = atoi(day);
tm->tm_hour = atoi(hour);
tm->tm_min = atoi(minute);
tm->tm_sec = (int)round(atof(second));
} else {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
}
}
/*
* analyse the date part of the whole string, and split the
* string into year, month,day.
*/
void AnalyseDate(const char* dateString, struct pg_tm* tm_date)
{
int strLength = 0;
int i = 0;
int dateSeparatorCount = 0;
int dateSeparatorPosition[5] = {0};
if (NULL == dateString || NULL == tm_date) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
strLength = strlen(dateString);
for (i = 0; i < strLength; i++) {
if (dateString[i] < '0' || dateString[i] > '9') {
if (dateSeparatorCount >= 5) {
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
}
dateSeparatorPosition[dateSeparatorCount] = i;
dateSeparatorCount++;
}
}
/* start to get the year,mon,day separately*/
if (0 == dateSeparatorCount && MINLEN_DATE == strLength) {
SplitDatestrWithoutSeparator(dateString, tm_date);
} else if (2 == dateSeparatorCount) {
SplitDatestrBySeparator(dateString, strLength, dateSeparatorPosition, tm_date);
} else {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct!")));
}
}
/*
* split the string by separator into year, month , day.
* Assign values of year, month, day to the struct pg_tm.
*/
void SplitDatestrBySeparator(const char* dateString, int strLength, const int* separatorPosition, struct pg_tm* tm_date)
{
char year[UNIT_LEN] = {0};
char month[UNIT_LEN] = {0};
char day[UNIT_LEN] = {0};
if (NULL == dateString || NULL == separatorPosition || NULL == tm_date) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
if (MINLEN_DATE > strLength || MAXLEN_DATE < strLength) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
}
/* check the position of the oparator .4 is first separator position 6 and 7 are the possible second separator
position*/
else if (4 != separatorPosition[0]) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the year is invalid")));
} else if (6 != separatorPosition[1] && 7 != separatorPosition[1]) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the month is invalid!")));
} else {
/* get the year, mon , day separately in char*/
errno_t errorno = EOK;
errorno = strncpy_s(year, UNIT_LEN, dateString, FOUR_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(
month, UNIT_LEN, dateString + separatorPosition[0] + 1, separatorPosition[1] - separatorPosition[0] - 1);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(day, UNIT_LEN, dateString + separatorPosition[1] + 1, strLength - separatorPosition[1] - 1);
securec_check(errorno, "\0", "\0");
/* transfer char to int*/
tm_date->tm_year = atoi(year);
tm_date->tm_mon = atoi(month);
tm_date->tm_mday = atoi(day);
}
}
/*
* split the string without separator into year, month , day.
* Assign values of year, month, day to the struct pg_tm.
*/
void SplitDatestrWithoutSeparator(const char* dateString, struct pg_tm* tm_date)
{
char year[UNIT_LEN] = {0};
char month[UNIT_LEN] = {0};
char day[UNIT_LEN] = {0};
int errorno = 0;
if (NULL == dateString || NULL == tm_date) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
/* get the year, mon , day separately in char*/
errorno = strncpy_s(year, UNIT_LEN, dateString, FOUR_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(month, UNIT_LEN, dateString + FOUR_DIGIT_LEN, TWO_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(day, UNIT_LEN, dateString + FOUR_DIGIT_LEN + TWO_DIGIT_LEN, TWO_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
/* transfer char to int*/
tm_date->tm_year = atoi(year);
tm_date->tm_mon = atoi(month);
tm_date->tm_mday = atoi(day);
}
/*
* analyse the time part of the whole string, and split the string into
* hour, minute, second.
*/
void AnalyseTime(const char* timeString, struct pg_tm* tm_time)
{
int strLength;
int i;
int timeSeparatorCount = 0;
int decimalPointCount = 0;
int timeSeparatorPosition[5] = {0};
if (NULL == timeString || NULL == tm_time) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
strLength = strlen(timeString);
for (i = 0; i < strLength; i++) {
if (timeString[i] == '.') {
decimalPointCount++;
if (decimalPointCount > 1) {
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
}
} else if (timeString[i] < '0' || timeString[i] > '9') {
timeSeparatorPosition[timeSeparatorCount] = i;
timeSeparatorCount++;
if (timeSeparatorCount > 5) {
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
}
}
}
/* start to get the hour,minute,second separately*/
if (0 == timeSeparatorCount && MAXLEN_TIME_WITHOUT_SPRTR == strLength) {
SplitTimestrWithoutSeparator(timeString, tm_time);
} else if (2 == timeSeparatorCount) {
SplitTimestrBySeparator(timeString, strLength, timeSeparatorPosition, tm_time);
}
/* there are more than two separartors in the time-string*/
else {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct\n")));
}
}
/*
* split the string without separator into hour, minute, second.
* Assign values of hour, minute, second to the struct pg_tm.
*/
void SplitTimestrWithoutSeparator(const char* timeString, struct pg_tm* tm_time)
{
char hour[UNIT_LEN] = {0};
char minute[UNIT_LEN] = {0};
char second[UNIT_LEN] = {0};
if (NULL == timeString || NULL == tm_time) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
/* get the hour, minute,second separately in char*/
errno_t errorno = EOK;
errorno = strncpy_s(hour, UNIT_LEN, timeString, TWO_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(minute, UNIT_LEN, timeString + TWO_DIGIT_LEN, TWO_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(second, UNIT_LEN, timeString + TWO_DIGIT_LEN * 2, TWO_DIGIT_LEN);
securec_check(errorno, "\0", "\0");
/* transfer char to int*/
tm_time->tm_hour = atoi(hour);
tm_time->tm_min = atoi(minute);
tm_time->tm_sec = atoi(second);
}
/*
* split the string by separator into hour, minute, second.
* Assign values of hour, minute, second to the struct pg_tm.
*/
void SplitTimestrBySeparator(const char* timeString, int strLength, const int* separatorPosition, struct pg_tm* tm_time)
{
char hour[UNIT_LEN] = {0};
char minute[UNIT_LEN] = {0};
char second[UNIT_LEN] = {0};
if (NULL == timeString || NULL == separatorPosition || NULL == tm_time) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
/* check the position of the oparator .1 and 2 are the posiible position of the first separator*/
if (1 != separatorPosition[0] && 2 != separatorPosition[0]) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the hour is invalid!")));
}
/* 3 ,4 and 5 are the posiible position of the second separator*/
else if (3 != separatorPosition[1] && 4 != separatorPosition[1] && 5 != separatorPosition[1]) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the minute is invalid!")));
} else {
/* get the year,mon,day separately in char*/
errno_t errorno = EOK;
errorno = strncpy_s(hour, separatorPosition[0] + 1, timeString, separatorPosition[0]);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(minute,
separatorPosition[1] - separatorPosition[0],
timeString + separatorPosition[0] + 1,
separatorPosition[1] - separatorPosition[0] - 1);
securec_check(errorno, "\0", "\0");
errorno = strncpy_s(second,
strLength - separatorPosition[1],
timeString + separatorPosition[1] + 1,
strLength - separatorPosition[1] - 1 < UNIT_LEN ? strLength - separatorPosition[1] - 1 : UNIT_LEN);
securec_check(errorno, "\0", "\0");
/* transfer char to int*/
tm_time->tm_hour = atoi(hour);
tm_time->tm_min = atoi(minute);
tm_time->tm_sec = (int)round(atof(second));
}
}
/*
* Check the date's validity
*/
void CheckDateValidity(struct pg_tm* tm)
{
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
if (0 > tm->tm_year || MAXYEAR < tm->tm_year) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the year = %d is illegal", tm->tm_year)));
} else if (WhetherFebLeapYear(tm)) {
if (DAYNUM_FEB_LEAPYEAR < tm->tm_mday) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("the day = %d for february in leap year is illegal", tm->tm_mday)));
}
} else {
CheckMonthAndDay(tm);
}
CheckTimeValidity(tm);
}
void CheckMonthAndDay(struct pg_tm* tm)
{
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
if (WhetherBigMon(tm)) {
if (DAYNUM_BIGMON < tm->tm_mday || 1 > tm->tm_mday) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the day = %d for big month is illegal", tm->tm_mday)));
}
} else if (WhetherSmallMon(tm)) {
if (DAYNUM_LITTLEMON < tm->tm_mday || 1 > tm->tm_mday) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("the day = %d for small month is illegal", tm->tm_mday)));
}
} else if (FEBRUARY == tm->tm_mon) {
if (DAYNUM_FEB_NONLEAPYEAR < tm->tm_mday) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("the day = %d for February in commen year is illegal", tm->tm_mday)));
}
} else {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the month = %d is illegal", tm->tm_mon)));
}
}
void CheckTimeValidity(struct pg_tm* tm)
{
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return;
}
if (MAXNUM_HOUR < tm->tm_hour || 0 > tm->tm_hour) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the hour = %d is illegal", tm->tm_hour)));
}
if (MAXNUM_MIN < tm->tm_min || 0 > tm->tm_min) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the minute = %d is illegal", tm->tm_min)));
}
if (MAXNUM_SEC < tm->tm_sec || 0 > tm->tm_sec) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the second = %d is illegal", tm->tm_sec)));
}
}
static int WhetherFebLeapYear(struct pg_tm* tm)
{
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return 0;
}
if ((((0 == tm->tm_year % 4) && (0 != tm->tm_year % 100)) || (0 == tm->tm_year % 400)) && FEBRUARY == tm->tm_mon) {
return 1;
} else {
return 0;
}
}
static int WhetherSmallMon(struct pg_tm* tm)
{
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return 0;
}
if (APRIL == tm->tm_mon || JUNE == tm->tm_mon || SEPTEMBER == tm->tm_mon || NOVEMBER == tm->tm_mon) {
return 1;
} else {
return 0;
}
}
static int WhetherBigMon(struct pg_tm* tm)
{
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return 0;
}
if (JANUARY == tm->tm_mon || MARCH == tm->tm_mon || MAY == tm->tm_mon || JULY == tm->tm_mon ||
AUGEST == tm->tm_mon || OCTOBER == tm->tm_mon || DECEMBER == tm->tm_mon) {
return 1;
} else {
return 0;
}
}
/*
* transfor a string (like "1990-03-04 12:12:12") to the type of timestamp
*/
Datum to_date_default_format(PG_FUNCTION_ARGS)
{
text* date_txt = PG_GETARG_TEXT_P(0);
struct pg_tm* tm = NULL;
const fsec_t fsec = 0;
int tz = 0;
TimestampTz result;
char* date_str = NULL;
date_str = text_to_cstring(date_txt);
if (strlen(date_str) > (DATESTR_LEN + TIMESTR_LEN) + 1) // At most 1 space is allowed.
{
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("the format is not correct")));
return (Datum)0;
}
tm = GetDateDetail(date_str);
if (NULL == tm) {
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("the format is not correct")));
return (Datum)0;
}
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
PG_RETURN_TIMESTAMP(result);
}
Datum timestampzone_text(PG_FUNCTION_ARGS)
{
TimestampTz dt = PG_GETARG_TIMESTAMPTZ(0);
char* tmp = NULL;
Datum result;
tmp = DatumGetCString(DirectFunctionCall1(timestamptz_out, dt));
result = DirectFunctionCall1(textin, CStringGetDatum(tmp));
pfree_ext(tmp);
PG_RETURN_DATUM(result);
}
Datum timestamp_text(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
char* tmp = NULL;
Datum result;
tmp = DatumGetCString(DirectFunctionCall1(timestamp_out, timestamp));
result = DirectFunctionCall1(textin, CStringGetDatum(tmp));
pfree_ext(tmp);
PG_RETURN_DATUM(result);
}
/*
* @Description: Convert text to timestamp type
* @in textValue: text type data.
* @return: convert result.
*/
Datum text_timestamp(PG_FUNCTION_ARGS)
{
Datum textValue = PG_GETARG_DATUM(0);
char* tmp = NULL;
Datum result;
tmp = DatumGetCString(DirectFunctionCall1(textout, textValue));
result = DirectFunctionCall3(timestamp_in, CStringGetDatum(tmp), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1));
pfree_ext(tmp);
PG_RETURN_TIMESTAMP(result);
}
/*
* @Description: Add a int32 to a timestamp with timestamp data type
* @in textValue: text type data.
* @return: convert result.
*/
Datum add_months(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
int month_num = PG_GETARG_INT32(1);
Timestamp result;
Interval spanTime;
/* Add month_num month.*/
spanTime.time = 0;
spanTime.day = 0;
spanTime.month = month_num;
if (END_MONTH_CALCULATE) {
struct pg_tm tt, *tm = &tt;
fsec_t fsec;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range")));
int temp = day_tab[isleap(tm->tm_year)][tm->tm_mon - 1];
if (tm->tm_mday == day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) {
tm->tm_mon += spanTime.month;
if (tm->tm_mon > MONTHS_PER_YEAR) {
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
} else if (tm->tm_mon < 1) {
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
spanTime.day = tm->tm_mday - temp;
spanTime.day = (spanTime.day >= 0 ? spanTime.day : 0);
}
}
result = DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(timestamp), PointerGetDatum(&spanTime));
PG_RETURN_TIMESTAMP(result);
}
#define SUNDAYNUM 1
#define MONDAYNUM 2
#define TUESDAYNUM 3
#define WEDNESDAYNUM 4
#define THURSDAYNUM 5
#define FRIDAYNUM 6
#define SATURDAYNUM 7
/*
* @Description: Add a next_day_string function with timestamp data type
* @in theDate: the target timestamp.
* @in week_day: text from Sunday to Saturday.
* @return: convert result.
*/
Datum next_day_str(PG_FUNCTION_ARGS)
{
Datum theDate = PG_GETARG_DATUM(0);
Datum week_day = PG_GETARG_DATUM(1);
Datum result = PointerGetDatum(0);
char* weekday = TextDatumGetCString(week_day);
if (0 == pg_strcasecmp(weekday, "SUNDAY") || 0 == pg_strcasecmp(weekday, "SUN")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(SUNDAYNUM));
} else if (0 == pg_strcasecmp(weekday, "MONDAY") || 0 == pg_strcasecmp(weekday, "MON")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(MONDAYNUM));
} else if (0 == pg_strcasecmp(weekday, "TUESDAY") || 0 == pg_strcasecmp(weekday, "TUE")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(TUESDAYNUM));
} else if (0 == pg_strcasecmp(weekday, "WEDNESDAY") || 0 == pg_strcasecmp(weekday, "WED")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(WEDNESDAYNUM));
} else if (0 == pg_strcasecmp(weekday, "THURSDAY") || 0 == pg_strcasecmp(weekday, "THU")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(THURSDAYNUM));
} else if (0 == pg_strcasecmp(weekday, "FRIDAY") || 0 == pg_strcasecmp(weekday, "FRI")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(FRIDAYNUM));
} else if (0 == pg_strcasecmp(weekday, "SATURDAY") || 0 == pg_strcasecmp(weekday, "SAT")) {
result = DirectFunctionCall2(next_day_int, theDate, Int32GetDatum(SATURDAYNUM));
} else {
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("Invalid day format: \'%s\' of the week", weekday)));
}
PG_RETURN_TIMESTAMP(result);
}
/*
* @Description: Add a next_day_int function function with timestamp data type
* @in theDate: the target timestamp.
* @in target_week: the number of day for the week.
* @return: convert result.
*/
Datum next_day_int(PG_FUNCTION_ARGS)
{
Timestamp theDate = PG_GETARG_TIMESTAMP(0);
int target_week = PG_GETARG_INT32(1);
text* str_week_day = NULL;
int source_week_day;
int add_days;
Timestamp result;
Interval spanTime;
char* string_week = NULL;
if (target_week < SUNDAYNUM || target_week > SATURDAYNUM) {
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("Week day out of range, the range is %d ... %d", SUNDAYNUM, SATURDAYNUM)));
}
/* Get this timestamp's week day.*/
str_week_day =
DatumGetTextP(DirectFunctionCall2(timestamp_to_char, TimestampGetDatum(theDate), CStringGetTextDatum("D")));
if (str_week_day == NULL) {
PG_RETURN_NULL();
}
string_week = TextDatumGetCString(str_week_day);
source_week_day = *string_week - '0';
add_days =
target_week > source_week_day ? (target_week - source_week_day) : (target_week - source_week_day + SATURDAYNUM);
/* Add one day.*/
spanTime.time = 0;
spanTime.day = add_days; /*translate int type to Interval type*/
spanTime.month = 0;
result = DirectFunctionCall2(timestamp_pl_interval, TimestampGetDatum(theDate), PointerGetDatum(&spanTime));
PG_RETURN_TIMESTAMP(result);
}
/*
* @Description: Return the last day of the month
* @in theDate: the target timestamp.
* @return: convert result.
*/
Datum last_day(PG_FUNCTION_ARGS)
{
Timestamp theDate = PG_GETARG_TIMESTAMP(0);
Timestamp result;
struct pg_tm tt;
struct pg_tm* tm = &tt;
fsec_t fsec = 0;
if (0 != timestamp2tm(theDate, NULL, tm, &fsec, NULL, NULL)) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range.")));
}
/* Set day to this month's last day.*/
tm->tm_mday = day_tab[isleap(tm->tm_year)][tm->tm_mon - 1];
if (0 != tm2timestamp(tm, fsec, NULL, &result)) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range.")));
}
PG_RETURN_TIMESTAMP(result);
}
void timestamp_FilpSign(pg_tm* tm)
{
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
void timestamp_CalculateFields(TimestampTz* dt1, TimestampTz* dt2, fsec_t* fsec, pg_tm* tm, pg_tm* tm1, pg_tm* tm2)
{
/* flip sign if necessary... */
if (*dt1 < *dt2) {
*fsec = -(*fsec);
timestamp_FilpSign(tm);
}
/* propagate any negative fields into the next higher field */
while (*fsec < 0) {
#ifdef HAVE_INT64_TIMESTAMP
*fsec += USECS_PER_SEC;
#else
*fsec += 1.0;
#endif
tm->tm_sec--;
}
while (tm->tm_sec < 0) {
tm->tm_sec += SECS_PER_MINUTE;
tm->tm_min--;
}
while (tm->tm_min < 0) {
tm->tm_min += MINS_PER_HOUR;
tm->tm_hour--;
}
while (tm->tm_hour < 0) {
tm->tm_hour += HOURS_PER_DAY;
tm->tm_mday--;
}
while (tm->tm_mday < 0) {
if (*dt1 < *dt2) {
tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
tm->tm_mon--;
} else {
tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
tm->tm_mon--;
}
}
while (tm->tm_mon < 0) {
tm->tm_mon += MONTHS_PER_YEAR;
tm->tm_year--;
}
/*
* Note: we deliberately ignore any difference between tz1 and tz2.
*
* recover sign if necessary... */
if (*dt1 < *dt2) {
*fsec = -(*fsec);
timestamp_FilpSign(tm);
}
}
void WalReplicationTimestampToString(WalReplicationTimestampInfo *timeStampInfo, TimestampTz nowtime,
TimestampTz timeout, TimestampTz lastTimestamp, TimestampTz heartbeat)
{
// timestamptz_to_str returns char[MAXTIMESTAMPLEN + 1]
errno_t rc = memcpy_s(timeStampInfo->nowTimeStamp, MAXTIMESTAMPLEN + 1, timestamptz_to_str(nowtime),
MAXTIMESTAMPLEN + 1);
securec_check(rc, "\0", "\0");
rc = memcpy_s(timeStampInfo->timeoutStamp, MAXTIMESTAMPLEN + 1, timestamptz_to_str(timeout), MAXTIMESTAMPLEN + 1);
securec_check(rc, "\0", "\0");
rc = memcpy_s(timeStampInfo->lastRecStamp, MAXTIMESTAMPLEN + 1, timestamptz_to_str(lastTimestamp),
MAXTIMESTAMPLEN + 1);
securec_check(rc, "\0", "\0");
rc = memcpy_s(timeStampInfo->heartbeatStamp, MAXTIMESTAMPLEN + 1, timestamptz_to_str(heartbeat),
MAXTIMESTAMPLEN + 1);
securec_check(rc, "\0", "\0");
}
/*
* to_timestamp(double precision)
* Convert UNIX epoch to timestamptz.
*/
Datum float8_timestamptz(PG_FUNCTION_ARGS)
{
float8 seconds = PG_GETARG_FLOAT8(0);
TimestampTz result;
/* Deal with NaN and infinite inputs ... */
if (isnan(seconds)) {
ereport(ERROR, (errmsg("timestamp cannot be NaN")));
}
if (isinf(seconds)) {
if (seconds < 0) {
TIMESTAMP_NOBEGIN(result);
} else {
TIMESTAMP_NOEND(result);
}
} else {
/* Out of range? */
if (seconds < (float8) SECS_PER_DAY * (DATETIME_MIN_JULIAN - UNIX_EPOCH_JDATE) ||
seconds >= (float8) SECS_PER_DAY * (TIMESTAMP_END_JULIAN - UNIX_EPOCH_JDATE)) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%g\"", seconds)));
}
/* Convert UNIX epoch to Postgres epoch */
seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
seconds = rint(seconds * USECS_PER_SEC);
result = (int64) seconds;
/* Recheck in case roundoff produces something just out of range */
if (!IS_VALID_TIMESTAMP(result)) {
ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%g\"", PG_GETARG_FLOAT8(0))));
}
}
PG_RETURN_TIMESTAMP(result);
}